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Abstract
Let P,...,Pm € Z[y] be polynomials with distinct degrees, each having zero constant term. We show that
any subset A of {1,..., N} with no nontrivial progressions of the form x,x + P{(y),...,x + Pp(y) has size

|A] < N/(loglog N)“Pi--Pm Along the way, we prove a general result controlling weighted counts of polynomial
progressions by Gowers norms.
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1. Introduction

For any polynomials Py,...,P, € Z[y], let rp,._p, (N) denote the size of the largest subset of
[N] :={1,..., N} containing no progressions of the form x,x + P{(y),...,x + Py (y) with y # 0.
Bergelson and Leibman [2] showed that

rp,,...pn(N)=o0p, _ p,(N)

whenever Py,...,P, € Z[y] all have zero constant term. This is a polynomial generalisation of
Szemerédi’s theorem [21] on arithmetic progressions, which states that ry 5y, (k-1)y (N) = ox(N) for
every k € N. Though quantitative bounds in Szemerédi’s theorem for all k& € N are known due to
work of Gowers [6, 7], no bounds are known in general for the polynomial Szemerédi theorem. Thus,
Gowers [8] has posed the problem of proving explicit bounds for the quantities rp,, . p,, (N).
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In this article, we prove quantitative bounds for rp, _ p, (N) whenever Py,..., P, have distinct
degrees, giving the first quantitative version of the polynomial Szemerédi theorem for this large class
of progressions.

Theorem 1.1. Let Py, ..., Py, € Z]y] be polynomials with distinct degrees, each having zero constant
term. There exists a cp,, .. p,, > 0 such that

.....

N

Obviously, any polynomial progression involving only linear polynomials is a subprogression of
some arithmetic progression, so that bounds for Szemerédi’s theorem (such as the current best bounds of
Bloom [3] for three-term progressions, Green and Tao [ 10] for four-term progressions, and Gowers [7] for
longer progressions) imply bounds in the linear case of the polynomial Szemerédi theorem. Until recently,
very few cases beyond this were known. Indeed, quantitative versions of the polynomial Szemerédi
theorem were known in only two other situations: for two-term polynomial progressions [18, 19, 1,
20, 11, 17], to which Fourier analytic methods immediately apply, and for arithmetic progressions with
common difference equal to a perfect power [16] (and thus all subprogressions of those progressions),
to which Gowers’s method [7] may be adapted to apply.

It was essential for the success of the density increment arguments in [6] and [7] that k-term
arithmetic progressions are preserved under translation and dilation, because the inverse theorems
for the Gowers norms (both local and global) give a density increment on an arithmetic progression
whose common difference can be much larger than the length of the progression. Similarly, k-term
arithmetic progressions with common difference equal to a perfect dth power are preserved under
translation and dilation by a perfect dth power, so that Gowers’s local inverse theorem from [7] could
be applied in [16] with suitable modification to get a density increment on a progression with common
difference equal to a perfect dth power. However, the vast majority of polynomial progressions do
not behave so nicely under dilation (e.g., x,x + y,x + y*), so to handle more progressions of length
greater than two, new strategies avoiding the use of the inverse theorems for the Gowers norms were
needed.

Recently, significant progress has been made on the problem of proving a quantitative version
of the polynomial Szemerédi theorem in the finite field setting. Similar to above, let rp, _ p, (Fp)
denote the size of the largest subset of F,, containing no nontrivial progressions of the form x,x +
Pi(y),...,x+ Pyu(y). Bourgain and Chang [4] proved that r, 2 (F,) < p'#/!3, the author [13] proved
thatrp, p,(F,) < p23/ 24 whenever P, and P, are affine-linearly independent over Q, and then Dong, Li,
and Sawin [5] very shortly after and independently showed improved bounds, getting rp, p,(F,) <p, p,
p"/12_ All three of these arguments completely avoided the use of any inverse theorems for the Gowers
norms. However, there were serious barriers to generalising any of the methods of [4, 13, 5] to the
integer setting or to longer progressions in the finite field setting.

Using a different method, the author [14] proved that rp, . p, (F,) < p1‘7P1 ----- Pm whenever
Py, ..., Py, € Z[y] are affine-linearly independent. Theorem 1.1 thus brings our knowledge of the poly-
nomial Szemerédi theorem in the integers more in line with what is known in finite fields. The proof of
Theorem 1.1 involves adapting the central idea of [14] to the integer setting. Such an adaptation was first
done by Prendiville and the author [15] for the special case of the progression x, x + y, x + yz, showing
that ry, \»(N) < N/(loglog N)¢ for some absolute constant ¢ > 0. It turns out that the assumption that
Py, ..., P, have distinct degrees in Theorem 1.1 is the exact condition needed to adapt the argument
of [14] to the integers in full. We will say more about why this is the case in Section 3.

We now briefly discuss the proof of Theorem 1.1 in comparison to the arguments in [14] and [15].
The proof of Theorem 1.1 proceeds via a density increment argument where, as in [15], it is shown
that any subset of [N] with no nontrivial polynomial progressions has increased density on a long
arithmetic progression with very small common difference. This is done by following the strategy for
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proving quantitative bounds in the polynomial Szemerédi theorem originating in [14], which is to first
show that the count of polynomial progressions in a set is controlled by some Gowers U*-norm and
then to show that, in certain situations, one can combine this U®-control with understanding of shorter
progressions to deduce U*~!-control. We refer to this second part of the argument as a ‘degree-lowering’
result, and it is here that it is crucial that Py, ..., P,, have distinct degrees. A key feature of the proof of
the degree-lowering result is that, though the U®-norm plays a role in the argument for arbitrarily large
s, it bypasses the use of any inverse theorems for uniformity norms of degree greater than 2. Starting
with control by any U®-norm, one can repeatedly apply the degree-lowering result to deduce control
in terms of the U2- or U'-norm, which are much easier to deal with than higher degree uniformity
norms.

In contrast to the finite field situation of [14], the main challenge in this artice is to first prove that the
count of polynomial progressions is controlled by some U*-norm. By using repeated applications of the
van der Corput inequality following Bergelson and Leibman’s [2] PET induction scheme, we can prove
control in terms of an average of a certain family of Gowers box norms. In [25], Tao and Ziegler use the
results of their paper on concatenation [24] to prove that such an average is qualitatively controlled by
a global U*-norm but with no quantitative bounds. The results of [24] are purely qualitative and so are
not suitable for our purposes. In this article, we prove a new quantitative concatenation result, which
we use to control (with polynomial bounds) the averages of Gowers box norms just mentioned by a U*-
norm for some s depending only on the degrees of the polynomials involved. In [15], this was done for
the special case of the average of Gowers box norms controlling the progression x, x + y, x + y2, which
is the simplest case requiring a nontrivial concatenation argument. In the general situation covered by
Theorem 1.1, these averages of Gowers box norms can become arbitrarily complex, necessitating a new
and more general approach. The concatenation theory developed in this article is significantly stronger
than that in [15], and the bulk of the new ideas in this article go into proving these concatenation results.
‘We must also be more careful during the PET induction step than in previous works in order to produce
an average of Gowers box norms of the particular form that our concatenation result can be applied
to. Though the proof of Theorem 1.1 only requires a U®-control result for polynomial progressions
involving polynomials with distinct degrees, a result for general polynomial progressions can be proved
with a little more work using our methods. Because it may be of independent interest, we record this
result in Theorem 6.1.

In [15], the author and Prendiville adapted the degree-lowering method of [14] to handle the pro-
gression x,x + y,x + y? in the integer setting. The adaptation in that paper quickly breaks down for
essentially all other nonlinear progressions, however. To prove a degree-lowering result that works in
the generality of Theorem 1.1, we must prove several intermediate degree-lowering results by induc-
tion. This induction is intertwined with an induction proving several intermediate ‘major arc lemmas’.
These lemmas are ingredients in the proofs of the intermediate degree-lowering results whose proofs
themselves require other intermediate major arc lemmas and degree-lowering results, along with the
U?-control result mentioned in the previous paragraph. Despite the additional complications of this in-
ductive argument, the proof of each intermediate degree-lowering result (assuming the corresponding
major arc lemma) is still based on the proof of the degree-lowering result of [15].

This article is organised as follows. In Section 2, we set notation and recall some facts about the
Gowers uniformity and box norms. In Section 3, we give a detailed outline of the proof of Theo-
rem 1.1, stating the most important intermediate results needed. In Section 4, we prove that weighted
counts of the polynomial progressions we consider are controlled by an average of a certain fam-
ily of Gowers box norms. In Section 5, we prove our main concatenation result, which we combine
with the results of Section 4 to deduce control by uniformity norms in Section 6. In Section 7, we
prove several lemmas needed to carry out the degree-lowering argument, and in Section 8 we prove
our general degree-lowering result. We repeatedly combine the degree-lowering result with the U®-
control result proven in Section 6 to deduce a local U'-control result in Section 9. In Section 10, we
use this local U'-control result to carry out the density increment argument, completing the proof of
Theorem 1.1.
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2. Notation and preliminaries

We are interested in the regime where N — oo, and so we will assume that N is sufficiently large so
that, for example, the quantity loglog N is well defined and positive. The standard asymptotic notation
O and Q, along with <, > and =, will be used throughout the article. Therefore, A = O(B), B = Q(A),
A < B and B > A all mean that |A| < C|B| for some absolute constant C > 0, and A < B means
that A < B and B < A. When O, Q, <, > or = appear with a subscript, this means that the implied
constant C may depend on the subscript. We will also use expressions of the form O(A) to denote a
quantity that has size at most an absolute constant times A, and analogously for Q(A).
For any function f : Z" — C and finite subset S ¢ Z", we denote the average of f over S by

Bres ()= 15 D F(0),

xeS

and if u : Z" — [0, o) is finitely supported, we similarly denote the average of f with respect to u by

BN f(x) = ) f0)p().

xXezZn

We say that f is 1-bounded if || f||L~ < 1. We normalise the £”-norms on the space of functions Z" — C
by setting ||f||f,, = Yyezn | f(x)|P. For any L > 0, we define the weight y;, : Z — [0, 1] by

#{(h1,hy) € [L]* : hy — hp = h}

ur(h) = 12

so that supp ur, € (=L, L), |lucllyr = 1, and [luL |7, < 1/L. Set e(x) := ¢*™*. When f : Z — Cis
finitely supported, we define its Fourier transform f : T — C by

£©) = Fx)e(-£x)

X€Z

and the convolution of f with another finitely supported function g : Z — C by

(f*@)(0) =D Fglx=y).

yEZ

With this choice of normalisations, note that f * g = f g flx) = [rf(.f)e(fx)df for all x € Z, and

Srez f(N)g(x) = [ f(£)g(é)dé.

For any f : Z — C and h € Z, we define functions 7, f : Z - Cand Ay f : Z — Cby Ty f (x) =
f(x+h)and Ay f(x) := f(x+ h)f(x) and also define, for hy, ..., h, the function Ay, f:Z — C
by An,,..n.f =Ap - Ay, f. Note that Ay, Ap, f = Ap,Ap, f for any hy, hy € Z. Thus, for any finite
subset / C Z, we may unambiguously define A (p,),, f to equal Ay, | iy S where iy,...,i is any
enumeration of the elements of /. In the same vein, we will use the notation A, f when h = (hy, ..., hy)

to denote the function Ay, . 5, f. Finally, for any (hy, h]) € Z?* we similarly define AE Iy ) f:Z—-C
>

by A;hl’hi)f(x) = f(x + hp) f(x + h}) and also define Azhu,h{) ’’’’’ (hs,h;)f and Azhi’h;)mf analogously

0 Apy,...n f and Ay, f-
We can now define the Gowers box and uniformity norms.

.....
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Definition 2.1. Letd € N, Oy, ...,Q4 C Z be finite subsets and f : Z — C be a function supported on
a finite subset S C Z. We define the (normalised) Gowers box norm of f with respect to Q1,..., Q4 by

AAAAAA
.....

When Q C Z is any finite subset, we define the Gowers U®-norm of f with respect to Q by

1A llwg sy = 1l o)

We will occasionally use the Gowers-Cauchy-Schwarz inequalities, which we now recall. The fol-
lowing two results are standard (see Lemma B.2 of [9], for example).

Lemma 2.2. Let Xy, ..., X, be finite sets, f : [1\_, X; = C, and, for each i € [s], g; : [1;_; Xi = C

be a 1-bounded function such that the value of g;(x1, . .., xs) does not depend on x;. We have
S 2%
E xex; f(x1, ey Xs) l—[g;(x1, oaxs)| < Exo xlex; 1_[ Clwlf(xf", cee xS,
i=L,..., i=1 i=1,..5 wef0,1}5

Lemma 2.3. Let Qy,...,Qq4 C Z be finite subsets and, for each w € {0,1}4, let f,, : Z — C be a
function supported on a finite subset S C Z. We have

|S|Z @heQ, l_[ G‘wlfw(x+ﬁ-w+ﬁ’-(l—w))s 1—[ ||f¢u|||:|¢é1 _____ 0,8
xeZ i=l,...d 4e(0,1}4 we{0,1}4 ‘

In the above lemmas and elsewhere in the article, € : C — C denotes the complex conjugation
operator and 1 denotes the tuple with entries all equal to 1, whose dimensions will be clear from context.
Similarly, O denotes the tuple with entries all equal to 0.

Finally, we will need an inverse theorem for U?-norms of the form || - ||UlzmI ({z))- This is the only

inverse result for uniformity norms used in the proof of Theorem 1.1.
Lemma 2.4. Let L > 0. If f : Z — C is 1-bounded, supported on the interval [L] and satisfies
”f”U[Z(S’L]([L]) =6,
then there exists a 8 € T such that
[Exerz) f(0e(Bx)] > (6691
Proof. By making the change of variables x +— x — h] — h), in the definition of || - “Ulza'u([”)’ we have

1
T Z Apyio f ) psrn(h)psr(ha) = 6%

x,hy,hy €Z

By Fourier inversion, it follows that
2

. 1 4

(/ |#6'L(§)|d§) - max |- Z Apy o f(x)e(Erhy)e(E2h2)| = 67,

T Lz x,hiha€Z

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press



https://doi.org/10.1017/fmp.2020.11

6 Sarah Peluse

Note that
T @F  Menlz 1
Jimi@las = [ FEE e - S G <

because psp = (1[s1] * 1_[5/L])/(5/L)2. Thus,

1
L3

Z f@e((E+&E)x)f(x+h)e(€i(x+h))f(x+ha)e(éx(x + ha)) f(x + hy + hy)

x,hl,h2€Z

is at least (67)%6% for some &1, &, € T. The result now follows by applying the Gowers-Cauchy-Schwarz
inequality and U>-inverse theorem in Z/5[L]Z (see [22], for example, for these standard results). O

3. Outline of the proof of Theorem 1.1

To aid the reader, Figure | shows the logical dependencies between the key intermediate results stated
in this section, as well as Theorem 1.1.

As mentioned in the Introduction, Theorem 1.1 is proved using a density increment argument. Let
Py, ..., P, € Z[y] be polynomials with distinct degrees, each having zero constant term. We show that
if A c [N] has density @ and contains no nontrivial progressions of the form x, x+ Py (y), .. ., x+ P, (y),
then there exists an arithmetic progression a + ¢[N’] C [N] with N* =p,  p, N“PrPm D and

Theorem 3.5

|

Proposition 3.4 Proposition 3.6

N

Lemma 3.10 for £ =2 Theorem 3.7

— !

Lemma 3.9 for £ =2 Corollary 3.8

Lemma 3.10 for { = m — 1

/

Lemma 3.9 for { =m — 1

T

Lemma 3.10 for £ = m

/

Lemma 3.9 for £ = m

|

Lemma 3.11

!

Theorem 3.3

!

Theorem 3.2

!

Theorem 1.1

Figure 1. Logical dependencies between key results.
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q <p,,...P a~OP1Pm (D guch that
AN (a+q[N’
| (Cl CI[ ])| Za"l'QPl P (QOPI ..... Pm)
N’ T
Note thatif A C [N] contains no nontrivial progressions of the form x, x+P1(y), . . ., x+ P, (y), then the

rescaledset A’ :={n € [N'] : a+gqn € AN (a+q[N’])} contains no nontrivial progressions of the form

P P
wxy Pilay) L Pmlay) 0
q q
and the polynomials Pl@ (y) = @ fori = 1,...,m all have integer coefficients and zero constant

term.

To continue the density increment argument, we must prove that A’ also has increased density on
a long arithmetic progression with small common difference. To ensure that our density increment
iteration terminates, we want the size of the density increment for A’ to depend only on the original
polynomials Py, ..., Py, and not on g. For this reason, we make the following useful definition.

Definition 3.1. A polynomial P = agy? + --- + ay has (C, q)-coefficients if |a;| < Clagy| for all
i=1,....,d=-1andag =a/,q? " with 0 < |a/,| < C.

Note that any polynomial with (C, g)-coefficients has zero constant term by definition and that any
polynomial with zero constant term trivially has (C, 1)-coefficients for some C > 0. The usefulness of
this definition comes from the fact that if Py,..., P,, all have (C, r)-coeflicients, then Piq), e, P,(f )
all have (C, gr)-coefficients.

Now we can state our density increment result.

Theorem 3.2. Let N > 0, ¢ € N, and Py,...,P, € Z[y] be polynomials with (C, q)-coefficients
such that deg Py < --- < degP,,. If A C [N] has density a := |A|/N and contains no nontrivial
progressions of the form x,x + P(y),...,x + Py (y), then there exist positive integers q' and N’
satisfying q" <cdeg P, a Owerm (D) gpd

deg P /deg P, deg Py /deg P, o) 1
Ndeg Pi/deg P 5 A/ > deg P,y NOE 1/deg P (g [ g) Oaes Pm (1)

such that
|AN Q]

L 2 a4 Qe n, (@)

for some arithmetic progression Q C [N] of the form Q = a + q’q°[N’] with b <gegp,, 1, provided
that N > deg P (q/a)OdEng(l)'

Note that, though the length of the progression on which A has increased density in Theorem 3.2
may depend on ¢, the lower bound Qc geg p,, (@C%Pm (1)) on the density increment is unchanged when

Py, ..., P, arereplaced by Piq), cees Pf,f’ ). We are thus guaranteed that our density increment argument
will terminate, yielding the bound in Theorem 1.1.

We prove Theorem 3.2 by studying, for functions fy, ..., fr : Z — C supported in the interval [N]
and characters Y1, ..., Ym : Z — S!, the following general multilinear average:

,,,,,

S S R  PLOD - felxd Pt (Pt (30) (P (3).

x€Zye[M]
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..........

for any A c [N] and M sufficiently large, the quantity Agl M Pm(l A) is 1/NM times the number of
nontrivial progressions x, x + P1(y), . .., x+ P, (y) in A. It is necessary for us to study the more general

.....

the proof Theorem 1.1.
Theorem 3.2 is a consequence of the following result, whose proof takes up the bulk of this article.

Theorem 3.3. Let N > 0, g € Nand Py, ..., Py, € Z[y] be polynomials with (C, q)-coefficients such

that deg Py < --- < deg Pp,. Set M := (N/q%ePm=1)1/degPm yf £, £ 7 — C are 1-bounded
functions supported on the interval [N] and

o Joreees fu)| 2 6,

then there exist positive integers q’, b and N' satisfying q" <c deg P, 5 Odeerm (D) p <deg P, 1 and
Mg P > N’ >C deg P, Mg P (6/q)0degm(])
such that

1
N Z iEye[N']fl (x + 61'qu)| >>C deg Py §Oaeepm (1),

X€Z

provided that N >>¢ geg p,, (q/6)Oaeerm (D),

As discussed in the Introduction, to prove Theorem 3.3 we must show that the average

Agl’l_\fl_ P, (fos---» fesWests - - -, ) is controlled by some U*-norm of the form || - ”Us[afl]([L])' We do
this by first showing that AII\JJI’I.‘{ P (fos---» fesWests - - - » W) is controlled by an average of a family of

Gowers box norms of a special form and then proving the main concatenation result of Section 5 and
repeatedly applying it to averages of such Gowers box norms.

We now describe the special form of the families of Gowers box norms just mentioned. Let £ and
¢ be nonzero integers with £ > 0. For each j = 0,...,¢ — 1, we define a sequence of finite sets
Ij = I;((ki)ie1;,) that depend on the choice of k; € N for each i € I;-; when j > 1 and sets of
polynomials A; = A;(C, c; (ki)ier,_,) = {pi : i € I;}, which are indexed by I}, recursively as follows:

1. I = {0}, I1 (ko) = {0, 1}* \ {0}, and
Ii((kpier,_y) = {0, 1yt Eraelivretkliy g0

forj=2,...,0—-1,and

2. Ag(€,c) :={c}, A1(€, c; ko) = {(fca(]) o teal!

&, o) - @ : w € 1 (ko)}, and

Aj(locs (kidier, ) = {((€ = (G = DIpiaDicr,yrep) - w € 1}

forj=2,...,0-1.

For example, when £ = 3, ¢ = 1, ko = 2, ko,1) = k@1,1) = 1 and k(10 = 2, we have Iy = {0},
I (ko) = {(0,1),(1,0), (1,1)},

IQ(k(O,l), k(l,0)7 k(l,l)) = {0, 1}{((0’1)’1),((1’0)’1)’((1’0)’2)’((1’1)’1)} \ {Q}’
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Ao(l,c) = {1}, A1 (¢, ¢; ko) = {3a'V, 30"

o1 3a, 305 +3al)}, and Ax (€, ¢; (K 0.1), k(1.0), k(1.1))) equaling

n (2 (D _(2) (1) (2) (1) 0y, (2) . 4
{(6ay a7y 16a0,a ' 1-6a0 50 1) 5, 6(ag  +agy)aiy) ) -w:we {0,177\ {0}}.
We will show that Ag M P, (fos---» fesWests - - -, ¥m) is controlled by an average of Gowers box

norms of the form || - ”'jl(lé;:‘g))igz{,,] (IV]
suffices to prove such a result in the case when deg P; =i foreachi = 1, ..., m, because any polynomial
progression considered in Theorem 1.1 is a subprogression of such a progression. One may also assume
thatyey = -+ = ¢, = 1, because the general case follows from this special case by the Cauchy-Schwarz
inequality. We thus restrict to this situation in the following proposition for ease of notation.

)’ where Q;(a) = p;(a)[6’M] for suitable 0 < §" < 1. Note that it

Proposition 3.4. Let N M > 0, g € Nand Py, ..., P¢ € Z[y] be polynomials with (C, q)-coefficients
such that deg P; = i fori = 1,...,¢ and P¢ has leading coefficient cy. There exist positive integers
ki <¢ 1foreachi € l;and j=0,...,{—2 such that the following holds. If 1/C < g 'M¢/N < C,
fos---» fr : Z — C are 1-bounded functions supported on the interval [N],

.....

and §' <c ¢ §9¢) | then we have

1
Eaeall fell jire-1 () >t s,
P@I'MDpen,_,

where Ip_y = Ip—1({k;i : i € Ip—2}) and Ap—y = Ap—1(€, ce; (kidier,,) are defined as above and
-2 .
A = (=M, 5'M) 0 Z) %50 Ziet; K1

In Section 5, we prove that the averages of Gowers box norms appearing in Proposition 3.4 are
controlled by some U*-norm with s <, 1. The most important ingredient of this proof is the following
theorem, which is our main concatenation result.

Theorem 3.5. Let N,M{,M, > 0 with M, < M; and M\M, < N/|c| and by,...,bs €
[-CN/M|,CN/M\INZ.If f : Z — Cis a 1-bounded function supported on the interval [ N| such that

Eae[Mz] ”f”l:r‘

>
((ca+b) M DE ([N]) = 0, (2)

and §' <c ¢ 89 then there exists an s’ < 1 such that

>>C,S 603(1)’

/1l

Stormay (IND)
provided that MiM> >>c (55’)—0s(1)_

Many averages of Gowers box norms appearing naturally can be controlled by global Gowers
uniformity norms through repeated applications of Theorem 3.5, so we expect that this result could
be of independent interest. Another general concatenation result appearing later that may also be of
independent interest is Lemma 5.1.

In the special case when M| = M, = NY2 ¢ =1 and by,...,by = 0, after an application of
Lemma 2.2, Theorem 3.5 implies that the average E, ¢y 121Exe(N1Ep, i, en121Dah,....an, [ (x) Of
‘local Gowers uniformity norms’ (as defined in [23]) is controlled by some U*®-norm, with polynomial
bounds. This thus gives a quantitative version of Proposition 1.26 of [24] for arbitrary s, though with a
worse dependence of s on s.
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We take advantage of the special structure of A,_; to prove the following proposition using repeated
applications of Theorem 3.5, showing that averages of Gowers box norms of the form appearing in
Proposition 3.4 are controlled by U®-norms.

Proposition 3.6. Let N, M > 0, g € Nand Py, ..., P € Z[y] be polynomials with (C, q)-coefficients
such that deg P; = i fori = 1,...,¢ and P, has leading coefficient cy. There exists an s <¢ 1 such
that the following holds. Let I;_y, A¢—y and A be as in Proposition 3.4. If 1/C < ¢*'M!/N < C,
f :Z — Cis a 1-bounded function supported on the interval [N],

aeA”f” gle-1! [N]) >0,

Pp@isMDpea,

and 8§’ <c ¢ 59¢) | then we have

1 llers 5o,

cotornat) IND > €.

provided that N >c ¢ (q/66")°¢(V.

Combining Propositions 3.4 and 3.6, we thus deduce using the Cauchy-Schwarz inequality that
AN M P, (fos---» fesWests - - -, W) is controlled by an average of U*-norms.

.....

Theorem 3.7. Let NyM > 0,1 <€ <mand Py,..., P, € Z[y] be polynomials such that Py, ..., P¢
have (C, q)-coefficients, deg Py < --- < deg P,,, and Py has leading coefficient cy. There exists an
§ <deg P, 1 such that the following holds. If 1/C < qleePeipdeePe /N < C, fo,.... fr 1 Z — Care
1-bounded functions supported on the interval [N, Yeys1,. .., Wm : Z — S' are characters,

ANMP (f0$"'7ff;lp€+la-"’lpm) 259

,,,,,

and §' <c deg P, 59 (D) thon we have

Ogeg p, (1)
tllus N1) >C.,deg P, 0 tFt
Il f2l e ppyieg stz ey (VD) eg P ,

provided that N >>c geg P, (g/56")Cezre (D,

We will next use the Cauchy-Schwarz inequality to deduce from Theorem 3.7 control of
AN M P, (fos---» fesWests - - - » W) in terms of an average of U®-norms of dual functions.
Corollary 3.8. Let NNM > 0, g € N, 1 < € < mand Py,...,P, € Z[y| be polynomials such
that Pi,..., Py have (C,q)-coefficients, degPy < --- < degP,,, and P has leading coefficient
c¢. There exists an s <qegp, 1 such that the following holds. If 1/C < gq%ePc=ipdeePe /N < C,
fos- -, fr 1 Z — C are 1-bounded functions supported on the interval [N] and Y41, ..., 1 Z — S!
are characters,

/\NMP (for- s Jestests - ¥m)| 2 0,

.....

and 6" <eg p,,C 5% (D) then we have

Odeg p, (1)
| Fellos o, CN)) Sdee Py.c 0 dePc i)
(dcgl’l)'([[d/MdegPl’]([ deng( ) gLy,

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.11

Forum of Mathematics, Pi 11

provided that N >>4eg p,,C (4/56')0‘13“’/(1), where Fy is the dual function

Fe(x) :=Eyepm1 fo(x = Pe(y)) -+ fee1(x + Pec1(y) = Pe(Y)Went (Pes1 (3) -+ m (P ().
The next step of the proof of Theorem 1.1 is to show our general degree-lowering result.

Lemma 3.9 (Degree lowering for €). Let NNM > 0, g € N, 2 < £ < m, Py,...,P, € Z[y] be
polynomials such that Py, . .., P¢ have (C, q)-coefficients, deg Py < - - - < deg P,,, and P, has leading
coefficient c¢ satisfying 1/C < |ce/c| < C, fo,..., fe : Z — C be 1-bounded functions supported on
the interval [N], and Weii, ... Wm : Z — S' be characters. Let F; be as in Corollary 3.8. If s > 3,
1/C < |c|M%ePe /N < C,0< 6" < 1 and

”Ff“U‘[é (IcNT) = 6,

/Mdeg P[ 1
then
1 Fellyys-

’ Odch ,s(l)
16’ mdee Pf]([CN]) > C.deg Pe.s (66 ) ¢ ’
c ¢

provided that N > geg p,.s (q/86")C%Pes(),

Lemma 3.9 is labeled as ‘Degree lowering for £’ because it is proved by induction on ¢ using the
following lemma.

Lemma 3.10 (Major arc lemma for £). Let NN\M > 0, g € N,2 < £ <m, Py,...,P, € Z]y] be
polynomials such that Py, ..., Pg have (C, q)-coefficients, deg Py < - -- < deg Py, and P; has leading
coefficient ¢; fori = 1,...,m, and ¢, ... Wy - Z — S be characters with y;(x) = e(a;x) with a;; € T
fori =¢,...,m. Assume further that 1/C < |c|M%Pe/N < C. If there exist 1-bounded functions
05 -+ +» fe—1 : Z — C supported on the interval [ N] such that

7 D Feenueen) > o,

X€Z

where Fy is as in Corollary 3.8, then there exists a positive integer t <c degP,, 5 Oaerm (D) and a
¢’ <¢ ([cem|)PeePm D) sych that

§_Odchm (1)

’
llzc’emamll <c deg P, Mg P [

provided that N ¢ geg p,, (q/6)C%ePm (D).

The proof of Lemma 3.10 for each ¢ is itself part of the inductive proof of Lemma 3.9. We first prove
Lemma 3.10 in the £ = 2 case, then show that Lemma 3.9 for ¢ > 2 follows from Lemma 3.10 for £ and
finally show that Lemma 3.10 for £ > 3 follows from Lemmas 3.9 and 3.10 for £ — 1. Taken together,
this shows that Lemmas 3.9 and 3.10 hold for each ¢.

As promised in the Introduction, we now discuss why we must assume that P, ..., P,, have distinct
degrees in Theorem 1.1, instead of just requiring them to be linearly independent over Q as in [14].
The proof of the degree-lowering result in [14] is made simpler by the fact that there is only ever one
‘major arc’ in the finite field setting (the trivial character) and a character of F, is either equal to the
trivial character or it is not. In contrast, the notion of major arc in the integer setting is more flexible.
For the proof of Lemma 3.9, we need the full strength of the conclusion of Lemma 3.10: that a,, is
within some factor of M~ 9 Pm of a rational with small denominator. But if we relax the hypotheses of
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Lemma 3.10 to allow Py, ..., P, to be merely linearly independent, then one can only show that @,
is major arc in a quantitatively weaker sense: that «,, is within some factor of M~9¢ 1 of a rational
with small denominator. This is not strong enough to prove a corresponding degree-lowering result.
Of course, if Py, ..., Py, are not even linearly independent, the degree-lowering phenomenon certainly
does not occur even in the finite field setting.

For the final stage of the proof of Theorem 3.2, we combine Corollary 3.8 with repeated applications
averages of related multilinear averages with successive f;s replaced by characters are also large. This
is captured in the following lemma.

Lemma3.11. LetN,M > 0,qg e N,2 <€ <m, Py,..., Py, € Z|y] be polynomials suchthat Py, . .., Pg
have (C, q)-coefficients, deg P\ < --- < deg P,,, and Py has leading coefficient c¢, fo,..., fr :Z — C
be 1-bounded functions supported on the interval [N] and Wesi, ..., Wm © Z — S' be characters. If
1/C < gleePe-lppdeePe /N < C and

|A2,’M Pm(fO?""ff;lﬁf+l""’wm)| Z 6$

Toeees

then

C'N'.M’ ( cuh, w Oueer, (1
A o o P e et - Uim) | > Cdeg P deg pe (1)
FEEREEE) m

E . n=0,...|c|-1
0<w<(N/|¢')/C'N’

for some characters ¢, : Z — S', where C’ =degp, C, ¢’ = (degP¢)lce, M' := M/|c’|, N' :=
(M/)deg Py_y (qlc/Ddeg P[,lfl’

P;(c’z+h)-P; (h) .
Pl(z) = - i=1,...,6-1
Pi(c’z+h) — P;(h) i=¢C,....,m

s

and

ko () o TerconwT-py(nyT-u(foteu)(c'x) - liony(x) =0
' TooNnwTp (ny-pp () T-ufi(c’x) - Tiony(x)  i=1,...,0-1

provided that N > geg p, (q/8)Cre D).

Note that if Py, ..., P,_; € Z[y] have (C, ¢)-coefficients, then P", ..., P;‘_l € Z[y], as defined in

Lemma 3.11, have (Ogeg p, (C), ¢’ q)-coeflicients for each i € [¢’]. To prove Theorem 3.3, we repeatedly

.....

an average of multilinear averages of the form Agl ..... O (g0, 81:%2, ..., ¥n) is large as well, where
g1 equals various shifts and scalings of f; and degQ; = degP; — (deg Py — 1). It is not hard to
show that, usually, the phases ¥, ..., ¥, must all be major arc, so that after passing to sufficiently
short subprogressions modulo an integer of the form ¢’q® for some ¢’ <C,deg P 6 Oseerm () and
b <geg p, 1 and unravelling the definition of g, we are left with an average of the form appearing in
Theorem 3.3.

M’

4. Control by an average of Gowers box norms

As in previous work on the polynomial Szemerédi theorem, we will frequently use van der Corput’s
inequality, which we now recall. See, for example, [12].
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Lemma 4.1 (van der Corput’s inequality). Let M > H > 0 and g : Z — C. We have

Eyenngf < = S shmz0)|.
heZ ye[M]N([M]-h)

As mentioned in Section 3, we W111 use repeated applications of the Cauchy-Schwarz and van der
Corput inequalities to control A Pro. P by an average of Gowers box norms of the form appearing in
Proposition 3.4. To do this, we follow | Bergelson and Leibman’s PET induction scheme [2]. Tao and
Ziegler [23, 25] have also used PET induction to prove that counts of polynomial progressions are
controlled by averages of Gowers box norms in their work on polynomial progressions in the primes.
Our argument differs in that we care about the precise structure of the average of Gowers box norms so
that we can apply Theorem 3.5. Thus, we will have to make more careful choices at certain points of
the PET induction argument and also keep track of more information.

We first record, for the sake of convenience, the most common way in which the Cauchy-Schwarz
and van der Corput inequalities are combined in this section. Like Lemmas 4.4, 4.5 and 4.6 to follow,
the statement of Lemma 4.2 is long because of the amount of information we will want to keep track

of, but its proof is short.

Lemmad4.2. Let N, M > 0, [ and A C Z" be finite sets, ig € I, u : Z" — [0, o) be supported on A with
lpllr <1, Qi € Zlay, ...,au]ly] foreachi € I and f4, fi : Z — C be 1-bounded functions supported
on the interval [N] for each a € A and i € I. Assume that

TR e (e = O ®
If
2
B | D B fu® [ | i+ Quta )| 2, @)
er iel

then for all y' < ¢ vy, we have
B s B ) [ | a0+ Qa3 >,
N irel’

where

L I"=(Ix{0,1}) \ {(i0, 0)},

2. A= Ax ((=y'M,y'M)NZ),

3. p(a’) = p(a,....an)Hy m(ans1),
4. foreachi’ = (i,€) € I, we have

Q.(d',y)=0Qi(ar,...,any+€an1) — Qi (ai,...,an,y)

5. and for eachi’ = (i,€) € I', we have

Proof. For each a € A, we first apply the Cauchy-Schwarz inequality in the x variable and use that f,
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is 1-bounded and supported on [N] to bound the left-hand side of (4) by

2

1
EZEAN Z Eyem) l_[fi(x +0Qi(a,y))
X€Z iel
Applying van der Corput’s inequality with g, 4(y) := [1;¢; fi(x+Q;(a,y)) and H = y’M for0 <y’ < 1
bounds the above by
< EgeAN Z Z Hy' M (an+1) Z gx,g(y + an+l)gx,g(y) >

X€Z | aps1 €Z y [MIN([M]-an+1)

where we have used the fact that M + H = (1 +y")M < M.

Now, note that g 4 is 1-bounded because the f;s are 1-bounded and, foreach a € A, gy isidentically
zero for all x € Z outside of a set of size < CN by the assumption (3) because each f; is supported on
the interval [N]. Thus, recalling that y,ps is supported on (—y’M,y’M) and ||u, a1l < 1, for each
an+1 € (=y'M,y'M) N Z we may extend the sum over y € [M] N ([M] — a,+1) to a sum over all of
[M] at the cost of an error of O(Cy’). Thus, as long as ¥y’ < Cy, we have

aeA’N ZEye (M) nﬁ(X+Q (ar,....an,y +ana)) filx+Qi(ar,...,an,y)) >vy.

XE€Z iel

To conclude, we make the change of variables x = x — Q;,(a, y). O

To describe the PET induction scheme, we need the notion of a weight vector. This is the one-
dimensional case of the weight matrix of Bergelson and Leibman [2], who also consider more general
multidimensional polynomial configurations.

Definition 4.3. Let n € N, I be a finite set and Q; € Z[aj,...,a,]|[y] foreachi € I. Set Q := (Q;);er,
and let L(Q;) denote the leading coefficient of Q; for each i € I. The weight vector of Q is defined to be

V(Q) = (H(L(Q) : deg O, = jui € 1)),

We also define the degree of Q to be max;¢; deg Q;.

Clearly, the weight vector of any finite set of polynomials has only finitely many nonzero entries.
One can define an ordering < on the set of weight vectors by saying that V(Q) < V(Q’) if there
exists a d € N such that #{L(Q) : degQ = d,0 € Q} < #{L(Q’) : degQ’ = d,Q’ € Q'} and
#{L(Q) :degQ =¢,0 € Q} =#{L(Q’) : degQ’ =¢,Q’ € Q"} for all e > d. It is easy to see that < is
a well-ordering on the set of weight vectors. PET induction is simply an induction on the weight vector
of collections of polynomials using the ordering <, with collections of linear polynomials forming the
base case of the induction. This method is based on the fact that one can use the Cauchy-Schwarz and
van der Corput inequalities to control an average over the polynomial configuration (x + Q(y))gequ{o}
by an average over a polynomial configuration (x + Q’ (y))Q/egfu{O} with V(Q’) < V(9Q).

.....

As mentioned in Section 3, if one can control A P, (f1,---, fr) by an average of U®-norms,

then one can also control AN M P, (fi,eos fg,ng, ..., ¥m) by an average of Us*-norms for any

characters Y41 o z//m : Z — S' by using the Cauchy-Schwarz inequality. The first goal of this section
is to control A ’’’’’ Pf (fo,---» fe) in terms of an average of averages over the linear configuration
(x+p(@)y)pea,. lu{()}, with A,_; as in Proposition 3.4. In order to verify that the linear configuration
we get at the end of the PET induction argument has this particular form, it will be necessary to keep
track of additional details besides the weight vector. In particular, we will keep track of the set of leading

coefficients of polynomials of highest degree d and the coefficients of their degree d — 1 terms.
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We will now state three basic lemmas on controlling averages over general progressions (x +
0(¥))oeauioy» which apply in different situations depending on the weight vector of Q. These lemmas
have long statements, but each proof is just an application of the Cauchy-Schwarz and van der Corput
inequalities followed by a change of variables.

Lemmad4.4. Let N,M > 0, [ and A C Z" be finite sets, ig € I, u : Z" — [0, o) be supported on A with
Il < 1 and ||,u||§2 < Cﬁ, Q; €Zlay,...,ay]ly] foreachi € I and f,, f; : Z — C be 1-bounded
functions supported on the interval [N] for each a € A andi € I. Set Q := (Q;)ier and let d be the
degree of Q, r = V(Q)g, C denote the set of leading coefficients of degree d polynomials in Q, c;, be the
leading coefficient of Q;, and d’ be the smallest index such that V(Q)q # 0. Assume further that

1. 1<d' <d,
2. there exists an s € N such that, for all ¢ € C, there are s degree d polynomials Q in Q with leading
coefficient c, each having the form

clai,..., an)yd + c'Q(al, . ,an)yd*1 + lower degree terms,
where the coefficients c’Q(a1 ,...,0an) are all distinct

3. degQ;, =d’
4. and

max max max |Qi(a,y)| < C'N.

iel acA ye[M
If

ATy S By fa) [ | i+ Qi y)| > 7. (5)
X€EZ iel

then for all y' <c.cr y?, we have

Eyeny ZEyElM Fio ) | | 8 (x + Qpr(a,)) > 72,

xEZ i'el’
where
L I"=(Ix{0,1}) \ {(i0, 0)},
2. A= AX((-y'M,y'M) NZ),
3. p'(a’) = alletnd i (ap),
4. fori’ € I', we have Q;,(a’,y) = Qi(a,y + €ant1) — Qiy(a, y),
5. the set of leading coefficients of degree d polynomials in Q" := (Q},)irer is C,
6. for all ¢ € C, there are 2s degree d polynomials in Q" with leading coefficient c, and for each
i’ =(i,e) € I’ withdeg Q; = d and Q; having leading coefficient c, the polynomial Q, has the form
clay,....a,)y* + [cp,(ar,....an) +edc(ay, ... an)ann — la=a-1c;,(ai, . . an) ]y

+ lower degree terms,

so that the coefficients of the degree d — 1 terms of these polynomials are still distinct,
7. we have

V(Q) =(n,....na-1,V(Qa = LV(Qars1,...,V(4,0,...),

whereny +---+ng_1 < |I'| =2|I| -1
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8. and, fori’ = (i,€) € I, we have

o fi €=0

Proof. We expand the definition of E* to write the left-hand side of (5) as

D @) Z Byerm1fa®) | | fiGe+ Qi@ v || 2y
acA er i€l
and apply the Cauchy-Schwarz inequality in the a variable to deduce that
2
Eqca Z fa@)Byerm | | Gr+ Qi@ y)| >c ¥,
NZ iel

using the assumption ||u|| <C4 T
We now apply Lemma 4.2 to conclude. Indeed, if Q; has degree d and leading coefficient c, then, by
the binomial theorem, Q;(ay, . .., a,,y + €a,+1) equals

c(ay,... ,an)yd + [c’Qi (ai,...,an) +e€dc(ay,..., a,,)a,,Jrl]yd*1 + lower degree terms.

In addition, if Q; has degree > d’, then Q(; ) (as defined in Lemma 4.2) has the same degree and
leading coefficient as Q;, if Q; has degree d’ and leading coefficient equal to ¢;;, then Q ; ¢) has degree
< d’—1and if Q; has degree d’ and leading coefficient ¢; # c¢;,, then Q(; ¢) also has degree d’ and has
leading coefficient ¢; — ¢;,, thus confirming conclusion (7) of the lemma. O

Lemmad4.5. Let N, M > 0, I and A C Z" be finite sets, iy € I, u : Z" — [0, o) be supported on A with
Il < 1 and ||,u||2 < Cli\l’ 0; € Zlay, . ..,an)lyl foreach i € I and f,, f; : Z — C be 1-bounded
functions supported on the interval [N] for each a € A and i € I. Set Q := (Q;)ier, and let d be the
degree of Q and r = V(Q)y. Assume further that

l.d>1landr =1,
2. V(Qu =0foralld’ < d,
3. the polynomials Q € Q each have the form

clay,..., an)yd + c'Q(al, el an)yd*1 + lower degree terms,
where the coefficients c’Q(a1 ,...,an) are all distinct
4. and
max max max |Qi(a,y)| < C'N.
iel acA ye[M
If

ZEye[M fa@ [ [ e + Qi@ )| 2 7,

X€EZ iel

aEAN

then for all y' <c.c' y*, we have
By LS Byern o) [ ] 0+ Q) (@ 3)) ¢ 72
er i’el’
where
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L 1"=(Ix{0,1}) \ {(io, 0)},
2. A= AX((-y'M,y'M) NZ),
3. /J,(Q,) = lA(aiZi.’an),uy’M (an+l),
4. fori’ = (i,e) € I', we have Q;,(a’,y) = Qi(a,y + €ans1) — Qip(a, y),
5. the set Q" := (Q])irer consists of 2|I| — 1 degree d — 1 polynomials, each with distinct leading
coefficient, and the set of such coefficients is
{eg, (@, an) +ede(ar, ..., an)ans = cq, (a1,...,an) : (i,€) € I'},
6. we have
d-2

—_—

V(Q)=(0,...,0,2/] - 1,0,...)

7. and fori’ = (i,€) € I, we have

o fi €=0
8ir = E 621.

Proof. Apply the Cauchy-Schwarz inequality and Lemma 4.2 in exactly the same manner as in the proof
of Lemma 4.4. O

Lemma 4.6. Let N,M > 0, [ and A C Z" be finite sets, iy € I, u : Z" — [0, c0) be supported on A with
el < 1 and ||,u||?2 < Cﬁ, 0, € Zlay, . ..,a,]ly] for eachi € I, and fg, f; : Z — C be 1-bounded
functions supported on the interval [N] for each a € A andi € I. Set Q := (Q;)ier and let d be the
degree of Q, r = V(Q)4, C denote the set of leading coefficients of degree d polynomials in Q and c;, be
the leading coefficient of Q;,. Assume further that

l.d>1andr > 1,

2. V(Q)u =0foralld < d,

3. there exists an s € N such that, for all ¢ € C, there are s degree d polynomials Q in Q with leading
coefficient c, each having the form

clay,..., a”)yd + c'Q(al, - ,an)yd_1 + lower degree terms,
where the coefficients c’Q(al, ..., ay) are all distinct
4. and
max max max |Qi(a,y)| < C'N.
iel acA ye[M
If

B O B ) [ [ fite+ Qita |2 7,

X€Z iel

then for all y' <c.c’ y?, we have
Bl eny Z%Wmmﬂ&m@mm»m,
er i'el’

where

L 1" =(Ix{0,1}) \ {(i0,0)},
2. A’ =Ax((—y'M,y'M)NZ),
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la(ai,..., an)

W (a') = 25 1y M (ans),

Jori” = (i,€) € I', we have Q},(a’, y) = Qi(a, y + €ans1) — Qi (4, y),

. the set of leading coefficients of degree d polynomials in Q" := (Q},)iep is {c — ¢, : ¢ € C} \ {0},

. for each ¢ € C\ {c;,} there are 2s degree d polynomials in Q" with leading coefficient ¢ — c;,, and
fori" = (i,e) € I' with deg Q; = d and Q; having leading coefficient c, the polynomial Q},(a’, y)
has the form

oL AW

(c=ci)(a,....an)y? +[cp, (ar,....an) +edc(ar, ..., an)ant = cg, (a1,...,an)]y"™!

+ lower degree terms,

so that the coefficients of the degree d — 1 terms of these polynomials are still distinct,
7. we have

V(Q’) = (nl,...,nd_l,V(Q)d - 1,0,...),

wheren +---+ng_1 < |I'| =2|I| -1
8. and fori’ = (i,€) € I’, we have

_Jfi €=0
Proof. As with the previous lemma, the proof is the same as that of Lemma 4.4. O

The next two lemmas are proved by many applications of the previous three lemmas, with the choice
of iy in many uses of these lemmas being particularly 1mportant. Recall that the set A,—; was defined
recursively. Correspondingly, the proof that the average A P (f1,-.., fe) is controlled by an average

of averages over the linear progression (x+ p(a)y)pea,_, U{o} proceeds iteratively. Lemma 4.7 produces
the initial situation that we will apply Lemma 4.8 to repeatedly.

Lemma 4.7. Let N M > 0 and Py, ..., P, € Z[y] be polynomials with (C, q)-coefficients such that

degP; =i fori=1,...,0 and P¢ has leading coefficient c¢. If 1/C < q¢""'M!/N < C, fo,.... fr :
Z — C are 1-bounded functions supported on the interval [N,

AR o )] 2 7

andy’ <c¢ yOc W) then we have

aeAN ZEye Jff(x) l—lfl_'(x+ Qi(g,y)) >c. 70[(1)’

X€Z iel
where
1. 1={0,1}\ {0} for some t <, 1,
2. A=((-y'M,yM)NZ),
1a(ai,..., ‘
3. plar, @) = (z?y('al\lxl—JJf;f)flﬂy’M (ar),
4. the collection Q := (Q;)icr consists only of polynomials of degree € — 1, each of which has distinct

leading coefficient, and the set of such leading coefficients is
{(lceay, ..., lcea;s) - w: w eI},

5. we have

max max max |Q;|(a,y) <c.e N
iel aecA ye[M]

6. and f] equals either fp or feforalliel.
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In this lemma and those to follow, if O = agy? +- - - +ag € C[y] is any polynomial, then |Q| denotes
the polynomial |ag|y + - - - + |ag).

Proof. The proof proceeds by applying Lemma 4.4 some number of times depending on ¢ and then
Lemma 4.5 once. Suppose that P, has degree £ — 1 coefficient cz, and P,_; has leading coefficient c,_;.
Set Jo = [£], Ao = {0}, uo = 1401, Qo = {P1,..., Pe}, 66 = {Cz,},i()’o =landg;o=fjforj=1,...,¢
We apply Lemma 4.4 repeatedly to produce a sequence of t — 1 <<, 1 finite sets J; and Ay, measures
Mk, collections of polynomials Qi C Z[ay, ...,ar][y], sets €, C Z[ay,...,ax] of coeflicients of the
degree £ — 1 term of degree ¢ polynomials in Q, elements iy x € Jx and 1-bounded functions g x for
each j € J satisfying

Lo Je = ((Jk=1 \{J € Jk—1 : deg Qj = 0}) X {0, 1}) \ {(ip,k-1,0)} for k = 1,...,1 -1,
2. Ay =((—y’M,y’M)mz)k fork=1,...,t-1,
(ai,..., )
3. ur(ay,...,ax) = %;@M(ak) fork=1,...,t—-1,
4. Qr =(Qj)jey, fork =1,. — 1, where, for j = (j’, €) € Ji, we have

Qjai,...,ax,y) =Qjplai,...,ar1,y+e€ar) — Qiy,_ (ai,...,ax-1,y),

5. €, ={c, —e(k)ce1 + bee(ar, ... ax) - w : w € {0, 1Y%} for k = 1,...,t — 1, where e(k) = 1 if
1 <¢ k <t—1and e(k) = 0 otherwise,
6. for j = (j’, €) € Ji, we have g; x equal to either g x_1 or g/ x_1,

7. ip.x € Ji istheindex of any nonconstant (in y) polynomial of smallest degree in Qy fork = 1,...,7-1,
and ig ;1 € J;—1 is the index (¢, 0)
8. and
-1
—_——

V(Q-1) = (0,...,0,1,0,...),

such that
B D Bt fuk () [ g4 0an, . ) iy,
XE€Z J€Jk
deg Q;#0

where

fak () = giy k1 () [ ] gialx+Q (arn,...,ax,y)

J€Jk
deg Q;=0
forallk =1,... 1 provided that y* <¢ ¢ y?*(). Indeed, we have that ||uxl|2, W < A3k|
foreach k =1, — 1, and to check that the condition
max max max |Qj(a,y)| <c.e N (6)

J€Jk acAx ye[M
holds for each application of Lemma 4.4, note that

max sup [Pi(y)] < L/ CN
i=1,..., t ye[-cM,cM ]

for any ¢ € N by the assumptions that Py, ..., P, have (C, g)-coeflicients, deg P; =i fori = 1,...,¢,
and ¢“~'M? < CN, which implies that (6) holds by the recursive definition of the Q s and the triangle
inequality.

Note that Q,_; consists only of constant polynomials (in y) and polynomials of degree ¢ (in y), we have
Jioi\{j € Ji-1 : degQ; =0} = {£} x {0, 1}~ ig ;1 is the index of the degree £ polynomial in Q;_
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whose degree £ — 1 term has coeflicient ¢, — c¢-1, and g; ;-1 equals either f; orﬁ for every j € Ji such
that deg Q; = £. We may thus apply Lemma 4.5 with J,_1 \ {j € J;—1 : deg Q; = 0}, A;—1, py-1, f0.s-1,
far—1and f; = gj 1 foreach j € J;_y \ {j € J;_1 : deg Q; = 0}, again assuming that y’ <c ¢ y2¢().
The conclusion of the lemma then follows after relabelling indices in [€] x {0,1}" \ {(¢,0)} by the
corresponding elements of {0, 1}’ \ {0}. The bound on |Q;|(a, y) follows in the same manner as (6)
using the triangle inequality. O

Lemma 4.7 may be used, for example, to control the progression x, x + y, x + y> in terms of averages
over the progression x,x + 3a;y* + 3aly,x + 3ay* + 3aly,x + 3(a; + a2)y* + 3(a? + a3 + 2a;az)y,
where we have absorbed the constant (in y) terms into the definitions of the f,s for the sake of
simplicity.

Lemma 4.8. Let N,M > 0, [ and A C ([ M, M] NZ)" be finite sets, u : Z" — [0, o) be supported
on A with ||ullp < 1 and ||;1||L%2 IA\ Q; € Zlay,...,a,][y] be degree d > 2 polynomials for
each i € I, C be the set of leading coefficients ofpolynomlals in Q := (Qi)ies with m = |C| and
f, fi + Z — C be 1-bounded functions supported on the interval [N] for each i € I. Assume further
that

1. I and C have the form I = {0, 1}’ \ {0} and

€= {(c}ar,....an)jes w:wel} ™
for some finite set J and polynomials c €Zlay,...,an],
2. m = |I|, so that the leading coeﬁictents of elements of Q are all distinct,

3. we have

max max max |Qil(a,y) < CN
iel acA ye[M

4. and f; equals either f or f for eachi € I.
If

B 3 Byen F [ | e+ @ity 2

X€Z iel

andy' <c.d.m yPam ) then we have

B s 2 Bt FQO) [ | 0+ Q1@ ) om0,

xEZ i'el’
where
1. I’ = {0, 1} {Griclrelli} \ (0} for some k; <q.m 1 for eachi € I,
2. A= Ax ((=y'M,y'M) NZ)Ziet ki,
’ lar(a, (“t r)ze re )
3. w(a, (aiyier re(k)) = \AT(ZLV MJ+])’Zzegkk “THyMm(aj, kj ) for some j € 1,
4. Q" == (Q})ier consists only of polynomials of degree d — 1, each of which has distinct leading

coefficient, and the set of such leading coefficients is

{(dci(ay,....an)air)ier refk] - w:w €'},

5. we have

max max max |05 1(a’,y) <c.am N
i'el’ a’eA’ ye[M

6. and f}, equals either f or f foreveryi’ € I'.

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.11

Forum of Mathematics, Pi 21

Proof. The proof proceeds by applying Lemma 4.5 once after repeating the following m — 1 times: apply
Lemma 4.6 once and then Lemma 4.4 as many times as necessary with careful choices of distinguished
index iy to produce a bound in terms of an average over a polynomial progression involving only
polynomials of degree d. Each repetition of this procedure reduces the number of distinct leading
coefficients of polynomials of degree d by one.

We first enumerate the elements cy,...,c, of C by picking any ordering such that if £ < k’,
then cx(a) = (c(}(g))jej -w and cp(a) = (c(]).(c_z))jej - w’ with |w| £ |w’|. This means that ¢,,(a) =
Z]-EJ c?. (a). Enumerate the elements Q1, . . ., O, of Q similarly, so that Q; has leading coefficient c;(a),
and let ¢/ (a) denote the coefficient of the degree d — 1 term of Q; foreachi = 1,...,m. Set co(a) := 0.

Let Iy = [m], Ao = A, uo = 1, Qo =9, Gy =C, G(()k) = {c;c} foreachk =1,...,m,andipo = 1. We
will show that applying Lemma 4.6 and then Lemma 4.4 repeatedly produces a sequence of m — 1 finite
sets I; and A;, measures u; supported on A, sets Q; = (Q;,j)ier; of degree d polynomials with set of

leading coefficients €}, sets €% of the coefficients of the degree d — 1 terms of polynomials in Q; with

leading coefficient ¢ — ¢ foreach k = j +1,...,m, and elements i ; € I; satisfying
1.1 = {j+1,....m} x {0, 1}{(s:n)0=s<jrelks;l} for some ky,; <gm 1 for each 0 < s < j and
j=1,...,m~-1,where ko ; =1,

2. A=A X ((=yM,yM)nZ)kiit for j=1,...,m— 1,

1a; (a.(as.ross<jrelks ;1) .

3. /‘1.1'(27 (as,r)OSSSj,FE[ks,j]) = \jAj,l |(2|_»y/MJ+1)kj,jJ Hy' M (aj,kj,j) for J= 1,....m—1,

4. Cj=A{cjs1—cj,...,cm—cjyforj=1,...,m—1and, fori = (s,w) € I;, the polynomial Q; ; € Q;
has leading coefficient ¢, — c;,

5. e = (¢} - ¢ (@) + (d(ex - e@s hosssiretng) w0 € (0 1psn0ss<irelle)y for
eachk ]+1 .omandj=1,...,m—1,

6. we have

max max max a; < N
icl, a, GAJyE[ |Ql]|( ’y) C.,d,j

forj=1,...,m-1,
7. and io,; € I; equals the index such that Q;; ; ; has leading coefficient ¢ ;41 — ¢; and degree d — 1
coefficient

C;',()(Q, (as,r)OSssj,re[ks,_,-]) = (C}+1 - C;)(Q) +d Z (Cj+1 - Cs)(ﬂ)as,r
0<s<j
re[ks,j]

for j =1,...,m -2, and io,;u-1 € Iy-1 equals the index such that Q; . , m-1 has degree d — 1
coefficient (c;, — ¢/ _,)(a)
such that

aeA NZEyE[M faj(x)l_[f(x+Q (a y)) >C.d) Y ‘,J(l)

X€Z iel;

where fy ; is 1-bounded for each @ € A; and f/ equals f or 7 for each i € [I;, provided that
v <Lc.d.m yQam(D) Before showing that such a sequence of sets, measures and elements exist, note
thatify’ <c a.m yodvm(l) , then the conclusion of the lemma follows from one application of Lemma 4.5
when j = m — 1, because as s ranges over 0 < s < m — 1, the polynomials c,, — cs range over all of the

c¢;s by the assumption (7) and our choice of enumeration cy, ..., cy-

It remains to prove that the above sequence exists. As mentioned earlier, for each j = 1,...,m — 1
this will follow from one application of Lemma 4.6 and then repeated applications of Lemma 4.4, as in
the proof of Lemma 4.7. Let us assume then that 1;, A;, u;,9;,C;, (?;.k) fork =j+1,...,m,and i ;
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satisfying the above conditions exist for some j = 0,...,m — 2. We first apply Lemma 4.6, which we
may do assuming that vy’ <c.4.m yQam() to get that

By S By f ) [ i+ ugola ) >c.ay v,

X€EZ lEIj 0

where
1. Ijo = (Ij x{0,1}) \ {(io.;, 0)},
2. Aj0=A; x((=y'M,y'M)N1Z),

la; ()
3. wjo(a) = ‘A—O|,Uy’M(aj,0),
4. Qj0:=(Qi,j.0)ier;, has a set of leading coeflicients of degree d polynomials, C;.1,
5. @;kg, the set of coefficients of the degree d — 1 terms of the degree d polynomials in Q; o with leading

coefficient cx — ¢ 41, equals

{(C;{ - C;’+1)(2) -d Z (Cj+1 - Cs)(ﬂ)as,r + (d(ck - CS)(g)as,r)OSSSj,FE[ks,j,()] Tw
0<s<j

rE[kS,j]

tw e {0, 1}{(SJ)ZOSSSj,rE[kS‘jVO]}}

forallk = j+2,...,m, where ks j o=k, ; whens < jand k; jo=k;;j+1,
6. we have

max max max |Q,JO|(a y) <c,a,; N
lEIJ()aeA,()y [

7. and f; equals either f or f forall i € I 0.

Let Q o denote the subset of Q; o consisting of polyn0m1als of degree d — 1. By our assumptions on
Qj, the set of leading coefficients of elements of Q' ,

€y ={c—c}yceey 1\ {0}
={(d(cjr1 — cs)(@)as,rhoss<jrelk, ;1 - (@—1) 1w € {0, 1}l 0ss<jrelks i}y (1)}

Note that if Q; € Q' , then i has the form i = (j + 1,w) € I 0.

Next, we set m’ IG(“” \ {c 0| and enumerate the elements c Lo c},m, of (35.”1) \ {C},o} by
picking any ordermg such that if k < k’, then

@ (asoss<jrelis 1) = (g =€) (@) + (d(c i1 = cs)(@as oss<jrefk, ;1 @
and
(@ (asoss<jrelks ;1) = (g = €)@ + (d(cjr = cs)(@as oss<jrelk, ;1 @

with |w| > |w’| (note that this inequality goes in the opposite direction of the one used for the enumeration

of elements of C). This means that ¢’. o = c] " c
Finally, to verify that we can indeed apply Lemma 4 4 repeatedly as in the proof of Lemma 4.7, we note
that if K is any finite set, B = ((—=y’'M,y’'M)NZ)* withu e Nand 0 < y’ < 1, Py € Z[by, ..., b,][y]

for each k € K is a polynomial of degree at most d,

Pi|(b,y) < DN,
R B P 0e)
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and kg € K, then

max max max |Pk |(b,y) <4 DN,
(k,€) €(Kx{0,1)\{(ko,0)} beBX((~y'M,y'M)NZ) ye[M

where P,’(ye(g,y) = Pr(b1,...,by,y+€bys1) — Py (b1,...,by,y). To see this, just note that
|P],(,€|(st) S |Pk|(b1,---sbu’y+6bu+1)+ |Pk0|(bls"-3bu9y) S |Pk|(bl3'- -’busy+6bu+1)+DN

and

|Pk|(bl’~--sbu,y+6bu+l) S |Pk|(b19~~9bu’2M) SdeN

forallb e BX ((-y'M,y'M)NZ)andy € [M].

We now assume that ' <c.q.m yod m (D and apply Lemma 4.4 repeatedly (t;; <, 1 times for
each j’) to produce a sequence of m’ finite sets /; ;» and A; ;;, measures u; ;» supported on A; ;» and
sets of polynomials Q; ; and Q 7 satisfying

1. Ijjy = Uj 1\ {i € Ij,j/_l 2 Qij.j-1 € Qj j—1and Q; ; -1 has leading coefficient c},j, -
¢ v b X A0, 1} for some tjs <g,m Lfor j'=1,...,m’,
2. A]',j/ = AjJ"_] X ((—’y’M, ’}/,M) N Z)t-f' for j, = 1, e ,m',

1A- i’ (a, (as r)0<s<f+l re[ks G )

3. pjp(a (as,ross<jstrelk, ;1) = ALy tym(@jirk,, ), where kg jjr =
ks, jfors < j,kjjp=kjj+1,and kju1 j v =kjsrj jo-1+O0am(l)forj' =1,...,m’,

4. Q; J» consists of all degree d — 1 polynomials in Q; ;/,

5. the set of leading coefficients of degree d polynomials in Q;  is €1,

6. Q’ N , has set of leading coeflicients €’ .

7. Q. j» has set of coeflicients of degree d- 1 terms of polynomials of degree d with leading coefficient

Ck — Cj4+1 equal to (?51) foreachk = j+2,...,m,
(k) .
8. Gj,j, is equal to
W we {0’ 1}{(S,r):OSSSj+l,r€[ksvj’j/]}}

{ep—ci=c) p+(d(ck—cs)(ar, ..., an)as Joss<jslrelk, ]

’

forallk=j+2,...,mand j'=1,...,m
9. and

max max max a, < N
lEI /uEA g ye[M] |QlJ/ |( y) C.,d,j+1

such that

'Zjei‘ - ZEye[M]fa j.gr (%) 1_[ fitx+ Qi j.(a.y) >cajm yOem,

i€l jr

where f; ; i is 1-bounded forevery a € A; ;- and f; equals either f or? for everyi € I; j», by picking iy

corresponding to elements of Q;. = with leading coefficient equal to c;., ; -’ =y for each application
of Lemma 4.4. We then take /41 = 1; v, Ajy1 = Aj v, Hjs1 = fj,m and Qj+1 =Qj . m]

Continuing the example from after Lemma 4.7, Lemma 4.8 may be used to control an average over
the progression x, x + 3a;y* + Sa%y, x+3ay% + 3a§y,x +3(a; +az)y* + 3(a% + a% +2ajay)y in terms
of an average over progressions of the form

(x + [(6(a1 +a2)by,6a1b2,6a1b3,6a2b4, - -+ ,6a2b11,) - W]Y)yeq0,1}11- 3
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Lemmas 4.7 and 4.8 combined show that A M P, (fo,- - -, fr) is controlled by an average of averages

.....

over the linear progression (x + p(a@)y)pea,_, U{O}

Lemma 4.9. Let N M > 0 and Py, ..., Pe € Z[y] be polynomials with (C, q)-coefficients such that
degP; =ifori=1,...,0and P¢ has leading coefficient c¢. Let I; and Aj for j = 0, ..., —1 be defined
as in Section 3 with c¢ playing the role of c. There exist k; <, 1 foralli € Ij and j =0,...,{ -2
such that the following holds. If 1/C < q""'MY/N < C, fo,..., fr : Z — C are 1-bounded functions
supported on [N],

AN L o f)] 2,

.....

andy’ <c¢ yOr W) then we have

aeAN ZEye ]ft’(x) 1_[ fl/(x+ Li(a,y)) >c.¢ ),Op(])’

X€Z ielp_y

where

1. — (( ,ylM )//M)OZ)Z’ lzlel k

1
2. w((@o<j<ticr yretis)) = Al

—I+Zf;§ iet; ki

Hy'Mm (afkjl))for some i € Ip_y,

2Ly'M J+1)
3. L; € Z[ally] is a linear (in y) polynomial with leading coefficient equal to p;(a) € A¢-1 for all
i €lp-y,
4. we have

max max max |L;|(a,y) <c,¢ N
ielp_y aEA yE[M

5. and f] equals f¢ or feforalli e Ip_y.
Proof. Apply Lemma 4.7 once and then Lemma 4.8 (£ — 2) times. O

Controlling the averages of linear progressions appearing in Lemma 4.9 by Gowers box norms is

standard and just requires |I,—;| — 1 more applications of the Cauchy-Schwarz and van der Corput
inequalities.
Lemma 4.10. Let N,M > 0, Ly,..., Ly € Z[y] be linear polynomials with zero constant term such

that L; has leading coefficient c¢; and fy, ..., fm : Z — C be 1-bounded functions supported on the
interval [ N]. Assume further that

max max |L; < CN.
X max L](7)

If

ANML (fO?""fm) 27,

.....

andy’ <c.m yo'"(l), then we have

Il finllozs Oml),

B0y (IND Zm Y

where Qo = cpp[y'M] and Q; = (¢cjy — ci)[Y'M] fori=1,...,m— 1.
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Proof. This will follow from m — 1 applications of Lemma 4.2 but applied in a slightly different manner
than in the proofs of the other lemmas in this section. When y’ <¢ y2 we have, by Lemma 4.2, that

By ely M1~ ZEye C,,,Oc,h,fl(x)]_[A e fiGe 4 (Li= L)) > ¥

by unravelling the definition of x4,y and making the change of variables y — y + h{. Next, we apply
Lemma 4.2 again to the quantity inside of the average Eng,nely M) above and then use the Cauchy-
Schwarz inequality (instead of applying Lemma 4.2 to the entire quantity in the left-hand side above, as
we did before). Repeating this m — 2 more times yields the conclusion of the lemma, because L; — L;
has leading coefficient ¢; — ¢ for all i, j € [m]. O

Finishing our example, we see that Lemma 4.10 can be used to control (8), and thus the progression
x,x+y,x+y3,interms of an average over ay, as, by, . .., byj of the norm || - || ol ( where

[N])’
(Qw)():tms{(),l}”

Q. = ((6(ar +az)by,6a1bs,6a1b3,6a2b4, - - ,6a2b11,) - w)[y' M]

for each nonzero w € {0, 1}!!.
Now we can prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 4.9, we have that

B, NZEye mife) [ # @+ Lita,y) >e.c 6%

X€EZ i€lpg

when ¢" <c ¢ 69V, where A, Ip_1, A-1, f{ fori € Ir_y, and L; for i € I,_; are as in the conclusion
of Lemma 4.9.

Set m := |I,_| and enumerate the elements py, ..., p,, of A¢_; by picking any ordering such that if

-1 £-1 .

k < k' then py = (pi(@al et repi) - wand pr = (pi(@alT et e @’ with [w] < Jo].
This means that p,, = Xer, , re[k;] Pi (a)a D Enumerate the Lys in the same manner, so that L has
leading coefficient py. Denote the constant term of Ly by p; for each k € [m] as well.

‘We now apply Lemma 4.2 once to deduce that

ANM

E  aea pa(@)y,..., pm@y(Tp <a>Amu<ho h')fl (x), - pm<a>A'mu<ho h')fm(x)) >c.e
ho,hye[6'M]

601’(1)’

assuming that ¢’ <., 6. We now apply, for each fixed a € A and (hy, h) € [6’M]?, Lemma 4.10

N,M ’ ’ ’ ’
O A @@y TP @A by (@) oy [T s+ Totu (@A, ) (hg.iy) frn (X)) 10 get that

O (1
EqeallTp;, a) fell e Ny €0 e,
Pp@isMDpen,,

again assuming that 6’ <., §°¢()) and recalling our choice of enumeration of elements of A,_;. To

conclude, we note that ||7,/ m(a)f[” Uyl N = fell el N foreach a € A by
“p@ieMpen,_, (IND) Cp@ieMpen,_, (IND
making the change of variables x — x — p/, (a) 1n51de of the definition of the Gowers box norm. O

5. Concatenation

The main ingredient in the proof of Theorem 3.5 is the following result, whose proof will occupy the
first part of this section.
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Lemma 5.1. Let N, My, M, > 0 with M, < My and MM, < N/|c|, by,....,bs € Z, and f : Z — C
be a 1-bounded function supported on the interval [N]. If ged(a + b;,a + bj) < 1/y"” for all distinct
i,j €[s]and|a+ by| >y M forall but a O4(y’") proportion of a € [M],

Eaetmiillflles

>
(c(atb)) MDY, (IND =7

andy',y" <s y9s W) then there exists an s’ < 1 such that

vy >s ¥

1 1les

C‘Ey/Mle
provided that Mi M, > (yy’) 9.
Before beginning the proof of Lemma 5.1, we record a couple of lemmas.

Lemma 5.2. Let M > 0. For all but a O(y)-proportion of s-tuples (ai, . . .,as) € [M]*, we have that
ged((ay,...,a5) - w, (ay,. .. a5) - w) <y’

for all distinct w,w’ € {0,1}° \ {0}, and for all but a Os(y)-proportion of pairs of s-tuples
(ai,...,as, by,...,bs) € [M]?5, we have that

ged((ay = bi,...,a5 = by) - w, (a1 = by,...,a5 - by) - ') <y
for all distinct w, w’ € {0,1}* \ {0}.

Proof. These statements follow easily from the union bound and the fact that gcd(a, a’) < &~ for all
but a O(&)-proportion of a,a’ € [M]. Indeed, for each pair of distinct w, w” € {0, 1}* \ {0}, the pair
((ar,...,as) - w,(ay,...,as) - w') ranges over a subset of [sM]? of density > 1/s% as ay, ..., a
ranges over [M], and this pair hits each point in its range with multiplicity at most M*~2. Thus, the
total number of s-tuples (aj, . ..,as) € [M]* for which gcd((ay, ...,as) - w, (ai,...,as) -w’) >y~
is < ys>M?*. We conclude the first statement by taking the union bound over all < 1 pairs of distinct
w,w’ € {0,1}°\ {0}. The proof of the second statement is essentially the same. O

Asin [15], we will also need an inverse theorem for certain two-dimensional Gowers box norms. The
one we prove next holds in greater generality than the inverse theorem in [15], at the cost of a slightly
weaker conclusion.

Lemma 5.3. Let N,M{, M, > 0 with My < My and M\M, < N/m and suppose that |c|,|d| € [M]
with |c| > y1Mym and gcd(c,d) = m. Let f : Z — C be a 1-bounded function supported on the interval

[N]. If
Il fll2 J(IND) 2y

clyaMal.dly, My
and 0 < y3 < yy < y1 £ 1, then there exist 1-bounded functions l,r : Z — C satisfying

#{x € [N] : I(x) # l(x + dz) for some z € [y3M;]} < ?N
2

and
#{x € [N] : r(x) # r(x +cy) for some y € [ysM>]} < LENY
Y2
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such that

> y*.

‘ D F@Ir()

XEZL

Proof. By splitting Z up into progressions modulo m and arguing as in the proof of Corollary 5.4
of [15], it suffices to prove the m = 1 case of the lemma. Therefore, we assume for the remainder of the
proof that m = 1.

Because ¢ and d are relatively prime, every x € Z can be expressed uniquely as x = cy + dz with

y € Zand z € [|c|]. Thus, ||f||4 can be written as
C[721\/12] d[72M2]([N])

& D By el (el + 1)+ d(z+ )0+ 0 + A+ )

uez
velce]

fle(y+u)+d(z +v)) fc(y' +u) +d(Z +v))].

We split Z and [|c|] up into intervals of length y, M; to write the above as

1 ’ 144 ’ 144
N ZZ By y 2o wrelyarta] Ly + 1+ y2Mou”) +d(z + v +y2 M)
0<v”<|c|/y2M>

fle(y' +u' +ysMou”) +d(z+ V' +y2Mpv"))

fle(y+u' +yaMau”) +d(z' +v' +y2Mpv"))
fley +u" +y2Mou”) +d (2 +v' +y2Mav”))],

using the fact that |c| > y,M,. By the pigeonhole principle, there thus exist y’, z’, u’, v’ € [y2M;] such
that

1
4
7 N/’)/2M2 MZE:Z Ey,ZE[ 2M2] [ c (u +72M2u”)+d(v +72M2V”)f(cy + dZ)

0<V"<‘C|/’)QM2

Tc(u’+72M2u”)+d(v’+72M2v”)f(cy’ +dz)

Tc(u’+y2M2u”)+d(v/+y2M2v”)f(cy + dZ,)
Tc(u’+72M2u”)+d(v’+72M2v”)f(cy, + dZ,)] .

Fix such y’, z’, u’ and v’. For each pair of integers u”’ and 0 < v"’ < |c|/y2M>, we define 1-bounded
functions L~ y», Ry v : [y2M2] — C by setting

Lur/,vlr(y) = Tc(u'+’sz2u”)+d(V’+')/2M2v”)f(cy + dZ,)

and

Ry oy (z) = Tc(u’+y2Mzu”)+d(v’+y2M2v”)f(cy/ +dz) - Tc(u’+y2M2u”)+d(v’+y2M2v”)f(cy, +d7).

We can then define ly, ro : Z — C by setting, for each x € Z with x = c(y + yaMay”') + d(z + yaM»z")
fory,z € [yaM>], y” € Z,and 0 < " < ¢/y2M> an integer, lo(x) := Ly~ .#(y) and ro(x) = Ry» - (z).
Then the above tells us that

= Z G+ cu’ +dv))lo(x)ro(x) = ¥*. ©)
xEZ
https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.11

28 Sarah Peluse

Next, we will show that

#{x € (-2N,2N)NZ: lp(x) # lo(x + dw) for some w € [y3M;]} < ;QN.
2

By our definition of [y, the left-hand side of the above is exactly the number of x € (-2N,2N) N Z that
can be written as x = c(y + yaMay"') + d(z + ya2Mp7”) with y € [yaM3], z € [(y2 — v3) M2, y2 M3],
y” € Z, and 0 < z” < |c|/y2M> an integer. The number of possible choices for (y,z) is bounded
by 72)/3M22. To count the number of possible choices for (y”’,z”’) for each fixed pair (y,z), note
that because |cy + dz| < y2N and the map Z X ([0, |c|/y2M2) NZ) > (y”,2”) v cy” +d7” is
injective, the number of possible choices is bounded by the number of integers 0 < 7" < |c|/y2M;
and w” € [-O(N/yaM3), O(N [y2M3)] such that dz”” —w"’ is divisible by c. This quantity is bounded
by < (|c|/y2M3)(N/y2Mac), so that the number of possible (y”,z”’) is < N/(y2M3)?. We conclude
that the number of such possible (y, z, y”, z”’) is <« %N . The same argument shows the corresponding
bound for r.

To conclude, we make the change of variables x — x — (cu’ +dv’) in (9) and set [ (x) := lo(x — (cu’ +
dv’)) and r(x) := ro(x—(cu’+dv’)) and note that because |cu’+dv’| < N,x—(cu’+dv’) € (-2N,2N)
whenever x € [N]. O

The proof of Lemma 5.1 proceeds by induction on s. We first prove the s = 1 and s = 2 cases as
separate lemmas.

Lemma 5.4 (s = 1 case of Lemma 5.1). Let N, M|, My > Owith M, < M\, beZ and f :Z — Cbea
1-bounded function supported on the interval [N]. If

EaermiIf Nl

c(a+b)

>
iy (IND =7

and 0 <y’ <1, then
o)
> ,
”f”ULz'[)/Mle]([N]) Y

provided that My My > y~°).

Proof. Applying the Cauchy-Schwarz inequality to the average over a € [M;] and expanding the

definition of || f]|?, , we have that
Dc(a+b)[M2] ([NJ)

1
Eacim iy D Bnweim) Fx +cla+ b)) flx+cla+b)n) = >,

X€Z

Making the change of variables x +— x — ¢(a + b)h and swapping the order of summation, we get from
the above that

1
5 2 /) (Baci Bnveqe e+ e(a+ B =MD)) = ¥~

X€EZ

Because f is 1-bounded and supported on [ N], we have by another application of the Cauchy-Schwarz
inequality and change of variables that

1
4
v 2, Eawetu Buw et f ) FG+ ela+ B)[W =Rl =@+ D)W = 1"]) = *,
X€eZ
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and then, by one more application of the Cauchy-Schwarz inequality and a change of variables, that

e " B anaanats B o (T (@ — @)~ B — e(a” — a7~ 7]}

xEZ

is > 5.

Note that |4’ — k|, |h’" = h"'| > y? M, for all but a O (y°) proportion of (h, h’, h”’, h’"") € [M,]* and,
by Lemma 5.2, we have ged(h’ — h, h’” — h"") < y~ for all but a O(y°) proportion of (h, h’, h”, h""") €
[M,]*. Thus, it follows from the above that

— ZEa aa”,a" e M]]E BB R €[ M) fX)fx+c(a” —a)[W —h] —c(a” —a’)[h"" — h"])
NZ [h'=hl,|h""~h"|>y" My
ng(l”l' —h,h" - hr/)<,y—9

is > y®. We can write this as
= Z DL F G+ ewiuw) > ¥,
erweZ

where
uw) =EBaa anaeM B nwn nmeimy]  Lw=(a-a)[w-n]-(a"—a’) [ -h"]-

W =h|,|h" " |>y° M>
gcd(W —h,h"—-h")<y™®

Note that u is supported on the interval [-2M|M,,2MM>] N Z.
By Fourier inversion, we have

[mo|5Y, Y, roftraneen|ds ="

xEZ|w|<2M1M2
so that
—~ 1 [
( / Iu(f)ldf)- ma| oSN fTreme@n|| > ¥
T SETIN 22 1w <o My

Now, note that
U=E pwnneMy] Vi* Vn,
|h/_h"|hm_h//|>,y9M2
gcd(hW —h,h"”—h")<y™®
where vi, (W) = Eq ae(p, | L w=a[h'=h]-a’ [h7-n7] and ¥, (W) = vi,(—=w). Thus, we have
2
|ﬂ(§)|d§ E hw.nw7elMs) Va(E)IPdE=E hw i wreims) Z Vr(E)1°,
‘hl hl ‘hw I”l”|>‘)/9M2 T |h/ hl ‘hw I”l”|>‘)/9M2 wez
ng(h/ hm h//)<,y—9 ng(hl hm I’l")<‘)/79

by Parseval’s identity. Expanding the definition of vy, the above equals

#{a’al’ a/l’ aIN e [M]] : (all _a) [hl — h] — (a/// _ al) [th _ hll]

E ww.nn”eMs) o )
| =h|,|R" =" |>y° M, 1

gcd(h'=h,h" -h")<y™®

which is bounded above by - M; 2, %{42 =y~ M.lM , using the assumption M| > M,.
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Also note that, for each ¢ € T, the quantity |% Yixez Blw<am m, f (x) f(x + cw)e(éw)| is bounded

above by 1 + 2|% Yixez Bwepaan v f(X) f(x + cw)e(éw)| because f is 1-bounded and supported on
[N].

Putting our two observations together, splitting the average over [2M;M;] up into averages over
intervals of length y’M| M, and using the pigeonhole principle, we thus deduce that there exists a
w’ € [2/v’] for which

1
I Z Evw ey mimo] f () Tewry nt vy f (X + cw)e(Ew)| > )/0(1)’

X€Z

assuming that MM, > vy~ Inserting extra averaging in the x variable by shifting by elements of
c[y’MM3;] and applying the triangle inequality, we deduce from the above that

3

X€EZ

Ez welymima] f (X + )Ty mm (X + cz+ cw)e(éw)| > 70(1).

It now follows from Lemma 2.2 that ||Tcw/nylef||Uz[ (VD) > y?W To conclude, we make
clyM M,

the change of variables x — x — cw’y’ M| M, in the definition of the Gowers box norm. ]

The s = 2 case of Lemma 5.1 is a generalisation of Lemma 5.5 of [15] (with a slightly weaker con-
clusion, getting U>-control instead of U*-control), and thus its proof closely follows the corresponding
proof from [15].

Lemma 5.5 (s = 2 case of Lemma 5.1). Let N, My, My > O with My < My and MM, < N/c, by,b; €
Z, and f : Z — C be a 1-bounded function supported on the interval [N]. If gcd(a+b1,a+by) < 1/y”
and |a + by| > v M for all but a O(y"") proportion of a € [M,],

Eae[Ml]”f”\j2 ]([N]) 27

c(a+by)[My],c(a+by) [My
vy < (yy")°W and vy < y°W), then

o(1)
> ,
”f“Ujly,Mle]([N]) Y

provided that MiM, > (yy")~°(0),

Proof. By splitting Z up into arithmetic progressions modulo ¢ and arguing as in the proof of Corol-
lary 5.6 of [15], it suffices to prove the result in the ¢ = 1 case. In the ¢ = 1 case, the proof of Lemma 5.5
of [15] goes through with a small number of changes. Because that proof is seven pages long, we will
mostly just indicate the differences. These differences mainly arise from the fact that M; and M, can
have very different sizes in this lemma, whereas in the corresponding lemma in [15], M| = M, = N 172,

With a view towards applying Lemma 5.3, let Uy, 5, denote the set of all a € [M;] such that
la+bi| >y"Mpand ged(a+bi,a+by) < 1/y”,sothat |Up, p,| = (1-0(y""))M; by hypothesis. The
set Up, p, Will play the same role as the set U, does in the proof in [15]. By applying Lemma 5.3 with
c=a+b;,d=a+byandy; =y, = (y")?, we then get that

1
o(1
Eaevy, 1, v Z F ) asby (¥)rasp, (x) >y, (10)
X€Z
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where

#{x € [N] : Lysp, (X) # Lasp, (x + (a + b2)z) for some z € [eMa/(y")?]} < (;/)ZN
and

#{x € [N] : rasp, (x) # rasp, (x + (a + by)y) for some y € [eMa2/(y")?*]} < (),i)zN

for every 0 < & < (y”)?. Because f is supported on [N], we may assume without loss of generality
that [4.p, and rq4.p, are supported on [N] as well.

Inserting extra averaging in the x variable in the left-hand side of (10) by shifting by elements of
(a + b1)[y’M;], taking advantage of the almost-invariance of r,4+p, under shifts from this progression
and then applying the Cauchy-Schwarz inequality once, we can assume that (10) holds (with a worse
implied constant in the exponent of y on the right-hand side) with r,.;, replaced by the function
r;+b1 (x) := Elfvy/sz(x +(a+bi)W)lgsb,(x + (a+b1)w) for each a € Uy, p,. As in [15], we then apply
the Cauchy-Schwarz inequality to double the a variable, take advantage of the almost-invariance of
lawby> Lo+, and r;,+bl again to insert extra averaging by elements of (a + by) [y’ M>], (a’ + by)[y'M>]
and (a’ + by)[y’M,], respectively, and then use Lemma 2.2 to get that
0(1)’

8
II'Ea,a/eUl,l,l,2 ||r:z+b1 |||:|3 >y

(avby) Ly Mol +bp) Iy Mo+ by by ] TNV D)
assuming that y’ < y?).

One can then continue to argue in an almost identical manner as in [15], with the only differences
being that we use Lemma 2.2 in place of the version of the Gowers-Cauchy-Schwarz inequality used
in [15] and, instead of the measures v, . ,, (using the notation of that paper) being supported on an
interval of length on the order of N, they are supported on an interval of length on the order of M| M>,
to get that

Bacttlflarnalloy,, vy > 70,

Taking advantage of the almost-invariance of /.5, and applying the Cauchy-Schwarz inequality as in
the end of the proof of Lemma 5.5 of [15], the above inequality implies that

g 1t ' o)
Bt ooy ity i) | Baetna A Gy iy gy oy Flat vy | > 70

We can then apply Lemma 5.4 to the inner average to conclude. o
Now we can finally prove Lemma 5.1 in general.

Proof of Lemma 5.1. The proof of the lemma proceeds by induction on s, with the s = 1 and s = 2
cases handled in Lemmas 5.4 and 5.5, respectively. So suppose that the result holds for a general s > 2,
and assume that by, ..., by € Z satisfy the hypotheses of the lemma. Let f : Z — C be a 1-bounded

function supported on [N] such that Eqeag, 11l f llgs+ (
(cla+by) My D!

For each a € [M] and h, h’ € [M,]°~", we define the function ga,hi :Z — Chy

(N)) 27

s—1

A’ L fx) = x+an+b- hi (x).
(etasbo) (et d ) = T 2 (a+Dbi)hi)ga.nn(x)
=
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Note that g, 5, 5 is 1-bounded because f is 1-bounded. Because gcd(a + by, a + bgyp) < 1/y” for all
but a O4(y”")-proportion of the a € [M;], we can thus apply Lemma 5.3 to deduce that

E et Zf<x+2c(a+b)h)gahh(x)zahh«x)rahh(x) >y, A
hy,...,hs- 1€[M2J xezZ
Ry h,_ €[M]

where, for all @ € [M;] and h, i’ € [M>]*~!, we have

#Hx € [N] :rapw(x) #rgpp(x+ (a+bsy)z) for some y € [st/(y")z]} < (;—,)ZN
and
#{x € [N] : Lypp(x) # Ly p g (x + (a + by)z) for some z € [eMy/(y")*]} < ((?—/)2N
T T Y

forall0 < & < (y”")2. (For the O(y"") proportion of a € [ M ] not satisfying the size or greatest common
divisor hypotheses, we can just take 74 5, ;v and [, 5, 5 to be identically zero.)
We rearrange the left-hand side of (11) as

Z Epy,...ohsre[ M) f (X + Z cla+b)hi) |E  aem) amw lapw Xrapw (x))

N Rk €[M5]

and then apply the Cauchy-Schwarz inequality to get that

1 - - -
E aaem) + Z St N)8ar i (N w (N o (g py (@ g (x) >4 ¥y,

hy,....hs_1€[Mr] *Y e7
oK e[M))

KoK eMs]

using that f is 1-bounded and supported on [N]. By the pigeonhole principle, there exists € [M,]*~!

such that
E aaeim] Zgahh 8w nr ) )l g e e () >5 y=H.(12)
Wi N £
Kok e[My]
Fix this h.

Because the quantity inside of the averages on the left-hand side of (12) is < 1 for all a,a’ € [M|]
and h', k’ € [M]*~", we have that this quantity is > ¥ () fora ¢ y?s(1) proportion of a, a’ € [M;]
and h', k’ € [M,]*~!. For such a,a’, h’, k’, we have that

r < Z Ety,...trely M) (Bapi 8 i) (X + (@ + by, a + by, a+ by a + b))
er

lapw(x+(a" +bs,a+bg1,a" +bgy) - (62,03, 04))

lypi(x+(a+bg,a+bgir,a’ +bgyr) - (61, 063,44))

Fanp (X+(a+bs,a’ +bs,a’ +bgyy) - (01,02,44))

Fa k' (X +(a+bs,a’ +bs,a+bgy) - (6, 6,0)),

by the almost-invariance of I j, 4 (X), lar k' (X), 7o, p,w (x) and 7o j k7 (x) under shifts by elements of
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their corresponding progressions, and then, using Lemma 2.2, we thus deduce that

| _ O, (1)
E&"",QG[%MZ]NZAEa+bS)((;]’[I)’(aq,bs)(é’z,fé),(a+bs+1)(53,55),(a’+bs+|)(f4,fi)(ga,ﬁ’ﬁ’ga"ﬁ’k')(x) >y s ( ,
L GelY MY ez,

assuming that y’ <z (1,
Expanding the definition of g, , »» and g, 5, &’ and using that the A’ operator distributes over products

of functions, it follows that the quantity

E aaelm) Z [] Vewnerot+cla+b)s'n) - o)

h,....h._ €[M>] erwe{O]}Sl
kl’ ..... k;f €[M] w#0
[1,...,[’46[)’,}\42]

], €[y Ma]

Fownor o+l + b)) k]) - w)]
is >, yOs(D where

. s—1
Jaar n.0 () = Dlgup ) (6,60) (arrby) (62,) (atbosn) (65,6) (ar by ta, 0 S (X F (€(a+bh) 2 - (1-w))

and

St .0 = Dl (0.0 (@450) (0.8 (atbonn) (6.8 (asban) (trnt S (H((@ b)) (1-w)).

Taking the averages over h/,..., h’

‘1 € [Ma] and KJ,... k]
average above as

'_; € [M;] inside, we can rewrite the

1 ’ ’ ’
E a,a’ €[M;] N Z[fa,a’,@,ﬁ,ﬁ’,wo(x + C(a + bl)hl)fa,a’,h,ﬁ,ﬁ',wo(x + C(a, + bl)kl)

hi,k{e[Mﬂ XeZ -
l1,....04€ [y’ My ]
€.ty Ma)

‘Du’a,’hi sh»é»ﬁ, (X)D;sa/»k;,ﬁ,ﬁ,f (x)]’

where woy = (1,0,...,0) and D, W e, (x) and Da @ L (x) equal

En, 0 e(ms) 1_[ (Te(asbiyn fara bt 1w * fara bt 00) (X + (c(a+bi)h; - w)

wef{0,1}52
w#0

and

Eké,...,k;_le[Mz] 1—[ (Tc(a’+b1)kifa”a/’ﬁ,gﬁ/,lw : f;,a/ 1,6,0',0 )(x +(c(a’ +b; )k w)

we{0,1}52
w#0

respectively.

By Lemma 2.2, if g : Z — C is any function supported on the interval [N] such that
|% 2xez f(X) Dy, W.hL, ¢ (x)| = 6, then ||f||DA o tts e aste ity (VD) > 4. In this situation, we

say that D, o/ is structured for the norm 2
y a,a’,hi,h,l Il || ;(sz)[Mﬂ """" C(‘”bs—l)[Mz]([N] aa K e,

(n))- Using that Dy o p g e i structured for

)- Similarly, D’
is structured for the norm || - || 55— (
c(a’+by) [My],....c(a’+bg_1)[M;]

’ ’ ’ ’ 4
| - ||D2(2+b2)[M2] _____ st pyiaty (N for every a,a’ € [My], h| € [M] and ¢(,{" € [y'M,]", we thus
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deduce that

1

Os (1) ’

Y <y E a,a’ €[M] [A X ”yys— lfaa h,t, wo(x+c(a+bl)h )
kel N XZZ (clarbi (N

’

4 7
(cCavb) (g Taar oo (5 F €(@7 + D1)KY)

4 ’
(clarb) s Daar ki e P |-

We now analyze, for each a,a’ € [M|], ki € [M;] and (¢ € [y’M2]4, the function
(x), which equals

’ @/
(c(a+by) (B} )35 T a.a’ ki.h.L.L

1
Biol | 4ef clhrs [T frwsnwrwr e ow@* @@ +b)5 5 -0),  (3)

W e{0,11?  w,we{0,1}72
w#0

where f’ (x) equals
P q

’ ” " ’
.a', ki, h,h" 00w,

(Tetasbk oo nette” Taa ner00)F + (€@+b)h))5 o' +(c(a+b)hi")S - (1= ).

It is not hard to show that any function of the form (13) can be approximated by an average of structured

functions for the norm || - || js-2 (N ])- More specifically, any function of the form
c(a’+by) [y My],..., c(a’+bg_1) [y My]

D) =B k& e[ Ms] 1_[ fo,w(x+(c(@ +b)z 1% ) )

we{Ol}f w,w €{0,1}!
w#0

can be approximated by

o 0
E() =Brws 1o ciaa Ba ke lynta] [T 7. o (X (@ + B KD - w),
' €{0,1}7 w,w' €{0,1}!
w#0
where f/ . (x) = fo,u(x+(c(a’+ b))k?) - ), assuming that y* < y?s(!) and all of the f,, s

are 1-bounded and supported on an interval of length < N.
Indeed, to see that & approximates D, we make the change of variables klf‘" — ki“” + k? for each
w' €{0,1}" andi = 1,...,¢ and average over k¥, ..., k¥ € [y’M,] to get that D(x) equals

ke 4k ,
wener > ] M [T fuwr Cotel@+b) (& +hO)L, ).

k& kw e7 W' €{0,1}" w,w €{0,1}!
lw ' (0,1} i=1,..., t w#0

Note that, for every x € Z, one can replace each 1y, (kl.“" + k?) above with 1y, (ki“"), at the cost of
an error of size O(y’), because the functions 1p,1(+) and 1az (- + k?) are equal outside of a set of
size O(y’M;). Hence, E(x) = D(x) + O,(y’) for all x € Z. Note, too, that £(x) and D(x) are supported
on intervals of size <« N, so that they are in fact both equal to 0 outside of a set of size < N. As a
consequence, we have that [|D — ]|, <, y'N.
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In the particular situation we care about, the above argument implies that there exists a finite set W
for which

1
E aaem) — E [AEC(M,?_)(,I,, st faar g gy (X + €(a+ b1)h)
ki) N Ve i o
1’71 X€
51,,..4,&}6[}/:/\/[2]
e
W e
A 2]

weWw
’ ’ 7 ’ ’
Al clarbs) (h e, Saar X @ HOORDD G o .00
(LAY ) i= -
: O (1) ’ .
is > s whereeach D’ ., ., ., ,,  isstructured for || - || s-2 .
sy ’ a,a’,k{,h,h" ,h" 0,0\ w I ||Di'(a’+b2)[y’M2] ,,,,, c(a/+bs,,)|y/M2]([N])

As a consequence, we get that

1

E  aw LY P st faat bt o (X + (@ + D)

ha{f;c;ee[[lywlz]] ]vxEZ (C(a+b,*)(hi’,h;"))?:21,(C(a’+bi)(k;',ki’));;2]fa’a ,E,E,ﬁ,wo( ( l) 1)
ly,....0€[y' M> ]
€ lyE [y M)

hy,....hy_ €[My]
By €[M;)]

’ ’
(clatby) (B )35 (e (@ +by) (kYK fa,a’,h,ﬁ,ﬁ’,w

0()c +c(a’ +by)k))

is >, y9:(1). Making the change of variables x — x — c(a’ + by)k/ and arguing as in the proof of
Lemma 5.4, it follows that

1
E : LY B e sl (X
ok ety M2]Nxez[ () (] ) @) () ke gy T ot o )]

b, b€y Ma ]

£ liely M)
e A
2oL €MD)
Kok €[y Mo
K oen k] €1y M)

is > y?s() provided that M M, > (yy’)?s (1, Recalling the definition of fa,a h,t,0, > Making the
change of variables x — x — (c(a+ b;)h;) - (0, 1,..., 1) in the above, using the pigeonhole principle to
restrict the h’s and /”’s to lie in intervals of length y’M>, applying Lemma 2.3 and making a change

of variables in x now yields

O, (1) , l !
vy < B L aa /E[M/[] A(c(a+bi)(h;',h;"));*‘:l,(c(a'+b,«)(k;’,k;”))f:l,c(kl,k;),c(kz,kg)f(x)
ki, ki ko, kyely MiMr] Y ez
h{,h},....h{ely'M>]
hi’,....h{ €y’ M>]
kY s.oky €[y’ M)
K,....k{"€ly' M, ]
=E a’e[M] Eae[Mﬂ”Azc(a%b)(k” k))S L Le(kiLk) e (k k’)f|é|Z (IND
k1K koK €y MM S R ey
k,....kely' My ]
K,k €[y M)

We conclude by applying the induction hypothesis twice.
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For the sake of convenience, we record next how to combine Lemmas 5.1 and 5.2 for use in the proof
of Theorem 3.5.

Lemma 5.6. Let N, M, M, > 0 with M, < My and MM, < N/c and f : Z — C be a 1-bounded
Sfunction supported on the interval [N]. If

Eny,...ngep 1 f ll2 =y
hh e [MH et M3 s o s VD

andy’ <5y, then there exists an s’ < 1 such that

O, (1

E h] ~~~~~ hs—le[Ml] ”A(C(f [)); f“DZ -1 ([N]) >>S 7 s( )’
hi,...h,_ €[M] (el h/) @ IM2Dos yefo,135-1

by, b €[y M My |

0.l ey’ MiMs]

provided that My My > (yy’) 9 (D,

Proof. Using Holder’s inequality and expanding the definition of the Gowers box norm gives

1
Eny,..ohgeMil s D Bl keI (e (ot o) (ko k! S 2 yOs (.
hi _____ h;e[Mi] XZ% Q#wE{O,l}ZS ((c(h=h") - w) (kaw ki) )ozweo, 1)

For all but a O, (y%s (") proportion of hy, ..., he_1, ), ..., h}, we have |hy— h{+ (hy =}, ... he_y -
h_)) -l > yOs M M for every w € {0,1}°! for all but a 0 (y? )-proportion of hs e [Ml] and,
by Lemma 5.2, we have

ged(hg = B+ (hy = R}, heoy = B _) -, hg = 1+ (hy = B, .. hgoy = B,_) - @) <y~ OO

for every pair of distinct w, w’ € {0, 1}*~! for all but a O (y?s(V)-proportion of i, € [M;]. For such
hi,....hs-1,hi, ..., hg € [M,] we apply Lemma 5.1 with hy playing the role of a, b, = —hy + (hy -

’ _ . s—1 :
his .o hso hs—l) w for each w € {0, 1}°~" and the function A (B (koK. o gseretoyont

playing the role of f. This yields

2 0, (1)
B0,k g M2 By sy LM A i) ) ook o gparreiopon Moy P Y
0#(4)/’6{0 l}s 1 hl ..... hs—l [M]] clyMMy]

for some s’ < 1 by the positivity of Gowers box norms. Expanding the definition of the U* -norm
shows that the left-hand side above equals

B o k M hy,oh M ZA . Nowr f(x)
0;&2)"6{(())155-7?] h’:::::hi i [MH N (et Alett)-w ) (KoK oz wreo.nys—1 ’
- f] ,,,,, 4 /E[y M]Mz]

€ e ly MM, |

’ ’
and then using that the operators A( ey and A((L(h 1)) 0ok, gperefonyont

the conclusion of the lemma. O

commute gives

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. For each pair of s-tuples h,h’ € [M;]*, we associate linear polynomials
Ly w,w € Z[a] with Ly, j ,(a) == c(h-w+h"- (1 = w))a and 1-bounded functions fj, ', : Z — C
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With f 1w = T(bihy,....bshs)-w+(bih)....bsh)-(1-w) | for each w € {0, 1}*. Enumerate the polynomi-
als Ly, ..., Lys in {Lp o, : @ € {0,1}*} and corresponding functions fi,..., fas in {f 0 : @ €
{0, 1}*} by picking any ordering such that Lys = Ly, j 1, so that the assumption (2) implies that

05 (CN),M. Y
En,,..., hse[Ml]ALls(--.,Lz)s 21, fiy ..., fos) = 69 (.
|

Then, because |c(h-w+h'(1-w))a| <, Nforalla € [M;] and h, h’ € [M;], we can apply Lemma 4.10
to deduce that

22%-1 05 (1
Ehl ,,,,, hs€[M1]||f||D25—l N]) >C,s 0 s )’
((c(h=h")- ) [Y My 1) yer

provided that " <¢ s 675 1), The conclusion of the lemma now follows by s applications of Lemma 5.6.
O

The following lemma shows how Theorem 3.5 can be used to control averages of Gowers box norms
of the type appearing in Proposition 3.4 in terms of averages of Gowers box norms in which some of
the differencing directions p(a) are replaced by directions p’(a) of smaller degree depending on fewer
entries of a. We will then prove Proposition 3.6 by applying this lemma many times.

Lemma 5.7. Let N,M, M, > 0 with My < M| and MM, < N/|c|, I and A C Z" be finite sets,
pi € Zlay, ...,a,] foreachi € 1, and f, : Z — C for each a € A be 1-bounded functions supported on
the interval [N]. Let k; € N for each i € I, set t := Y,;¢; ki, define finite sets A’ := ((—=M», M») N Z),
I’ = {0, 1} 1Grielreliil}\ (0} and A’ € Zlay, .. .,an)[ai, 2 i € I,r € [k;]] by

A" ={(pi(ar,...,an)air)ictrefiy] W w eI’}

and set pi,(ai, ..., an, (Qiriel refk;]) = (pi(ai,...,an)a;i,)ier refk] - @ for each w € I'. Further
assume that

max max |p;(a)|M{M, < CN. (14)
iel acA =
Let k,, € N foreach w € I'. If
EQEAEg'EA’”fg”DEmeI’ kw ([N]) 2 y

(17;4)(5'9’)“\41])wel’.r’e[kw]
and y' <1 (k) werr yO: W) then for every (ig, ro) € I X [ki,]1, we have

(1

o ,
EgeAEQeB”fg”Dmegj K, >Cot,keo)werr Y tkw) e V|

(Pig (@ [y MiMy Dy () (deo (@) M1 D ey preil,)) (IND

where

1. B:= ((-Ma, M) N 2)'7},
2. J = {0, 1}{EnehrelaN o} \ {0} for some t” <k
3. and, for w € J, we have q, := p’, and k, := k., where

1

w)wer’

Wy = s
0 (i,r) = (io, 70)

;L {w(i,r) (i,r) # (ig, 7o)

provided that MiM> >>c ¢ (k). (,y,yl)—Ot.(km)wE]/(l)-
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For example, Lemma 5.7 allows us to control the average

EaléAElao,l |,|ao,2|</"12”fa“D3 (
ajag, 1M l.ayag2[M].(ajag,+ajag2) M} ]

[N])
in terms of an average of the form

’
Eaeaky,...., fr'E[Y'Mle}E|ﬂ0.2|<M2”Aal([],f;),...,al({’,/,6;,)fa”DL]HOZlM”([N])

for some ¢’ < 1.

Proof. Because || fall s, ke
T B @) My Doerr e VD

least a >> y proportion of @ € A and (a; , )ier re[k;], (i,r)#(io,r0) € ((=M2, M2) N Z)'~! we have

< 1foralla € A and a’ € A’, it follows that for at

Elaio,r()|<M2||f£” Zwel’ ko [N]) > Y.

Pl @) M1 D) ers i)

Expanding the definition of the Gowers box norm, we have that

1 Otk ey (D
Elaio,rol<MzﬁZEhw.r"h;,ﬂE[MlJAEP:,)@g’)<hw/,h;u,r,»wep,r/e[kw]fz(") >y rtelear o (15)

X€Z wel’,r'elky]

which is of the form that Theorem 3.5 can be applied to. Indeed, the left-hand side of (15) can be written

as
By prmt,  eMi1Blagy o 1<Ms
wel,w. =0
(ip-r0)
r’E[kw/J
! E A
N Z hwvr”,h;“yrﬁE[MlJ ((piy (QaiO"O‘Fbﬁ’“’)(hwvr"’h;J,r”))ﬂJEI/»w([O ,0):1,r”e[kw]gﬂ’m(x)’
X€EZ wGI',w(iovr0)=1 :
r"elky]
where
ba,w = (pi(@)ai)ier refk] - @ — Pip (@) iy, r,
and
— ’
8a.m = A(((pi(ﬂ)ai,r)iel,re[ki]‘w’)(mu)’,r’am’w/.r/))w’el’,w".o ’_O:O,r'e[kw/]fg.
The conclusion of the lemma now follows from Theorem 3.5. O

We can now finally prove Proposition 3.6. As mentioned above, this will be done by applying
Lemma 5.7 many times. To illustrate how Lemma 5.7 will be applied, we will show how to control an

average of norms of the form || - ”n"2‘ (IN]) by a global U®-norm for some s < 1, where I, and
pi(@IN1/3]
(pidier, = A2(3,1; (1,2, 1)) are as in the example between Theorem 3.3 and Proposition 3.4.

Assuming that f : Z — C is 1-bounded and supported on the interval [/N] and that

E c Nl (IND 27

ao,1,a0,2,a(1,0),1 <N 3 1
1 ((6(ap,14a(1,0),1-90,24(0,1),1-40,24(0,1,2-(@0,1+a0,2)a(1 1),1) @) [N 3 ])we{O 14\{0}
a,1),1-4(0,1),2>a(1,1),1 <N 3 T
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we apply Lemma 5.7 with (ig, rg) = ((1,0), 1) to deduce that

’
Bt <yt WA @6 ba0 2,000 Ml 1 (IN D)

((6(ag ra »appa L(ag,1+ag p)a )-w)[N31) 3
, , L2 ,24(0,1),1-90,24(0,1),2-140,1740,2)4(1,1),,1 wef0,113\{0}
t’l,...,t’sl <y'N3

1
ao,1,40,2,4(0,1y,1 <N 3

aqo,1,2,a(1,1),1SN 3

is > yo(l) for some s; < 1 when v/ < ),0(1)' For each fixed 51,...,&1,{’{, . ..,f;l, we apply
Lemma 5.7 with (ig, r9) = ((0, 1), 2) to get that

o)
. (IN) >

’
— Sy'N% 1A 6ao,1 (€1,£),...6a0,1 (€ ,L5,), Flles 1
((6(ap,2ag,1),1-(ap, 1+a0,2)a(1,1),1) @) N 3D, 132, (0

6ag,2 (my,m}),....6a0,2 (ms, ,m

2 S
’ NS 2
...,t’s] <y'N3
—
mi,...,ms, <y'N 3
2
m ...,mg.ZSy'Ng
1
ao,1,a02<N 3

1
ago,1),1-a(1,1),1 <N 3

for some s, < 1 wheny’ < y©(1) and argue similarly with (ig, 7o) = ((0, 1), 1) and (ig, 0) = ((1, 1), 1)
to deduce that

1 ’ o(1

N Z E Crl Lo, Sy’N% A 6a0.1 (€1.6])erns6a10,1 (£ L) fx) >y (1)
X 6ao,2 (my,m)),....6a0,2 (ms, .m, )

s 6ao,2 (u1,u}),....6a0,2 (us3 1, ) »

ul,...,uSS,u;,...,u;3 <y'N3 6(a0,1+a0,2)(vl’V]/)""’6(a0,l+a0,2)(vs4’v_§/‘4)

2
ml,...,mSZ,m’l,...,m;2 <y'N3

2
Vo Vg Voo Vi SY'N 3

1
aop,1,a02<N3

for some s3, 54 < 1 and ¥’ < Y21, We write the above as

LI llgsisasssesy - O

ao,1,a02<N 3 2

((6(aq,1,a0,2) @) [¥'N ])we{0,1}2\{9),r’e[kw]

with k(10) = 51, k(0,1) = s2+ 53 and k(1,1 = s4, and apply Lemma 5.7 twice more with (ip, o) = (0,2)

and then (ig, r9) = (0, 1) to deduce that ”f”Uls oy (INT) > yPW for y” « vy and some s < 1.
Y

Proof of Proposition 3.6. By applying Lemma 5.7 };¢,, , k; times, once with (ig, 7o) = (i, r) for each
i€lypandr < k;, we get that

EgeA”f”DZielg,z 4 (IN]) >c.r 501'(1), (16)

Pi@[8'M2Dey,  prepy]
where 1 < t; <, 1 for each i € I;_5, assuming that §' <c, 69¢(1). More generally, whenever
j=1,...,¢—-1, from

Egeall £l Yielp_; ti 2y
/ (IND

(Pi(@)[s'MT Diel,_j.rel;)
one can deduce

O (1
Egeall f1l Lielp_(jy1) 't >c.e el )’
o

. N
(pi(g)[EIM(J+]>]>1'EI(7(J-+1),r’e[li] ([ ])
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where 1 < t; <, 1 for each i € Ip_(j.1), by applying Lemma 5.7 once with (ig, r9) = (i, r) for each
i € I;_(j41) and r < k;. Starting from (16) and repeating this implication £ — 2 more times gives the
conclusion of the proposition. O

6. Control by uniformity norms

In this section, we combine the results of Sections 4 and 5 to control the general average

AN-M p (fos-- s fesWests - - -, Wy) in terms of U*-norms of f; and Fy. We will also state and prove

Theorem 6.1, the control result for general polynomial progressions mentioned in the Introduction.
Theorem 3.7 follows almost immediately from the results already proven.

Proof of Theorem 3.7. Set ¢’ := (deg P¢)!cy. By making the change of variables x — x + ¢’z in the

.....

Eyeim et (Pesi () - - ‘/’m(Pm(y))% Z (Eze[(m*]fo(x +c'z) e fe(x+c'z+ P[()’))) > 4.

X€Z

By one application of the Cauchy-Schwarz inequality in the x and y variables, we thus get

N,M ’ ’ 2
Ez,z’e[é’M”]APl P, (Ac/(u/)fo, BN Acf(z’zr)f[’) >>C,deg P¢ 0%,

.....

so it follows from Propositions 3.4 and 3.6 that

1
EZ’Z’E[&M[]]TJ ZEhi,hQG[é'MqAC'(hl»hi) ,,,,, (hhy) (Ber(2,2) F)(X) > deg P §Owere (V)

XEZL i=1,..., s
for some s <, 1, which gives the conclusion of the theorem. O
We now deduce control for Agl”[.\fl_’ p, (fos- s fesests . ., m) in terms of US-norms of dual func-

.....

.....

Corollary 3.8 now follows from Theorem 3.7 with Fy (which is a 1-bounded function supported on an
interval of the form [Ogee p, (CN)]) playing the role of fr. ]

6.1. Control for general polynomial progressions

In this subsection, we prove the following result, whose proof largely follows the proofs of Proposi-
tions 3.4 and 3.6.

Theorem 6.1. Let N, M > 0, Py,..., P, € Z[y] be polynomials such that deg P, < --- < deg P, and
each P; has leading coefficient c;. There exists an s <qeg P, ....deg P,, 1 Such that the following holds. If
m’ =#{i € [m—1] : deg P; = deg P,,}, 1/C < |c;|M%ePm N < C for eachm —m’ < i < m, all of the
coefficients of Py, ..., Py, have absolute value bounded by C|cyl, fo,. .., fm : Z — C are 1-bounded
Sfunctions supported on the interval [N],

[Ap,,...P, (f0s o fm)| 2 6,
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,,,,,

If ¢;u—(m-1)s - - - » Cm are uniformly bounded or, more generally, are of the form c¢q for bounded c7,
then it follows easily from Theorem 6.1 that Ap, _ p, (fo,..., f) is controlled by a U*-norm of f;,.
To prove Theorem 6.1, all we need beyond the results of Sections 4 and 5 is a more general version of
Lemma 4.7, which we now prove.

Lemma6.2. Let N, M > Oand Py, . .., P, € Z[y] be polynomials suchthatdeg Py < - - - < deg P, and
each P; has leading coefficient c;. Ifm’ = #{i € [m—1] : deg P; = deg P,,,}, 1/C < |c;|M%ePm /N < C
Joreachm —m’ <i < m, all of the coefficients of Py, ..., Py have absolute value bounded by C|c,|,

0+ +» fm : Z — C are 1-bounded functions supported on the interval [ N],

and )" <C,deg Py,....deg P,, ')’Odegpl """ deg Pm (1), then we have

Bfeary ZEye m1fn @) [ [ F e+ Qil@, 7)) > aca by, . aen p,, yOeerr-teerm D),

X€Z iel
where

I = {0’ l}t \ {Q}for SOmet <<ngP1 ,,,,, ngPm lr
A=((-y'M,y'M)NnZ),
[PNCII .
par,. .. an) = Gkt wym (ar),
the collection Q := (Q;);er consists only of polynomials of degree deg P,,, — 1, each of which has

distinct leading coefficient, and the set of such leading coefficients is

O O O ©°

{((deg Py)d ay,...,(deg Pyy)dia;) - w : w € I},

where each d; equals ¢, or ¢, — ¢ for somem —m’ < j <m,
o we have

max max max a, <
naxmax max |Qil(a,y) <, deg P,

..... deg Py, N
o and f/ equals either f,, or o foralliel.

Proof. Arguing as in the proof of Lemma 4.7, we apply Lemma 4.4 g <eg p,.....deg P,,,_,»_, 1 times to
deduce that

“EAON ZEye[M fa,0(x) l_[ giox+Qj(ar, ... ay,y) >y,

X€EZ J€Jo
deg Q;#0
la,(ap,..., az,)
where Jo C [m] x {0, 1}, Ao = ((=y'M.y'M) N Z)", wi(ar,....an) = Gl st iy (ay),
Qo := (Qo)jey, consists only of polynomials of degree deg P,, and constant (in y) polynomials, the
leading coefficients of degree deg P,, polynomials in Qg are ¢;;_ny, . . . , Cm, there are 20 polynomials

of degree deg P,, in Qp with leading coefficient equal to ¢; for each m —m’ < i < m with set
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of degree deg P,, — 1 coefficients equal to {(c;ai,...,cia;) - w : w € {0,1}°}, fa 0 is 1-bounded
for each a € Ap and g; o equals either f}» or E if Q; has leading coefficient ¢/, provided that
Y <KC.degPi,....deg Py yOdEgP 1--deg P m—m’—l(l), by arguing exactly as in the proof of Lemma 4.7,
except using the assumption that the coefficients of Py, ..., P,, are all bounded in absolute value by
C|c,| in place of the (C, g)-coefficients hypothesis.

The conclusion of the lemma now follows by arguing almost exactly as in the proof of Lemma 4.8,
with the only differences being that we start with more polynomials of degree deg P, with each leading
coefficient and we already have an ordering ¢,;,—(m-1), . - ., i Of these coefficients (and do not care
whether they have any particular structure), by applying Lemma 4.5 after repeating the following m’ — 1
times: apply Lemma 4.6 once and then Lemma 4.4 as many times as necessary until we can apply one
of Lemmas 4.5 or 4.6. O

The proof of Theorem 6.1 is exactly the same as the proof of Theorem 3.7, except that one uses
Lemma 6.2 in place of Lemma 4.7 and does not need to do the initial application of the Cauchy-Schwarz
inequality done in the proof of Theorem 3.7.

Proof of Theorem 6.1. Following the proof of Proposition 3.4, we apply Lemma 6.2 once, Lemma 4.8
(deg Py, — 2) times, Lemma 4.10 once and then, following the proof of Proposition 3.6, Lemma 5.7
<Ldeg Py,...,deg Py, 1 times. O

7. Lemmas for degree lowering

In this section, we collect and prove various lemmas needed for the proofs of Lemmas 3.9 and 3.10.
The first two lemmas are standard results on Weyl sums that can be found, for example, in [22] as
Lemmas 1.1.16 and 1.1.14, respectively.

Lemma 7.1. Let N > 0 and P € R[y] be a polynomial with P(y) = a,,y"™ + -+ -+ ag. If

> e(P(y))| 2 N,

ne[N]

then there exists g € N satisfying ¢ < vy~ such that

Y
lgaill < T

foreachi=1,...,m.

Lemma 7.2. Let N, &,y > Owithe < 1,y > g and N > v~ If |[nB|| < € for at least a y-proportion
ofn € [-N, N] N Z, then there exists a positive integer ¢ <y~ such that ||qB|| < eq/yN.

We also record, for the sake of convenience, the following result, which can be found in [15] as
Lemma 6.5.

Lemma 7.3. Let « € T. If a, b € N are such that
ax——(s7,
b Y

then, for any D > 1, there exists an integer k with |k| < D and a 6 € [-1, 1] such that
a

Y
- :

D

Y
=—+k—+0
« D
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Before stating and proving the remaining lemmas in this section, we need one more piece of notation.
For s € Nand H c Z?*, let Oy (H) denote the set of 3s-tuples

kD, kP kPP k) e 2

such that (Y, ..., kY, ki‘“”z), k™) € H for all w € {0, 1}%. Note that this is not the same
definition of Oy (H) that appeared in [15], where O5(H) instead consisted of 2s-tuples.

The following lemma will play a similar role in the proof of the degree-lowering result in this
article as Lemma 6.3 of [15] played in that paper, and its proof follows the same general strategy, with
differences mainly arising from dealing with more general dual functions and from the use of different
definitions of the U*-norm.

Lemma 7.4. Let LM > 0,2 < € < m, H C [y'L]* with |H| > yL*, fo,..., fe-1 : Z — C be 1-
bounded functions supported on the interval [L] and Y¢r1, ..., 0m 1 Z — S U be characters. Let Fy be
defined as in Corollary 3.8. If

2
1 , :
- > Alpays, Fe(x)e(@(h, h')x)

X€Z

Enn)en >y (17

for some ¢ : H — T, then

2

EKGDS(H) = (7’7,)0‘9(]),

23 Gea@ew )

X€EZ

where

Gex(x) = ]Eye[M]A; fO(X_P{?(y))"'A; :ilff—l(x‘FP{?—l()’) - Pe(y))

K K Bys K k3
i °hi Ji=1 i i =

and

lr//(k) = Z (—1)‘w|¢(k;1)’.”’k§l)’k§w1+2)’...,k§w5+2))'
we{0,1}

For example, when s = 2, the function (k) equals
D () 2 .2 () 2 .3 n () 03 L@ n M 03 .3
IR IR Tl 1o B O A SO Ay A B O ALy SR AC N A YT SN S0 S S
Proof of Lemma 7.4. Define, for each y € [M], the function

Fey(x) = fo(x =Pe(y) - fec1(x + Pe1(¥) = Pe(Y)Wes1 (Pes1 () -+ - U (P (),

so that F¢(x) = Eyep)Fe,y (x). We can thus write the left-hand side of (17) as

1 Z ’ l | ’
EywanwIE[M]E(hsﬁ,)EHﬁ e(¢(ﬁ’ﬁ )('x—z)) [Irf’yu)()(x-i-ﬁ‘u)-i-ﬁ ’ (l_w))‘
wef0,1}* X,2€Z we{0,1}*

Fry,(z+h-w+h - (1-w))].
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Applying the Cauchy-Schwarz inequality to double the /] variable gives the bound

Ly (B, W) g (R RS, RY)
L2s+1 :

(')/')//)0(1) < EymOsywl G[M]

(/.)E{O,l}s ﬁ,h’E[’)’/L]zs

h/ely'L]

1 ’

50 ] SunFesalcrbowss - 1-0)
Xx,2€Z we{0,1}*
w1:0

Awr-mFey, (z+h-w+h - (1-w))

e((¢p(h.h') = ¢(h. h{ hy, ... hY))(x = 2)) |,

by using the fact that H ¢ [y’L]* and |H| > yL?*. Note that nothing inside of the above average
depends on the variables y 0, ¥ for any w € {0, 1}* with w; = 1, so we can restrict the first average
t0 Y0, Y1 € [M] with w; = 0.

We apply the Cauchy-Schwarz inequality s total times in this manner, doubling the /] variable for
eachi=1,...,s, to get that

1 1" Os (1
Eyo.yelor1Ben, (1) 73 D A oy Fen @A ), Feyn @e@®(x-2) 2 (r7) <

X,Z€Z

using the trivial upper bound |Og(H)| < (y’L)%. Finally, note that the left-hand side of the above
inequality equals

2

Eeo,(H) | 7 Z Ge (e (k)x)

er

by recalling the definition of F; ,, and using the fact that the A" operator distributes over the product of
functions (the characters in Fy , cancel because s > 1). O

The final lemma of this section is a generalisation of Lemma 6.4 of [15], and its proof is essentially

the same as the argument in [15].

Lemma 7.5. Let L > 0 and, for eachi = 1,...,s, let ¢; : Z** — T be a function not depending on the
(s +1)"" variable. If0 <y’ < 1, f : Z — C is 1-bounded and supported on the interval [L] and

2
>, (18)

Enweryry |7 Z Al L, f(x)e (Z ¢i(h, ﬁ')x)
i=1

er

0s(1).

then || £ >y

Uy (LD
Proof. Expanding the square, the left-hand side of (18) can be written as

Lz 2. Bnwetyri Al s, JOBG, e e (quz )l x—z])

X,Z€Z
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so that applying Lemma 2.2 for each fixed x,z € Z and k € [y'L]* gives

1 N’ N O (1
3 2 Ewarety i D s FOAG, e 1) 2y 0.

X,Z€Z

By inserting extra averaging in the x variable and using the pigeonhole principle to fix z (which we may
do because f is supported on [L] and y’ < 1), it follows that

1 — , O (1
Z Z Eﬁ/,ﬁﬂe[yl]sAzh;,hl’.’)lef(x)EWE[Y/L]A(hE,h;')f;lf(x + W) >5Y s (1)

X€Z

for some z € Z. To conclude, we apply the Cauchy-Schwarz inequality to double the w variable, again
using that f is supported on [L] and y” < 1. o

8. Degree lowering

We begin by handling the base case of the inductive proof of Lemmas 3.9 and 3.10.

Lemma 8.1. Let N,M > 0, Py,...,P, € Z[y] be polynomials such that Py and P, have (C,q)-
coefficients, deg P < - - - < deg P,,, and P; has leading coefficient c; fori = 1,...,m,and ¥, ..., ¥ :

Z — S be characters such that y;(x) = e(a;x) with a; € T fori = 2,...,m. Assume further that
lci|M¥eP1 /N < C. If there exist 1-bounded functions fy, fi : Z — C supported on the interval [N]
such that
1
— > F >, 19
e Z‘% 2ex)e(ex)| 2y (19)

where I is as in Corollary 3.8, then there exists a positive integer t <.c deg P,, y‘odegf’m W such that

y_odcg Pm (1)

deg Py .
tc c —_—
| (M /|cl)dee Pm

m®m ” <C,deg P,y

provided that N ¢ geg p,, (q/y)P%crm D).

Note that the hypothesis c¢; M2 P1 /N < C above actually follows from the slightly stronger condition
1/C < |c|M%eP2 /N < C in Lemma 3.10 and the assumptions that Py has (C, g)-coefficients, deg P, >
deg Py, and N >c gegp,, (q/7)°M. Therefore, this lemma does indeed cover the £ = 2 case of
Lemma 3.10.

Proof. Inserting the definition of F;, the inequality (19) reads

1
NJe Z Eyermgolex = Pa(y))gi(cx + Pi(y) = Pa(0))W2(cx)ys(P3 () - - m(Pm(¥))| 2 7.
X€Z
We split the sum over y € [ M] up into progressions modulo ¢ by writingy = cz+hforh =0,...,|c|-1

and use the pigeonhole principle to fix an 4 such that

'NL/C ZEZQM/‘C”go(cx — Py(cz+h))gi(cx+ Pi(cz+ h) — Py(cz+ h))

X€EZ

Ya(cx)y3(P3(cz+h)) - hm(Pm(cz+ h))| > v,
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provided that N > vy~ Note that w € Z[y] has (Ogeg p, (C), cq)-coeflicients because
|h| < |c|. We make the change of variables x +— x + w to get that

ZEze[M”d]gO(x)g](HP (D)W2(Pacz+ ) -+ Y (Pmlcz + h))| > v,
er

where g4 (x) := Tp, ) (8062)(¢x), 8] (x) := Try (n)-po(m g1 (cx), and Py (z) := PLEAUL which

also has (Ogeg p, (C), cq)-coefficients. By the assumption |c1|M deg P /N < C, we can apply Lemma 4.2
d := deg P, times and then the Cauchy-Schwarz inequality once to deduce from the above that

2
Ejar|....|aal<yM /e [Ezepmiene(Q(a, 2)|” >c.a y24V

whenever y’ <¢.q ¥4, where

0(a,2) :=iai D, DlPic(zra- @)~ k)|

we{0,1}4
Thus,
Bzeim/iene(Qa, )| >c.a vV (20
for a >¢ 4 y2¢() proportion of integers |ai], ..., |aq| < y'M/|c|.

Note that the leading term of Q(a,z) equals %cdegﬂﬂal.

A gC Uy 78 Pm=d | By
Lemma 7.1, there thus exists a t9 <c deg Py, y’odeg Pm (1) guch that for each d-tuple of integers

a=(ai,...,aq) with |a;| < y’M/c for which (20) holds, we have
ltoc®ePmay - agepmanm| <c.qy QeetmD (M [c)dee Pm=d,

Fixing y’ =c.4 y~94() 'the conclusion of the lemma follows by applying Lemma 7.2 d times, once for
each a; appearing in the product c%€Prma - - - a e, . O

Next, we show that Lemma 3.9 in the general ¢ > 2 case follows from Lemma 3.10 in the ¢ case.
The overall strategy of the following proof is the same as the proof of Proposition 6.6 in [15], though
several small changes need to be made due to the greater generality of Lemma 3.9 and the use of
different definitions of the U®-norm in the two papers. We now briefly sketch the structure of the
argument. The proof starts by writing the U*-norm of the dual function F; as an average of U?-norms of

differenced versions of Fy (thatis, A’ (s , F¢ in the following proof and Ay, . n, ,Fr in [15]). By the

inverse theorem for the U2-norm, it follows that, on average, the differenced versions of Fy have large
correlation with some character x +— e(¢(h, h’)x) depending on (k, k’). One then uses Lemma 3.10
and the pigeonhole principle (along with Lemma 7.3) to show that the function ¢ (%, h") must be very
close to a function of the form ij ¢;(h, h") appearing in Lemma 7.5 for many differencing parameters
(h, h"). The conclusion of the lemma then follows from Lemma 7.5.

Proof of Lemma 3.9 for € assuming Lemma 3.10 for £. Note that, by splitting Z up into progressions
modulo |c|, we have

”Ff” =Ey-o,..., lc]- 1Eh h &' MdePe ”A /;2(T Fé’)(c)” .
MdegP ([CND) u= ¢ }:::h? 26%6 Mdegf’;] c(h;i,h, ) [6’Mde$P(’]([CN/C])
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Thus, because Mdeg Pe =<c N/c, Lemma 2.4 tells us that

2
1

F7e 2Ny (TuFO) (x)e (e (b, 1))

Eu-o
‘ / X€EZ

nO(1)
..... lel-1Bp, nyae[smieere) >c (66)
W,..., h 26[6/MdegP(]

S—

for some ¢,, : [6’MI€P]2(5=2) 5 T for each u = 0, ..., |c| — 1. By the pigeonhole principle, there
exists an H C [6’ M2 Pc]20-2) with |H| ¢ (667)9 D (6’ M Pe)2(-2) and U c {0, ..., |c| - 1} with
|U| >c¢ (66")°W|c| such that
2

>c (66’)0(1)

1 ’ ’
Nie DALy (TuFo) (ex)e (e (b, 1))
XEZ 1=

for every (h,h’') € Handu € U.
Next, we apply Lemma 7.4 with L = N/|c|, which, because MeF¢ >~ N/|c|, yields
2

Ekeo,»(H) >c. (6670,

NL/C Zz Gex(ex)e(cdu(k)x)

where, as in Lemma 7.4, we have

L g0 Tufe1 (4 Pea(y) = Pe(y)

i=1

Gf,&(x) = Eye[M]A;(k(z) k(}))s_zTufO(x = Pe(y))---A
i k)i

and

S e DR Co VO S S N !
we{0,1}572

By the pigeonhole principle again, for each u € U there exists a set of 3(s — 2)-tuples H,, C Os_2(H)
with [H.,| >c s (667)9 (D (8’ Mdee Pr)3(s=2) guch that

2
1
e D Gealex)e(cyu ()| >cs (66700
X€Z
for every k € H),. By applying Lemma 3.10 for £ with m = ¢, for each k € H], there thus exist
cl, <c lece|%ere M and 1, <c deg py.s (667)Osteere (V) such that

(66/)_OdegP(»,s(1)

’
ltuc,ceru (N <c deg Pros MEEP o

By applying Lemma 7.3 with D =c deg P, s (667)~ceeres (V) it follows that for each k € HJ, there exist
integers a, (k) <c degpy,s (66") C%res) and |my, (k)| <c aeq py,s (667) Ckres) and |6, (k)| < 1
such that

ay (k) + my (k) + 0. (k)

tucy, (66’)_Odchp,s(1)Mdeg Py (66')_Odchg,s(1)Mdeg P’

ceypu(k) =

By the pigeonhole principle yet again, for each u € U there exists a subset H,/ c H] of
size |H]/| > degP;,s (55')Odengv“<l)|Hb’l| for which there are a, <c,qegp,,s (66’)_0“‘4"0*‘(1) and
|mu| <c.deg Pr.s (66’)_0‘1‘3@”[-5(]) such that for any k € H,/, we have

ay my 0u (k)
cedbu(k) = — + o a + ~o ) :
tuci  (§67) Oteers ) pgdeg Pe (567)~Oces Pp.s (1) prdeg P
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Set
but(R) = (=1 > (=Dl (Y, kD k)
0£we{0,1}572
w1:0
ay + my,
tuclce (55/)—Odch[,s(1)ct,MdegPg
and, fori =2,...,5 — 2, set

1 1 2 +2
uilk) = (=" > (D@l k("D R k),
0£we{0,1}°72
w)==wi-1=1
wi:O

Note that ¢, ; does not depend on on kl@ and

s=2
0 (k)
u(k) = u,i(k — .
Yu (k) ; Su.i (k) + (66/)—OdegP[,s(1)C€MdegP(;

For any k € H]/, we thus have

s—2

1
cWu(k) ¢ D dui(b)| <c
i=1

((5(5’)70‘@ Pp.s (1) ppdeg P’

because ¢ <¢ c¢
By the pigeonhole principle again, for each u € U there exist A/ |,...,h! ., € [¢'M deg Pr] such
that the fibre

HY :={(h1,....hga,h,...,h" ) € H: (h}I/,}") € H}

has size 3¢ geg pr.s (86)P%eres V) (67 Mdee Pe)2(s=2) Fixing such |, ..., h’

L u.s_2» it follows that
2

O, (1
E(ﬁ,ﬁ")eHﬁ'/ >>C,deng,s (55 ) degPe,As( ),

1 ’ S_Z ’ ’n”
N/ § A(hi’h{/)§—2TuF€(cx)e (C § ¢u,i(ﬁ’ﬁu’ﬁ )'x)
€z re i=1

by the assumption N/|c| <¢c M4 P¢ By positivity, for each u € U we can extend the average over H”
to an average over all of [6’M9€P¢]2(s=2) using our lower bound on |H!/’| to get that

2

Eﬁ,h"e[é'MdEng]S’Z
i=1

1 ’ & ’ 14
N7e 20 My Tufelex)e (c D builhly b )x)
_XEZ 7=

iS >>C deg Py.s (667)Cseres M) - Applying Lemma 7.5 for each u € U and using positivity again, we
deduce that

2s-1 Odeg Py s (1
Eu=o,...,c-1 ||TMF€(C.)||US—1 wp, (ICN/c]) >>C.,deg Pr.s ((5(5’) deg Py.s ),
[6'Mm9e T
from which we conclude the lemma by expanding the definition of the Gowers box norm. O

Now we show that Lemma 3.10 in the general £ > 3 case follows from Lemmas 3.9 and 3.10 in the
€ — 1 case.
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Proof of Lemma 3.10 for £ assuming Lemmas 3.9 and 3.10 for € — 1. As in the proof of the base case,
we insert the definition of F, and split the sum over y € [M] up into progressions modulo |c| by writing
y=cz+hforh=0,...,|c| -1, and use the pigeonhole principle to fix an 4 such that

’NL/C Z Ezetm /i) folex = Pe(cz+h)) -+« feo1(ex + Pe_y(cz+ h) — Pe(cz + h))
X€EZ

Ye(ex)Wer1 (Pes1(cz+ h)) - m(Pm(cz+h))| > 6

and then make the change of variables x — x + w to deduce that

’Ag{/’c’l’\g:(fo,,’f[/_l,lﬁt’,’lﬁm) > 6’ (21)
where
, T_p,(n)(foe)(ex)  i=0
fiy =g " .
Tpi(h)_p[(h)f,-(cx) t=1,....,m
and
Prlezth) Pi(k) i=1,...,6-1
Pi@) =y, ¢ L
P;(cz+h) — P;(h) i=4,...,m
Note, because it will be relevant later, that the leading coefficient ¢; of P; equals cdegPi=le. when

i=1,...,0—1 and equals cdePic. wheni = ¢,...,m, and the polynomials Pi, . ,PZ,_I € Z[z7] all
have (Ogeg p,_, (C), gc)-coefficients.

Set M’ := M/|c| and N’ := (M")9ee Pe=1 (g|c|)9ee Pe-1=1 With a view towards applying Corollary 3.8,
we rewrite the left-hand side of (21) as

Eo<w<(N/lel)/c'N'Ezetm Ternw fy ) Ternw [ (x + P1(2) - - Ternw f— (x + Py_  (2))
xe[C'N’]
Ye(Pp(2) - ¥m(Pp(2))
for C" =c degp,; 1 and use the fact that max,c[ar) [P} (2)| <cdegp,., N’ foreachi =1,...,6-1

(which is a consequence of each P/ having (Ogeg p,_, (C), cq)-coeflicients) and the pigeonhole principle
to deduce, for suitable C’, that

,,,,,,

where f/" :=Tc/nw ff + 1c/nv) for some integer 0 < w < (N/|c[)/C'N".
Now, because (g|c|)de Pe-1=1(pg7)dee Pt = N’ and Pl,....P,_, € Z[z] have (Ogegp,,(C), qc)-
coefficients, we may apply Corollary 3.8 to get that

F 6Od 2 P, 1)
” ,— ”US O, P 1)N']) 2>C.,deg P, et 1(
-1 (deg Py 1)!(‘2 | ’(M’)delP{? 1]([ C.,deg Py 1( )N']) »deg e

for any ¢’ <c,deg P, §Oueer, (1), where s <geg p,_, 1 and

Fo_y(x) :=Erepmn fy' (x = Pp_y (2) -+ fLo(x + Py (2) = Py (2))We(Pp(2) -+ Y (P, (2)).
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Fixing 6" <¢ deg P, §%eere (D it thus follows from repeated applications of Lemma 3.9 in the £ — 1
case that

F O, (1)
-11\u (@] )N’ C,deg P :
(degP(’,])!C'£71[5’(M’)d3gP(’—l ]([ Cudegppy (DN'])

Set ¢’ := (deg P¢-1)!c;_,. By applying Lemma 2.4 in the same manner as in the previous proof and
using the pigeonhole principle, we deduce that there exists a u € [¢’] such that

Njer ZT F{_ (")W1 (¢'x)| > aeg pyy 6002 Pe-1 D

for some character ¢y : Z — S’. We now apply Lemma 3.10 for ¢ — 1 to deduce that there exists a
" e e’ crem|QeePm (D <o |ccpy|PeePm () and ¢ <C,deg P 6Oz (1) guch that

6_Odcg Pm (1)

¢ 11 deg Py,
” cc (M/c)deng/cN’

Cma'm” <C,deg P,y

because the leading coefficient of P;,, is cdeePme  This gives the conclusion of the lemma. O

Because we have shown that Lemma 3.10 holds in the ¢ = 2 case, Lemma 3.10 in the ¢ case implies
Lemma 3.9 in the € case and Lemmas 3.9 and 3.10 in the £ — 1 case together imply Lemma 3.10 in the
{ case, it now follows by induction that Lemmas 3.9 and 3.10 hold in general.

9. Local U'-control

Asmentioned in Section 3, Theorem 3.3 will be proved using a combination of Corollary 3.8, Lemma 3.9,
and Lemma 2.4. For the sake of convenience, before proving Theorem 3.3 we first prove Lemma 3.11,
which gives the result of applying Corollary 3.8 once, Lemma 3.9 as many times as necessary, and then
Lemma 2.4 once.

Proof of Lemma 3.11. We first apply Corollary 3.8, which tells us that

Oueg p, (1)
”FZ”U’/I&/MngP[ ([Ogeg p, (CN)]) >C.deg Py 0747
for some s <gegp, 1 Whenever ¢’ <c degp, 5@t (D and N > deg Py (q/66’)0degl’l“). Fix-

ing ¢’ =c geg P, 5% (D) and then applying Lemma 3.9 repeatedly (which we can do because
(deg Pp)!/C < |c’'|M%ePe /N < (deg P;)!C?) thus yields

Odeg P, (1)
”FZHUZ[J/Mdegl—‘p]([o‘l?'gpf(CN)]) >>C,degP( 0 ¢ .

We now expand the definition of the Gowers box norm and split the sum over Z up into progressions
modulo |¢’| as in the proof of Lemmas 3.9 and 3.10 to write the above as

Odeep, (1)
Bttt IT-uFe(ef )”U2 g 1Owe g (CN/lef)]) > Codeg Pe o P,

so that, by Lemma 2.4 and the inequality (deg P;)!/C < |c'|M%ePc /N < (deg P;)!C? again, we have
that

Eu:O ..... le']-1 N/c ZT Fg(C x)lﬁgu(c x) >c ,deg Py 0 deng(l)
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for some characters Y, : Z — S'. Expanding the definition of F, the above inequality says that

e DB T o€ = PO+ Tt Pt (0) = P

Yeu(c et (Per1 () -+ Yim(Pm(y))

is >>C,deg Py 6Odeg Pl’(l).

Next, as in the proofs of Lemmas 8.1 and 3.10, we split the average over y € [M] above up into
congruence classes modulo |c’| by setting y = ¢’z+ hfor h = 0,...,|c’| — 1 and make the change of

. P(c'z+h) =Py (h .
variables x > x + M to get, assuming N > deg P, (q/8)Ccee Pe(D | that

N/|c\M(f

She Oe 1
Ph ..... Ph 5 .. ~,f;_17§0£’,u, Wt’+l,~ . 71»{/m) >>C,deng 6 dugP[( ),

Ey n=o,...,1c'|-1 |A

where

f.“’h(x) o T—Pg(h)T—u(foll/f,u)(C,x) i=0
! Tp,(n)-p, (k) T-u fi (c'X) i=1,...,¢(-1

To conclude, we argue as in the proof of Lemma 3.10, using the fact that max ;e[ |Pf‘(z)| <C'N’/2
for all |h] < |¢’| and i € [£ — 1] whenever N > deg P, (q/6)0deg’°f(l) to split the sum over x in
N/lc l M’ L (fo° hoo, ;j?; e Wests - - - ¥m) up into intervals of length C’N’ and then applying the

.....

trlangle 1nequality, we get

C’N’ M’ h, h O, 1
E w,h=0,..., Ie'|~1 Ph P (fu W’ » u w, lﬂ{’u,lp{’+1""’l’l’m) >>C,degP£;6 degP(( )

O

Now we can prove Theorem 3.3.
Proof of Theorem 3.3. We apply Lemma 3.11 m — 1 times to get that
Jh, h, Jh, h,
P N | G ¥ T e PN | E SR §0uez P (1),
0w <(Ci Nt /i D /CiN; | P
i=2,..., m
(22)

where Copst = 1, Nypst = N, ¢; = &q% for é; <c degp,, | and b; <qegp,, 1, M; = M/TT leil,
C; =c degpm 1,and N; := M?egp"" (qlci -+~ cm|)de8 P17l for each i = 2, .. * is 1-bounded

and f***(x) equals 1[c,n,](x) times

0

T [— h; [ h; Cr  CmX
S (CivteCm) [Wici Ci Nj—ug+ [P () —py i (hi)]]fl( 2 mX)

for each u, h € [172,{0,...,|c;| = 1} and w € [T7, ([0, (Ci+1Nir1/|cil) /CiNi) N Z), where Plimoeshin
denotes the polynomial ((PhV")h'" 1)...)h#1 using the notation from Lemma 3.11, each P; is a poly-
nomial of degree deg P; whose coeflicients have magnitude <c geg p,, g©@sezPm () and whose leading
coefficient is independent of 4 and Plh has leading coefficient of the form C’(gcy - - ¢,,)%€ 1! for
some C’ <¢ 1 and satisﬁes rnaxye[M2 |Ph(y)| <C,deg Py N2-

u,h,w u,h,w u,h,w

For each character 1//* ==, let B;7— € T be such that ;"= (x) = e(B8,~~x). Next, we argue as
in the proof of Lemma 8.1 and apply Lemma 4.2 d := deg P, times and the Cauchy-Schwarz inequality
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once to get that

u,h,w 2 O, 1
E i ni=0,...lc;|-1 Elay,.... laul<5' M [Byeiamn)e (@4 (a, y))|” >c deg P,y 0 deg P (1)
0=w; <(Cis1 Nis1/|ci])/CiNi
i=2,....m

whenever ¢’ < geg p,, 09%Pm (D where

m
. n
Ovh¥(a,y) = Y B Y (—DIPH Gy +a- w)
i=2 we{0,1}4

As in the proof of Lemma 8.1, we have that \}Eye[M2 e(Qﬂﬁﬁ(a,y))| >>C deg P §Qaezrm (1) for a
>, deg P §Odeg P (1) proportion of tuples u, & and w and integers |ai|, ..., |aq| < 6'M,.
Now set d’ := deg P,,, — deg P and write

0" (a,y) = By (@)y” + -+ By (a)y + By (@),

so that by Lemma 7.1 there exists a t <c deg P, §OaeePm (1) guch that for a > deg P §Oaeg P (1)
proportion of a,u,h and w, we have ||tB?’ﬁ’K(g)|| <LCdeg Py 0 e W MI for i = 1,....d"
By expanding each B?’E’m(g) in terms of ay,...,ay, it then follows from repeated applications of
Lemma 7.2 and the triangle inequality that, if 6" < g p,, §%%¢#m () is fixed suitably small, there must
exist?’” <c deg Py 5 Oaeg P (1) and p; <{eg P, 1 suchthat ||t’qb"ﬁl.ﬂ’ﬁ’ﬁ|| <X, deg P 6‘Od°ng(1)/M§eg Pi
foralli =2,...,m.

Thus, by splitting y € [M>] up into progressions of length M) <c deg P, (0/ q)ezPm (D M, modulo
t'q® for some s <geg p,, 1, it follows from (22) that

E o wini=0,..lcil-1

.h, h,
oy i /| AP Fay A ZEzelM f; W(x)flu,m( +P (t'q*(z— M, ku hw) Kuhw))
wi < Hl i+1/1Ci i X

u.h,w 2
k; hw E[t,q‘]

iS > deg Py §0aeerm (1) Applying Lemma 4.2 d more times, we get from the above that

1 Jh, h, ’ ’
E k=0, lci|-1 oo ZE|al-|<5"M2'f1£*K(x)f1£*m(x+C d\(t'q*)(ger -+ em)ar -+ aq)
0<w; <(Cis1Niw1/lcil)/Ci N; 24V2 i=1,...,d

i=2,..., m
is > deg Py §0se P (1) whenever 6/ <C,deg Py §9sezPm (1) Note that this can be written as

1

,h, h,
E oot w2, RUT@AT G Cd ) (geren)n)GO).
0<W:<(Cl+]2Nl+l/|Cz‘)/CN1 2 x |y|£(6”M2’)d
i=2,..., m

where G(y) = Ejq),..., |ad\<5"M2'1y:a1---ad- Inserting the /01 a(f)e(fy)df for G(y) above, bounding
the contribution of minor arcs using Lemma 7.1, pigeonholing in the major arcs and fixing 6" <c deg P,,
§0aeerm (1) sufficiantly small, we get that there exists a t”/ < (66”)"%() and 0 < a < t” relatively
prime to ¢”” such that

1 u,h,w ’
2 : hw hw s\d Y
E ui,hi=0,....]ci|-1 CN IB’)’<(6"M )dfl (x)f1 (x+C'd\(t'q")"(qc2 - cm)y)e (t”)
0<w; <(Ci1 Niw/lci )/ CiN; | 228 7%
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is 3¢ deg p,, 0F%ePm (1), We now split the sum over y < (6’M. ’)d into arithmetic progressions modulo

t” of length M}’ := |_(6"M2’)d/t"J and apply Lemma 4.2 once more and use that flE 2 s 1-bounded
to deduce that

O, 1

E u;,h;=0,..., lei|-1 >c ,deg P, o) deg Py ( )

0<W1<(C1+]NL+I/|C1D/C N;
=2

.....

1
G D Beel S (0 0(2)

where Q(z) == C'd!(t'q*)t" (qcy - - cm)z.
To complete the proof of the theorem, it remains to unravel the definition of flﬂ’h’ﬂ. First, we apply
the pigeonhole principle to fix an & € [];2,{0, ..., |c;| — 1} such that

whw Oueg Py (1
E =0, . |ei|-1 Exe[coN] Eze[Mz//]fl (x+Q(2)| >c.degp,, 0 deg P (1)
0<w; <(Ci+1 Nis1/lci|)/Ci N;

i=2,..., m

For some rp <c deg Py, queg Pm (1) the left-hand side of the above can thus be written as

E xe[C2N] Eee(my1 T+ 5, (cion-co) i CiNi—u; 1 J1(€2 - - € (x + Q(2)))] -
u;=0,..., lei -1 N
0<W,<(C,+1Nl+1/|(,, |)/C N;
i=2,..., m
Because, as x, u; and w; for each i = 2,...,m range over [CoN;], {0,...,|¢c;|] — 1} and

[0, (Ciz1Nix1/lcil)/CiNi) N Z, respectively, the quantity
m
20 CmX + Z(Cm woem) [wiciCiNi — u;]

ranges over < N distinct integers lying within the interval [1,N + O,,(|c2 - ci|CmNw)], and
Nm <C,deg P,y qu_‘E for some 0 < & < 1 satisfying & >geg p,, 1, we have that

wlE

XE€Z

zeimy1fi(x +c2 - emQ(2) +rp)| Sdeg P §Oaezpm (1)

provided that N 3> geq p,,, (q/8)PdccPm (1), We conclude by making the change of variables x > x — T
and noting that any progression of the form x —a[L] with a > 0 can be writtenasx—a(L+1)+a[L]. O

10. Density increment

In this section, we prove Theorem 3.2, which we then use to finally prove Theorem 1.1.

Proof of Theorem 3.2. Set fa = la — aljy; and M = (N/q%&Pm=1)l/deePu_ Note that

AN M P, (14) = 0 because A contains only trivial progressions. By the multilinearity of

ANM

.....

and the identity 14 = fa + a1y, we have that P, (14) also equals

Ap ™ o (as fas L 1a) + @A™ o (La Ly fas Tas o 1a) + ok @™ ADM L (1)),

..........

.....

ANM (La, fas 1, 1) >C deg P q9m()

,,,,,
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forsomei =1, ..., m. Theorem 3.3 then tells us that there exists a ¢’ <c geg P,, @ Oaezrm (D) p <deg Py
1 and an N’ satisfying M > N’ > 4eg P,, M(a/q)%:Pm (D) such that

1
N Z iEye[N']fA(x + 6]’qu)| >>C deg P, aQseepm (1),

X€Z

provided that N >>¢ deq p,, (q/)Oszrm D).
Note that f4 has mean zero, so ﬁ 2xez Byeny falx + q’q”y) = 0, which we can add to both sides
of the above to get that

1 4
5 > max (0. ctvnfalx + 4'"9)) >caegp,, @D,

X€Z

The total contribution to the above coming from x € Z such that x + ¢’¢q?[N’] ¢ [N] is
< q'qQueerm (1) N~141/dee P g6 that as long as N >C,deg P, (q/a)@ezrm (D) there exists an a € [N]
such that a + ¢’¢g?[N’] < [N] and

EyE[N/] lA(a + q'qby) >a+ QC,deg P, (Q,Odeng (l)),
which means that we have the desired density increment. O

Proof of Theorem 1.1. Suppose that A C [N] has density a and contains no nontrivial progressions of
the formx, x+ Py (¥), ..., x+ P (y). Set Ao = A, No = N, ap = a and g = 1. By applying Theorem 3.2
repeatedly, we get a sequence of A;s, N;s, @;s and g;s such that

Op,..., Pm(l))

1. A; C [N;] with @; = |A;|/N; and @; > aj—1 +Qp,.... P, ((li_1

1/deg P
2. Ni>p,..p, (@i1/(qo- - qi-1)) 0P Pm(l)Ni_/legP .

3. qi <p,....p, (g0~ qic1/ai1)OPr-Pm (D and
4. A; contains no nontrivial progressions of the form

i

X, + P (y), L PR (y),

hold for some i <p, . p,, @ OPrPm () Thys,

N; <pyp (M)Om ,,,,, Pm (1) “Op.pm ()
seeesdom a n

for some 0 < o1 <p,,...p, | by the upper bound on the g;s. On the other hand, we also have
that N; >p,. . p, %P Pm () N1/ (deg Pr)* for some O < o <p,...p, 1, again by the up-

per bound on the g;s. Comparing the upper and lower bounds for N; thus gives N <p, . p

m
-0 o 1
a “F Pyowe P ( ), we getthat N <p, . p,
'701"1 ..... Pm (D

), from which the conclusion of the theorem follows. O
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