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A MEASURE OF LINEAR INDEPENDENCE FOR SOME 
EXPONENTIAL FUNCTIONS II 

W. DALE BROWNAWELL 

1. Statement of results. This paper continues the investigations in [1] and 
[2] and extends the results of the latter paper to functions of several complex 
variables. Namely let X : R>0 —> R>o be monotonically increasing. (If X is 
non-constant, we also require that log r = 0(X(V)). We write / = 0(g) to 
mean that there is a constant C > 0 such that f(r) g Cg(r) except possibly 
on a set of intervals of finite total length.) Let 0\ denote the set of meromor-
phic / on Cn for which the Nevanlinna characteristic function [5, p. 174] 
T(f, r) satisfies T(f, r) = 0(\(r)). 

We shall see below that 0\ is a differential field. Section 2 contains the defi­
nitions and a short review of the properties we will use. 

THEOREM 1. Let gi, . . . > gibe mer omorphic functions. Then exp gi, . . . , exp gi 
are linearly dependent over 0\ if and only if, for some 1 ^ i < j :g /, 

exp (g* - gj) € 0X. 

When the gt are entire and the exp gt are Ox-linearly independent, we obtain 
the following measure of linear independence, which is our main result: 

THEOREM 2. Let gi, . . . , gi be entire such that for all 1 g i < j g /, 
exp(gi — gj) g 0\. For fi, . . . , / ? € 0\, none identically zero, set 

G = / i exp g! + . . . + / , exp glm 

Then 

m(G, r) è T{e») - I Z T(f„ r) + O(log T(e\ r)). 

Unless otherwise indicated, sums and products are to be taken over all 
1 ^ j ^ /, T(e°, r) will denote maXj T(exp gi} r), and I ^ 2. 

The example gx = ez, g2 = exp gu . . . , gt = exp g,_i, / i = . . . = / , shows 
that it is quite possible to have 

T{G,r) - T{e",r) = O(log r ( C , r)) . 

(Use Nevanlinna's inequality on the logarithmic derivative as in [2, 3.iv] to 
see that 

T(gjt r) ^ 10 log r(exp g,, r) + 0(log r).) 
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Thus with respect to the coefficients of the dominant terms T(G, r) and 
T(e°, r), Theorem 2 is best possible. 

2. Some definitions and results from Nevanlinna theory. Before we 
proceed with a discussion of the proofs, we recall some of the definitions and 
properties from Nevanlinna theory for several complex variables [4]. We use 
the notations 

dc = (V4TT)(Ô - ô), 

co = ddc\og\\z\\2, 

cow_1 = co A . . . A co (n — 1 factors), 

7] = dc\og\\z\\2 A a>n~\ 

Cn[r] = {z G Cn : | |z|| ^ r}, 

ôCw[r] = {z eCn: \\z\\ = r). 

For an analytic divisor D, we set D[r] = D C\ Gn[r] and define the counting 
functions 

n(D,t) = I co""1, 
J D[t] 

N(D,r)= I (N(D,t)-&o(P))dt/t+Sfo(D)logr, 
J o 

where the Lelong number J^o(D) is the multiplicity of D at the origin 
[5, pp. 12-14]. For a meromorphic function/we define the proximity function 

m(f, r)= ( n log+ | / | . 
J dC [r] [r] 

The Nevanlinna characteristic function is defined as 

T(f,r) =m(f,r) +N(f,r). 

From the definitions one sees easily that the properties 

l-P \ P 

i) 

mylfu rj S ]C m(fi> r) + lo§ P 

imply the corresponding properties for 7X11/*, r) and T(Y^fu 0 -
Jensen's theorem [5, p. 174] shows that 

ii) r ( i / / , r ) = T(j, 0 + o(i). 
Thus 0\ is a field. 

In higher dimensional value distribution theory one also studies a generaliza­
tion Ti(f, r) of the Ahlfors-Shimizu order function. 7\( / , r) can be interpreted 
as the average over all of the projective space Pw_1 of complex lines £ through 
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the origin of Cn of the one-dimensional Ahlfors-Shimizu characteristic function 
on the lines £ [4, pp. 18, 19, 25]. The two functions T(f, r) and 7 \ ( / , r) are 
related as in the one variable case [5, p. 190] by 

T(f,r) = 7 \ ( / , r ) + 0(1) . 

Thus one can say that T(f, r) tends to oo unless / is a constant and even 
[4, p. 24] that 

iii) T(f, r) = O(log r) if and only if / is a rational function. 

Quite recently A. Vitter [7] has established a remarkable generalization of 
Nevanlinna's fundamental lemma on the logarithmic derivative: For any 
meromorphic function / on Cn, 

m(h/f) = 0 ( l o g r ( / , r ) + l o g r ) , 

where/ z denotes any partial derivative àf/àzjf j = 1, . . . , n. 
Let us write / = g/h, where g and h are entire functions whose divisors of 

zero share no common analytic hypersurface in Cn, as in the theorem of 
Weierstrass and Cousin. Then 

fz = gz/h - ghz/h
2. 

So 
N(ft, r) S 2N(f, r) 

and similarly 

N(à%r) S (i+l)N(f,r), 

where d̂  denotes any ith order partial derivative. In particular Vitter's theorem 
shows that 0\ is a differential field with derivations à/àzj, j = 1, . . . , n, 
since 

m(f„ r) S m(f, r) + O(log T(f, r) + log r). 

3. The Derivation D. As in the one variable case [2] our proof will be an 
adaptation of Nevanlinna's celebrated generalization of the Picard-Borel 
theorem. Apparently we now have n likely derivations to play the role that 
ordinary derivation played in the original proof. But rather than trying to 
decide which partial derivative to use, we introduce a new derivation 
D = z - grad, i.e. for meromorphic/, 

Df = sid//d*i + . . . + Znàf/àzn. 

It is easy to check that D is a derivation, i.e. is a C-linear map on the field of 
meromorphic functions satisfying the product rule. 

It is clear that if/ is entire, then so is D/. From local considerations it is 
straight-forward to check that 

iv) ker D = C. 
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Moreover if/ is entire, then 

De ' = (Df)ef. 

Vitter's result shows that for ent i re / 

v) m(D/, r) g O(log T(ef, r) + log r) 

and that D carries 0\ into itself. 
As above for/z, one sees easily that 

N(D<*>f,r) g (*+l) iV(/ ,r) . 

Since Vitter's result shows directly that 

vi) mÇDf/f, r) g O(log T(f, r) + log r) 

and thus 

m(D/, r) g »»(/, r) + O(log T(f, r) + log r), 

one sees inductively that 

r(D<*>/, r) = 0(T(f, r) + log r). 

Applying this fact along with i) and v) to 

D(fc)/ D(k)f D/ 

/~ = D^y * * * 7 ' 
we find that for fixed k 

vii) m(D(fc)///, r) = 0 ( Ç log r ( D 0 ) / , r) + log r) = O(log T(f, r) + log r). 

4. Proof of theorem 2. Theorem 1 follows from Theorem 2 on dividing any 
dependence relation by exp gh setting G = —}h and applying Theorem 2 with 
I replaced by / — 1. Since the details are practically the same as in [2, pp. 165-
166], we will not dwell on them, except to recall the fact that in a differential 
field, linear independence over the constant subfield is equivalent to the non-
vanishing of the Wronskian. 

As mentioned above, the proof of Theorem 2 retains the outline established 
by Nevanlinna himself [6, Chapt. V, 1]. We set F0>i = fu i — 1, . . . , /, and 
define for 1 ^ k < I, 

Fk,i = Fk-i,i + D(Fk-lti). 

Then for 0 ^ k < I, 

(1) Fktle'i + . . . + F^e" = D<*>G. 

Since/i exp gi, . . . , / z exp gx are C-linearly independent, their Wronskian with 
respect to D, 

det (Fkti) exp (gi + . . . + gi) 

is non-zero. Consequently <p = det (Fkti) is also non-zero. 
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Consequently we can solve for each exp gt in (1) by Cramer's rule 

<peQi = <Pi. 

We also have 

ftôe0* = Gôi} 

where 8 = det(Fk>j/fj) and <5* is the determinant of the matrix obtained by 
replacing the ith column of (Fktj/fj) by the transpose of 

(1,DG/G, . . . ,Di*-»G/G). 

From (2) and i), we see that 

m{eQi, r) ^ m(<pt, r) + m(l/(p, r). 

From ii) one obtains that 

tn(l/<P, r) S T(<p, r) - N(l/<p, r) + 0(1); 

from i) that 

rnfoi, r) ^ m(G, r) + miU^fj, r) + m(ôif r) 

and that 

T(<p, r) g m(Ufjt r) + m(ô, r) + N(<p, r). 

From v), vii) and the usual expansion of the determinant, we have that 

w(ô, r) = 0(E log T(fjt r) + log T(e*>; r) + log r). 

From the obvious upper bound on T(G, r), we see similarly that 

fn(ôit r) = 0 ( E log T(U r) + log T(e"t r) + log r). 

We must now bound N(<p, r) from above. Since. 

N(DMf,r) £ (k + l)N(f,r), 

it follows that 

N(FkJ,r) S (k + l)N(fJ9r). 

Thus 

N(<p, r)£lZ N(fj9 r). 

5. Remarks. One could also introduce the notion of N as in the one variable 
case and obtain sharpenings of Theorem 2 corresponding to Theorems 3 and 
4 of [2]. 

The first version of this manuscript was written before the appearance of 
Vitter's result. The proofs were obtained by verifying vii) more directly, 
following the lines of the proof of Lemma 2 of P. Gauthier and W. Hengartner 
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in [3]. The idea is to use the step in Nevanlinna's proof of his fundamental 
lemma which bounds w (/ ' / / , r) in terms of T(f, R), log+ R, \og+(R — r)~\ 
and log+ r~l, for every 0 < r < R. This explicit bound is applied on each com­
plex line f in Pw_1 and integrated over Pn_1 . Now the convexity of logarithm 
and Borel's lemma [4, p. 29] are invoked. 

After the manuscript was in its final form, it was brought to my attention 
that P. Bonneau has independently established an analogue in terms of maxi­
mum modulus of our Theorem 1 in Comptes Rendus 285(1977), 111-113 and 
his thesis, Toulouse, 1977. 
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