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ON THE FORMAL THETA FUNCTIONS OF
COUNTABLY MANY VARIABLES

KENICHI TAHARA

Introduction

In the previous paper [6] we have shown the examples of hyperelliptic
Riemann surfaces of infinite genus such that the Riemann’s theta functions
associated with them are absolutely convergent.

In the present paper we shall study the formal properties of formal
theta functions of countably many variables, analogeous to the case of finite
variables [3], [4]: the canonical base and the addition formula etc. .

In §1, we shall define the formal theta functions of countably many
variables with rational characteristics in the same way as [3], [4], and show
the formal properties of these functions.

Section 2 is concerned with the special case: the infinite products of
the elliptic theta functions with rational characteristics. We shall recall the
sufficient conditions under which these theta functions are absolutely con-
vergent and take Jacobi’s expression of the elliptic theta functions as infinite
products.’>  Using this expression we shall give the proofs of our results,
which are analogeous to the case of finite variables [3], [4].

The auther expresses his appreciation to Professor Morikawa for his
suggestions and encouragements during the preparation of this paper.

Notations and conventions

Q": the coordinate vector space of dimension r over the rational number
field @,

Z": the subspace in Q" consisting of all the integral vectors, i.e. vectors
with integral coordinates,

Q'/Z": the residue group of Q" by Z’7,

Received March 29, 1968.
1 This Jacobi’s expression is a generalization of Jacobi’s expression of so called Jacobi’s
theta function 95(z, g). See p. 464 and 469 in [7].
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G.: the subgroup %«Z’/Z' in Q"/Z", ie. G, = {[(£, L. _‘ﬁ_]

a;, € {0, 1} (léiST)],

H;: the subsetin Q"/Z" consisting of all the elements [ ﬁsl—, “3? R ,-”BL)]

such that g, € {0,1} (1<<i=<7),

2: the coordinate vector space consisting of all vectors with countably
many components in the rational number field @, of which almost all
components are zero,

I': the subspace in 2 consisting of all the integral vectors,

A= Q/I': the residue group of 2 by I,

G: the subgroup in A4 consisting of all the elements [(le—, R )]

2
such that ¢; € {0,1}(i =1,2, « - .- ),
H*: the subset in A consisting of all the elements [( ‘g , de’ ceee )]
such that ¢, € {0,1}(i=1,2, + -+ - - ),
a=(a,a, *++-- ): the vector in 9,
[el=1a, ay + - 1: the class of a vector a= (a,, @y, ++* - - ) in 4,
la*1=1lat, a5, + -« - - 1: the element in H*.

There exists the canonical embedding of the residue group Q7/Z” into
the residue group 4. Therefore we may be considered that H;} is the
subset in H*.

§1. Formal theta functions of countably many variables with
rational characteristics

We shall first define the formal theta functions of countably many
variables with rational characteristics and show the analogeous results to the
case of finite variables [3], [4].

1.1 Denote by {W(i;a), W(j, k;b)la, b€ Q; i,j,k=1,2, ««++- l a
system of indeterminates on which rational numbers operate as following:

Wiis @) = W(i; ca), W(,k; b)° = W(j,k;cb) (c€ Q).

Let I be the ideal in the polynomial ring Z[{W(i;a), W(j,k;b)|a b< Q;
i, j,k=1,2, +++-}] generated by
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W(,00—1, WU,k 00—1, W(H;a)W(i;b)—W(i;a+b)
(a,bGQ; iyj,kzly 2y vreee )-
Denote by U? and Q3. . the images of W(i;a) and W(j,k; b) in the residue

ring B= Z[{W(i;a), W(,k; )] a,b€ Q; i,j,k=1,2, - -+ +}]/I, respectively.
Then it follows that

Ui=1, Qj.=1, UW;=U"
QF.:Q). = Q"% QF..=Q%;
(6,0 Q; i,j,k=1,2, + -+ - ).
Using the brief notations
Ul@) = LU%  Qla,b)= 11 Q%
(@=(ay, Gy *++*), b=1(b, by ----)E Q)
we have the following multiplicative rules:
Ula)’ = Ulca), Qa,b)’ = Q(ca,b) = Q(a,cb)
U@U(b) =Ula+b), Qla+b,c+d)=Q(a,c)Qa,dQ®b,cQb,d)
(ce Q; a,b,c,d € Q).

Let Hom (2, B*) denote the group of all the homomorphisms of the
additive group 2 into the multiplicative group B* of units in the residue
ring B. Then U, U™ and Q(a) (e € 2) may be regarded as the elements
in Hom (2, B*) defined by

U:. c—>Ule)
Ut: ¢e—> U(—c)
Qa): c—> Q(a) (c) = Q(a,c) (ce Q).
The products Q(a)U (a € 2) and Q(a)Q(d) (a,b € 2) mean the elements in
Hom (2, B*) defined by
Q@a)U: ¢c—> Q(a,c)U(c)
Q(a@)Q(d): ¢c—> Q(a,c)Q(b,c) = Qla + b,c¢) (ce Q).

1. 2 In the same way as [4], the theta functions with rational characteristics
are defined as follows
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(1. 1) I QIU) =M§PQ(m +a, m+a)Uim+a)? ([a] € A).

The function 9;,,(Q|U) does depend on the choice of the representative a of
[al. The theta zero values are also defined by

(1. 2) 9a)(Q) ZMZE]FQ(m +a, m+a) (al€ A).

The theta zero value 9;,5(Q) is regarded as the specialization of 9;,4(Q|U)

with respect to the replacement of U (¢€ Q; i=1,2, +--+) by 1.
From the definitions (1. 1) and (1. 2) we have the following formulae:

(1. 3) I(QIQWY) = QU 1 UW)9,4QIU) (D)

(L 4) Ia(QIU) = 9_1(Q1U)

(1. 5) Ia(Q1QBYV) = Q(B, ) U(8)291414n(QIU) (8] € A)
(L. 6) (@) = 9_1(@)

(L. 7) Jra111(Q) = Q(6,8) 9,(Q1Q6)) (6] € A).

The products of 9,4(QIU), 9,(Q) (lal, [6]1 € A) can be defined as the
series in U and @, hence the polynomial ring Z[{9;4(Q|U), 9;,;(Q)| [al,[6]€ A}]
is well-defined.

1. 3 For each subset S in A4 = Q/I", denote by S* the inverse image
of S by the canonical homomorphism from 2 onto 4= /.  Let us give
the abstract definition of the formal theta functions of variables U.

DeriNiTION 1. Let # be a natural number and S be a finite subset
in A. Then a formal series

olU) = 3} 2,U(m)’

is called a jformal theta function of type (n; S) with coefficients in a ring R if

L
(1. 8) ,Qm,m) "€ R (meS¥

and o(U) satisfies the difference relation:
(1. 9) 2QU) = QLU ™ p(U) (LeT).

We mean by Mz(n; S) the R-module of formal theta functions of type (n; S)
with coefficients in the ring R.
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It is easy to show that 9,(Q|U) belongs to Mx(1;[al), where R is any ring

containing the identity 1.
By the same computation as [4] we have

Prorostrion 1. Let n be a natural number and S be a finite subset in A.
Then for any field K, 9;,,(Q"|U") ([bi] e % S) form a base of Myx(n; S), where

%—S is the subset {[b] € A|n[b]l < S} in A.

1.4 We denote by 4 the graded ring Z[{9,(Q)|[lal € 4}] and define
the formal theta functions of variables U ® V.

DermirioN 2. Let m and » be two natural numbers, and S and T be
two finite subsets in A. Then a jformal theta functions of type (m X ny; S X T)
with coefficients in a ring R is a formal series

oU DY) = 3 2 Ulm) @ ()

neT*

such that

L _1
(1. 10) A Qm,m) "Q(n,n) "€ R (meS* neT*

and satisfies the difference relation
(1. 11) QB ®,QMNV) = Qk, k)" QU 1)U (k) *"Q@ V(D)™ o(UR 4V)
(Rl ).

Let o(U) = ZsszQm)2 be a formal theta functions of type (z;S) with
meS*

coefficients in a ring R. Put

PURW) = 2 Ak Ulm)* @,V (n).

neS*
Then o(U®,V) is a formal theta function of type (n x n; S x S) with coef-
ficients in R.

We shall show the following

LemMa 1. The products 91,141:(Q1U @4V) 91411 Q1U @4V ([al, [6]1€ A)
are formal theta functions of type (2 X 2; 2[al x 2[b]) with coefficients in any ring R
containing the identity 1.
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Proof. From the definition it follows that
Va1 +161(Q@1U R 4V) 901 157 (QIU ® V)
2 Q(m+a+b m+a+b)Q(n+a—b, n+a—b)U(m+n+2a)*Q V(m—n+2b)?

= 3 (*r v avs, Bt at0)Q( £l +a—b, Kl +a—b)Uk+2ay
k,lel’ 2
X4V (1+2b)2.
Putting

I+ QIR L) I - QIU @AV ™)= 3 Ay, 112U (k+2a)°® 1V (1426

we have

1 _1

Qerze 32s@k + @, k+2a) 2QU+26, 1+26) 2=1€R (kIcT)
By virtue of the definition 1 and (1. 3), it follows that
ey +16) (R QE)U @ 4Q)V) Ipa) 157 (Q | QE)U R 4Q(DV))™)
= Qk, k)?QW )P U ()™ @ AV(D)™ I1a) 4151 (QIU @ 4V) 9101 5 QU @4V )
(k,LeT).
Thus we have proved Lemma 1, Q.E.D.

1.5 We shall show analogeous formal results to the case of finite
variables [4]: the practical methods we shall use to prove them are to be
expounded in the next section.

LemMmA 2.  Let v be a natural number. Then

det (’9[c+]+[d*] (Q) 19__[c+] +[d*](Q))H¢XH: -v:‘E 0 mod. p

Jor any prime number p, and the matrix
Fre141a1(€Q) I 11 4102 @D

s invertible.

Progf. Similarly as Lemma 5 in the next section, we have

det ( i1:~[1 ’9["3]+[di+] (Q'L) il;ll 19 —[Q’]—H:di*] (Q‘))foH;“ 3—t 0 mOd. p
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for any prime number p. Since II 9 .,4+(Q) is the specialization of
iy Ve 14,

"9[c*]+[d"](Q) induced by Qi.j =1 (i 7_‘: j) and Qi.i = QI (l = 1, 2, """ )9 we
have

det (’9[c+]+[d’](Q) ’9_[¢+]+[d+](Q))H¢XH;}: * 0 mOd. D

for any prime number p. By virtue of Lemma 7 in the next section
and the above same method it follows that the matrix

(Ire1+1a7(Q) P o1 4101 Q) e e
is invertible, Q.E.D.

Lemma 3. The matrix
Ot @) xc
is tnvertible, where 8{023]_[,] Q) = ZFQ(m +c¢t—1, m+ct—1)? ([c¢*] € H,[11€G).
me

Proof. The similar computation as Lemma 6 in the next section shows
that

det (il_ll I Q@) xc = iI—I1 D,
where D; means the determinant of the matrix

(Q4)

\ 9@, 9@

3]

9Qa), 9

(51

Then it follows that
det (Z.I=Il‘9[(i>"]—[l¢](Qi))H“xG #0 mod. p
for any prime number p. Since ﬁ 92 _uy(Q:) is the specialization of
1=1
19[@]_[,]((,)) induced by Q,;=1 (i+j) and Q,,=Q; (i =1,2, -+ +-) we have

det (9_(@)arxc # 0 mod. p

for any prime number p, which proves Lemma 3, Q.E.D.
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Using the above lemmas, by the same methods as Proposition 5 and 7
in the next section we have

Prorosttion 2. Let [a]l and [6] be in A and K a field such that
?9[c+]+[a]<QlU) "9—[c*]+[a]<QlU) ([c+] (S H+) be in MK(Z; 2[&]). T}len 19[c+]+[a](Ql U)
9 141} (Q1U) ([e*] € H*) form a base of Mx(2; 2[al).

Prorosition 3. Let [a] and [b] be in A and K a field such that
19[c‘]+[¢l](QlU) "9—[c"]+[a](Q[U) (c*leH*) and 19[.1\‘]+[1,](Q|V) &—[d+]+[5](QlV) ([d*1e H")
belong to Mx(2; 2[al) and My(2; 2[b]), respectively. Then

141 (@1 U) 9 o1 41a) (QUU) Fpa141) (R1V) 9 4141w Q1V) ([e?], [d7] € HY)
Jorm a base of Mx(2 x 2; 2[a] x 2[b]).

THEOREM (THE ADDITION FORMULA)

ey +161(QIU Q) Ia) 1) (RIU @4V )
= 0 S ATt 114 @110 Q1Y) @1V
([al,[6] € A)
where (g, 4)) 15 the inverse matrix of the matrix®
o410 —rer111a1 Qe xrr+ +

We shall obtain certain relations as corollaries of the addition formula.
Putting V, =1 (i=1,2, « =+« ), we have

COROLLARY 1,
1014061 (Q1U) a1 1 (QUU)
= 20 ae,ay e 1+6(Q) 901+ @) V141 @ U)o 4121 Q1U)

T e[l s
([al,[6] € 4),

and
Ha(QIU)
= e (e, ay N 1@t Q1) 114 Q1U) (@] € A).
Putting V,=U7* (i=1,2, ++ " ), we have

2) The existence of the inverse matrix of this matrix is guaranteed by Lemma 2.
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COROLLARY 2.
a1+15)( Q@ 1U QU ™) Ipa)- 15 (Q1U R U)

= 2 ey Ie1ta QU)o QU gy 1) (QIU)I g 410 (QIU)

e @en
([al,[6] € A).

§2 Infinite products of the elliptic theta functions

This section is concerned with the special case: the infinite products of
the elliptic theta functions with rational characteristics. We shall prove the
proposition corresponding to dimension theorem for My (2; 2[a]) in the case
of finite variables and the addition formula in the special case,. which show
the worth-whileness of the results in the previous"séction.

2.1 Let r be a complex number of which imaginary part is positive
and z be a complex variable, and write ¢ = ¢%-1* and u = ¢™-1z, so that

lq] <1. For each element [¢] in Q/Z and a natural number 7, we shall

introduce the theta functions 9] (¢; #) with rational characteristic [d]:

I (g5 w) = 3 qromearuztm+a),

Then this function {7 (¢; #) does not depend on the choice of the represent-

ative « of the class [a] and is absolutely convergent in any bounded domain
of values of 2. In the case » =1,

el u) = Halg; w)  (al € Q/2)
are the elliptic theta functions with rational characteristics.

Recall the estimations of the these theta functions BEZ]) (g; w). By the
same methods as [6], we have

Lemma 4. Let s be the imaginary part of <, being positive, and x be the
imaginary part of z.  Then

T2

@ 1) 19(g; u)| < e-ratrastany 4 L 77 (lal € Q/Z)
1/7’8
and
@. 2) [92(g; u) — 1] £ |1 — e—ratrast2o) | 4 1/%6 s (d € QZ).
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COROLLARY 1.

(2. 3) 19600 Wl £1+ e =

and

2. 4 | 9{(g; w) — 11 £ ’/‘e e .
COROLLARY 2.

(2. 5) 9@l L1+

and

(2. 6) [9(7(e) — 1] £

2.2 Lete, (i=1,2, «+++-) be complex numbers of which imaginary
parts s; are positive, and 2z, ({=1,2, ----+) be complex variables, and
write g, =e"=1% and wu;=eW-1% ({=1,2, ¢+ ). For each element
[al=1[a, @, -++-+-] iIn A and a natural number 7, consider the infinite

products of the theta functions 19[(,2)] (q; u;) with rational characteristic [a,]:
iglg[(:i)] (g:5 u).
In the same way as [6], we have

ProrosiTiION 4. Let s; (i =1,2, -+ - ) be the imaginary parts of ;, being
positive for all i. If the infinite series

© 1
Z /s

is convergent, then the infinite products of the theta functions «9[2?] (gs5 u;) with ratio-
nal characteristic [a;]:

1_11’9[(;)] (g:5 ui) lal=1lay, a, ++-+-1€ A)

are absolutely convergent in any bounded domain of values of each variable z;.
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2.3 Under the same notations in the above paragraph 2.2, if the

infinite series

is convergent, then it follows that
O Gpglgisu) =2 10 q;(mtadt I1 y 2mita)
i=1 =" mezZe i=1 i=1

(o] fee]
= 2 I qi(mt'l‘ﬂt)z I uiz(mi+ai>.
mel i=1 i=1

Hence the infinite products II 9,;(¢:; #;) ({a]l € A4) are special cases of the
i=1
theta functions 9,)(Q|U) defined in §1, where Q7 ; =1 (i #j), @;; = ¢; and
Ui=ui (CZEQ, i9j=112’ ""')-
From now on in this section, we assume that the infinite series

=i,
is convergent.

It is easy to show that for each [a] in A the products

I reniviaal@ss #a) L I-tenvaales; ) ("1 € HY)

are well-defined and formal theta functions of type (2; 2[a]) with coefficients
in a suitable field. Furthermore we shall show the proposition correspond-

ing to the dimension theorem for Mx(2;2[a]) in the case of finite variables.®

Prorosition 5.  Let [a] be in A and K a field such that

I Feirtan (gss ) 1 9—rerrian(qis ) (Le™] € HY) be in Mx(2; 2[al).  Then

T Fperrttad (@i 5 ) LI —rertan (@i wi) (€71 € HY)

Jorm a base of M(2; 2[al).
We shall start with a lemma which will be needed for the proof of the

proposition.

3) See Proposition 2 in [4].
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LemMA 5. . Let v be a natural number. Then for any prime number p
det(ilzilﬂtcm[dn (9:) ilolz‘)-[cnﬂd:](qi) Ja;xH; %0 mod. p
where (i§119[c;]+[d;] (q:) ﬁ 9 [ery41an1 (q;) JaexE: 15 @ 27 X2 -matrix of which [c*1x[d*]-
-components ([c¢*], [d*]1 & H7) are ,-Eil Y ler1Han (qi)iil«?—[cmrd:] (q:)-

Progf. From the definition, we have

oo

det ( 11 Jre1+1a1(q:) 1 ~ter140a1(¢6) e
[ee) 2 k4 kd
= (1,_1}+1 I0y(g:) ) det ( I Sreivtian (:) T 9—rennetan(g) ).

Since ﬁ 119[201 (¢;) £ 0 mod.p for any prime number p, Lemma 1 in [4] proves
i=v+4
the lemma, Q.E.D.

2.4 We shall give Jacobi’s expression for the elliptic theta functions
with rational characteristics as infinite products, which is a generalization of
Jacobi’s expression of so called Jacobi’s theta function 9,(z,¢)* and can give
not upper estimations only but lower estimations of these theta functions.

ProrosiTion 6 (Jacosr). Let [a] be in Q/Z. Then

o0

g[a](q; u) = g¥u?® ~l—I 1-— qzi)igl (1 +q2i+2a—lu2)i£11 (14 g2i=2e-1y-2),

i=1

Proof. Consider the product composed of a finite number of factors

Fm(u) —_ Aﬁl (1 + qu+2a—1u2)-]1:nI1 (1 + q2i—2a-—1u—2).

This expression developed according to positive and negative powers of « is
of the form

Fo(u) = AP + (APu? + A%u™?) + « « + « (APu™ + A%u~m),
Therefore it follows that

A(JLﬂ) —_ qm2+2am, A(_"’l,z —_ qm2 —2am.

1) See p. 464 and 469 in [7].
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The following identity, which may be at once verified,

("™ + ¢** " uP) Fulqu) = (1 + ¢*" 2" u?) Fop (u)

gives between two consecutive coefficients A

m and A™ or A
the relations

¢
G+ and AT

m 1 — g2mtza+e
AP = qzigfza‘»rT?l — qzm)—Zi — AT
m 1 — g2m+24i+2
Am = Gl A,

Thus we have

A = grtsnar (L= ™59 (L= ™26 oo (1 — g™
A=) L —g)- (1= g

—vai _(}l:gzm+2i+2) (l — q2m+z‘1f+4) .. ;‘_(l _ q4m)
A=g)Q =g+ Q—g"*)

AT = q"

Now put

F(u) = im F,.(«)

Mo

= A, + (Au? + A ju™?) + (Apu* + Agu™) -+« ¢

Then F(u) is absolutely (and uniformaly) convergent in any bounded do-
main of values of variables of 2, and

A; = lim AP = g#* 29 (I (1 — ¢*Y) )™
m—00 Jj=1

Ay =lim A% = g =2ei (10 (1 — ¢*)7,
M—r0 j=1

Therefore we have

qa2 uee I0 (1 — qH) F(u) = qa2 uzae 2 qm2+2amu2m

j=1 meZ

— 2
— 2 q(m+a) uZ('"'“”.
meZ

This proves Proposition 6, Q.E.D.

In general, consider an infinite product II (1 + «;) such that «, are all
=1
non-negative real numbers and a; —> 0 (i —> ).

Then it follows that

=38

Fa
14 a)<e=t,
i=1
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Furthermore assume that a, << ~% (i=1,2, ++++). Then it follows that

© —20;.‘. oy
M(1—a)=e =17,

1=

Under the same notations in the previous paragraph 2.1, using the
above we have the following as corollaries of Proposition 6.

CoRroOLLARY 1. Let 2 be in any bounded domain and c denote the maximum
of lul? and |u|™%  Then

2.7 19001 (q5 )] < q]%coe? ([d € Q/Z).
where o= Lol +eligl™ + gl
1—Jql®

COROLLARY 2. Let r be a natural number and |q|* denote the maximum of

three elements |ql*", |q|*"**" and |q|™*"*"" where a is an element in Q. If

lql* < %, then

(2. 8) lg)"esla* = | 9af(g)| = |q] " ez (4 € Q/2).
2.5 Proof of Proposition 5. Step 1°. Let J be any finite subset of H*.
Then we shall show that the subsystem

{ 1L Sresitian (qs5 ) T I~tei1a (05 i) hieries

of the system LI Steriviad (qas we) 1L 9—teirian (5 ) derer is linearly in-
1= 1=

dependent over K. There exists a natural number » such that Jc HY,

then by virtue of Lemma 5 we have

(2. 9) det (1T Serray(¢3) JL 9-teri+1471(g)mrx: # 0 mod. p

for any prime number p. From (1.7) we can show that T Serrban (q:)
1=

. e o df—a f ®
9 v (q;) i the  specialization of I qi(‘ e El eri+ad (g 5 #s)

i=1

IR=TRR=T:

911+l (g: 3 ;) induced by the replacement u, = ¢,(4-2), Therefore the

relation (2. 9) implies that {_ng[c;']+[ai] (g3 ) T 9—[e1+ia (5 ) Yel< H: hence
1=
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{ II e +a1(qs 5 u;) .Hl'tg—[c:]+[ai] (q: ; )} re1es are linearly independent over K.

Thus .I_Il Ier1+ad (q:; u;) _11119_[c,+]+[a,] (gi5 u;) ([e*] € H*) are linearly indepen-
dent over K.
Step 2°.  We shall next show that any element of Mx(2; 2[a]) is a linear

combination of II Oer1+a (qs 5 #s) .ng—[c;]+[zzi] (g:; u;) ([c*] € HY) with coeffici-
1=

ents in K, Since _II119[,1]+[ai1 (q%; u?) (1€ G) form a base of Mx(2;2[al) b
virtue of Proposition 1, it is sufficient to show that the linear transformation

matrix of the base {.le9[111+[a,] (q%; u)lmec to the system { I Iei+a]
i= i=1

(q:5 u;) II18 —et142:)(G; 5 #;) Yerie £+ 18 invertible. From the definition it follows that
1=
L Sterrtan (gs5 260) 1L 9~ etiad (qi5 u:)
= H 1‘% ')* 1-[1:] (qz) H 19[1,]+[a](qi 5 Uy )

where by (2. 7) and (2. 8) it is easy to show that the right hand is abso-
lutely convergent in any bounded domain of values of each variable z,.
Let T denote the linear transformation matrix. Then we have

T = (L 921 (@)xc -
and shall show the following:
Lemma 6. The matrix
T = (iIleqSlfﬁ}]_[h] (@) %G .«
is tnvertible.
Proof. For any natural i, put
B80 = 9i8i(a:), Bloy) = 91 (22)
{ Bo) = 9, Bky = Shle)
8ot = 93(q0), Bty = =91 (q)
{ g = — A3fa, AP = e

and
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D—d ﬁ((f)fo) ﬂ((f)).g)
L et ‘B(i) ‘B(i)
0) (33
Then it follows that
BEHA0 0 + Bk

‘Béa)ﬁ) ‘B(’L)g) +‘B(z)* ﬁ(‘b)

TAHARA

)

ﬁ@w—

BLESy BEE o + BLEY) B{ley =0
BUY) Bloy) + BT Sy = Ds
and
T = (ILE% v -
Put

k4
T, = (il_IlﬂEZ}. )H:xG,

[ d I d
T = (igl Di)_l(il;ll B wlaixe,

Then it

T
T, =
T

T’f—lﬁ%?f))
*
Iy = T* ﬁ(r)*
B3

for any natural number 7.
r-16) 0

r-1B{30)
(2. 11)

follows that
Tvﬁ&>)
T8y
TE.B(0%)

)
5

(7Y% a(r)%
TT_I‘B@' 3

-1
r

By (2. 10), (2. 11) and the induction on 7, it follows that

(2. 12)

where E, is the identity matrix of order 2.
which [¢*] X [I]-components ([¢*] € H*, [l1€ G) are (.Q_IOI1 D,)! (f[

we shall show that the matrix of infinite order T* is well-defined;

T, = E,

Let T* denote the matrix of
Here

it is

1 [98‘?: li))'

sufficient to show that the infinite product

8

nl(sfaﬂqi)

i=

(2. 13)

19[31 (g;) 19[@] (g;)

)

[%,] (a:)
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is convergent and non-zero. This infinite product (2. 13) is absolutely con-
vergent if and only if the infinite sum

o 92 (a:) 9% (1)
oy 019 (9
(2. 14) igl 1-("’[()i q;) Ez?;] @) 1‘

is convergent. We may assume that [¢;| < - 2 for all i, From the inequa-

lities (2. 6) and (2. 8) we have

N 21 (20) 9%, (a0)
1 (2) . “5"_4; _
zz:_:l ’9[01(%) EZ)] (@) 11

=31 19(3}(a)

’9(%_)] (qz)
S 1 2 % slalFrorizgd
=> + g e '
i=1 /Zsi i=1
. _2ms;
=> 1 + &% Z e °
=T i=

where s, are the imaginary parts of z,, Therefore the infinite sum (2. 14)
is convergent, hence the infinite product (2. 13) is convergent and non-zero.
From (2. 12) it follows that the matrix T is invertible, Q.E.D.

Thus we complete the proof of Proposition 5.

2. 6 Finally we shall show the addition formula in this special case.
We start with showing

Lemma 7. The matrix F

(El Jre1+1a11(4:) :I:II«S' (e 1+a (@) mre x v
is tnvertible.
Proof. For any natural number i, put
768 0y = 91(q2)s T<(z),§) = ’9@;] (q:)
[ o) = ladr 7y = (20 930

1
'3
(4 )%

o) = — 9 (a0, 7% = o)

3

{ 7% = Jmo (%)19[ ](qz), TE )*) = — 19[2%] (9:)
7
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(i) (i)
©0) T(0:3)
D; = det( (i) 5CE) )'
TGo) T4 9

©o
F= (il}lTElc},d;))mxm .

and

Then we have

For any natural number » put

i)
e dR)HEXHE

A

A )7 H r(z'?kd'l'))HrXHr .

)
S ¥
]
=R
U

Then the similar computation as Lemma .6 shows that

(2. 15) F¥F,=E, (r=12 ----)

where E, is the identity matrix of order 2. Let F* denote the matrix
of which [¢*] X [d*]-components ([¢*], [d*] € H*) are (;I;IID,-)"ii_'_% TEZL e Here

we shall show that the matrix of infinite order F* is well-defined: it is
sufficient to show that the infinite product

(2. 16) L (91 () — 98y3()

is convergent and non-zero. This infinite product is absolutely convergent
if and only if the infinite sum

HMS

)| 901 (@) — 941 (a) — 1‘

is convergent. From (2. 5) and (2. 6) we have

ings

o1 (2:) — Iy (@) — 1]

= {190 (@) — 11+ 1 98y (al}

= }/i_ ((1+ l/i_)z +(1+ T/i:> +1) + (e + ]/ii_)a]
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sé}lz( 1/2; ) +6( 1/1“ ) +6( ]/i;_, )+ e 5] < oo,

Hence the infinite product (2. 16) is convergent and non-zero. From (2. 15)
it follows that the matrix F is invertible, Q.E.D.
By the same computation as Proposition 5 we have

ProrosiTioN 7.  Let [a]l and [b] be in A and K a field such that

oo

i1=11 el +a g5 ui)il;[l@_[c;]+[az] (q;; ;) ([c*1€ HY) and il_—_[119[ci+]+[bi] (q:3 ui)il_'IIS_[c;]_Hbi]
(¢:5vi) ([e*]1€ HY) belong to Mx(2; 2[al) and Mx(2; 2[b]), respectively. Then

iEfngaﬂ (g:3 ui)il;11~9_[ci+]+[ai] (q:5 “i),-g N6 (g5 vi)il}ls_[d;]ﬂz,,] (g:3 v2)
([e*], [d*]1€ HY)
Jorm a base of My(2 X 2; 2[a] X 2[b]).
THEOREM (THE ADDITION FORMULA)

iHI Oa+21 (4: 5 %:0;) _H1 aa-16(; 5 w07")
- i-

[ee) ©o [e's)
Aot ) .Hl i1 +iad (9: 5 ui),II1 S—[ef1+a (¢: 5 ui)iH1 Oap1+16:3 (a5 5 V)
1= 1= =

=
) {d e HY
[Il -tan+e1(g;5 v;) ([al, [6] € A)

where (a g, g4) 15 the inverse matrix of the matrix®

(L Sterria1(g0) 1L 9~ (er1403 (@) «

Proof. By virtue of Lemma 1 and Proposition 7 we have
i1}1’9[a;]+[bi] (q:5 u3v;) il;‘[l'g[ai]_[bi] (q:5 wv7)
= 2 Ay I OetiHan (q;5 us) I 9 —et+la (q; 5 us) TL91an+151(q; ;)
[e¢*)la*]le H* i=1 i=1 i=1

oo
_H119 a0+ (Qi 5 Vi)
1=

Putting #, =¢; and v;=¢;, (i=1,2, «+ -+ ), we have

5) The existence of the inverse matrix of this matrix is guaranteed by Lemma 7.
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Aer,ay = (T Greprtan (@) T 9~tennsaan (@)™ -

Here we shall show that the right hand double series of the addition formula
is absolutely convergent in any bounded domain of values of each variable

2; and w;, where u, =¢v—12 and v, =ev-1w ({1 =1,2, +++-: )., Put
ﬁ19~ ; i'uiiﬁse-i iy UUTY) = + d*
I (ad+16 (955 #3vs) 1L Haa-181 (i3 us07") [c*]’[%em Plet,at)
Let all variables z; and w;, (i =1,2, ++++- ) lie in one and the same
bounded domain. Then by virtue of the proof of Lemma 7 and (2. 7) we
have
f’I % ﬁ 01 (q,)
TEEF ax) ‘ 01(g:)|
G [t 2{(eHH2+(d})?
[9(er,an] == € =g i=tl L T | g MY

il;ll 917 (2:)

where N is an integer such that ¢} =di=0 for all i>N, and C is a
constant depending only on [a] and [6]. Put

T an(Ipy1 (@)™ g [P +E* (i < N)

Preran (1) =
e { 01(q2) | ga |20 +@p0) (i >N +1).

Here we may assume that Iqi[%< ~;~ for all /. Then from the inequalities
(2. 8) it follows that for all i
| P, avy ()] < e2tlatd (ci+di=0)
(2. 17) ) . ,
[0, ay (D)< | g, | 3241913 (¢t 4 di +0).
Expanding the integers in the 2-adic numbers, we can identify H* with the
set {0,1,2, «+--- } consisting non-negative integers. Put

p— < £3
[c+],[d2"]e}[+ ! So(c 'd+)l k,l2=0 l Sa(k,l) l.

Consider the infinite series %o‘m defined by
m=0

oy = ISD’(ko,O)l

= etel et + 196 ]

Q

n = 1Om ol + 108l + 108l + o + 108 m| + 106, m)]

Qe
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It is well-known that the series ;Z‘,o'm is convergent if and only if the double
m=0

series > [@eranl = 2 1ok, pl is convergent. By virtue of the in-
[c*)ld*]eH* k, I=0

equalities (2. 17) we have

el 1
24 T |a4]3
Gy — e i=1

hod 1
on =1+ Zm)]qu%eZ4iz=1iqu§ 2t =m<2; j=1,20-").
Therefore

EPAL il , —TS1
o, = 6241‘21]4‘!’3 (14 2727~ 3)
=1

m=0

where s; are the imaginary parts of z;,  Since the series 3]

1 .
== 1§ con-
Jj=1 'l/ K

vergent, the series

°° 1 s

Dlglr=2e s
i=1 i=1

and
0 . _Ts;
E22]—1e 3
=1

are convergent. Hence the double series l 2‘.] o |@¢er,ay| 1s convergent,

ctlldtle Ht

which completes the proof of Theorem, Q.E.D.

2.7 Lete,; (4,,j=1,2, -+---) be complex numbers such z;;=r;;,
and 2, ({=1,2, ----+) be complex variables. For the sake of simplicity
we shall use the matrices notations = = (r;;) and z=(z, 23, +++-+). In
[6] we introduced the theta functions of variables z with rational character-
istics [a]:

Yy (zlz) = e"/flfi.j!;l 75, j(mi+a)(m; +¢1;)+21.§1 (mi+a)z;} (@]l € A).
(my, Mg, see)EZ®

We showed the sufficient conditions under which these theta functions are
absolutely convergent.®> Then for these theta functions is an addition form-
ula realized?

6) See Proposition 2 and 3 in [6].
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