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Abstract

Let %1, . . . , %< ∈ Z[H] be polynomials with distinct degrees, each having zero constant term. We show that

any subset A of {1, . . . , #} with no nontrivial progressions of the form G, G + %1 (H), . . . , G + %< (H) has size

|�| ≪ #/(log log #)2%1 ,...,%< . Along the way, we prove a general result controlling weighted counts of polynomial

progressions by Gowers norms.
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1. Introduction

For any polynomials %1, . . . , %< ∈ Z[H], let A%1 ,...,%<
(#) denote the size of the largest subset of

[#] := {1, . . . , #} containing no progressions of the form G, G + %1 (H), . . . , G + %<(H) with H ≠ 0.

Bergelson and Leibman [2] showed that

A%1 ,...,%<
(#) = >%1 ,...,%<

(#)

whenever %1, . . . , %< ∈ Z[H] all have zero constant term. This is a polynomial generalisation of

Szemerédi’s theorem [21] on arithmetic progressions, which states that AH,2H,..., (:−1)H (#) = >: (#) for

every : ∈ N. Though quantitative bounds in Szemerédi’s theorem for all : ∈ N are known due to

work of Gowers [6, 7], no bounds are known in general for the polynomial Szemerédi theorem. Thus,

Gowers [8] has posed the problem of proving explicit bounds for the quantities A%1 ,...,%<
(#).
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In this article, we prove quantitative bounds for A%1 ,...,%<
(#) whenever %1, . . . , %< have distinct

degrees, giving the first quantitative version of the polynomial Szemerédi theorem for this large class

of progressions.

Theorem 1.1. Let %1, . . . , %< ∈ Z[H] be polynomials with distinct degrees, each having zero constant

term. There exists a 2%1 ,...,%<
> 0 such that

A%1 ,...,%<
(#) ≪

#

(log log #)2%1 ,...,%<
.

Obviously, any polynomial progression involving only linear polynomials is a subprogression of

some arithmetic progression, so that bounds for Szemerédi’s theorem (such as the current best bounds of

Bloom [3] for three-term progressions, Green and Tao [10] for four-term progressions, and Gowers [7] for

longer progressions) imply bounds in the linear case of the polynomial Szemerédi theorem. Until recently,

very few cases beyond this were known. Indeed, quantitative versions of the polynomial Szemerédi

theorem were known in only two other situations: for two-term polynomial progressions [18, 19, 1,

20, 11, 17], to which Fourier analytic methods immediately apply, and for arithmetic progressions with

common difference equal to a perfect power [16] (and thus all subprogressions of those progressions),

to which Gowers’s method [7] may be adapted to apply.

It was essential for the success of the density increment arguments in [6] and [7] that :-term

arithmetic progressions are preserved under translation and dilation, because the inverse theorems

for the Gowers norms (both local and global) give a density increment on an arithmetic progression

whose common difference can be much larger than the length of the progression. Similarly, :-term

arithmetic progressions with common difference equal to a perfect 3th power are preserved under

translation and dilation by a perfect 3th power, so that Gowers’s local inverse theorem from [7] could

be applied in [16] with suitable modification to get a density increment on a progression with common

difference equal to a perfect 3th power. However, the vast majority of polynomial progressions do

not behave so nicely under dilation (e.g., G, G + H, G + H2), so to handle more progressions of length

greater than two, new strategies avoiding the use of the inverse theorems for the Gowers norms were

needed.

Recently, significant progress has been made on the problem of proving a quantitative version

of the polynomial Szemerédi theorem in the finite field setting. Similar to above, let A%1 ,...,%<
(F?)

denote the size of the largest subset of F? containing no nontrivial progressions of the form G, G +

%1 (H), . . . , G + %<(H). Bourgain and Chang [4] proved that AH,H2 (F?) ≪ ?14/15, the author [13] proved

that A%1 ,%2
(F?) ≪ ?23/24 whenever %1 and %2 are affine-linearly independent overQ, and then Dong, Li,

and Sawin [5] very shortly after and independently showed improved bounds, getting A%1 ,%2
(F?) ≪%1 ,%2

?11/12. All three of these arguments completely avoided the use of any inverse theorems for the Gowers

norms. However, there were serious barriers to generalising any of the methods of [4, 13, 5] to the

integer setting or to longer progressions in the finite field setting.

Using a different method, the author [14] proved that A%1 ,...,%<
(F?) ≪ ?1−W%1 ,...,%< whenever

%1, . . . , %< ∈ Z[H] are affine-linearly independent. Theorem 1.1 thus brings our knowledge of the poly-

nomial Szemerédi theorem in the integers more in line with what is known in finite fields. The proof of

Theorem 1.1 involves adapting the central idea of [14] to the integer setting. Such an adaptation was first

done by Prendiville and the author [15] for the special case of the progression G, G + H, G + H2, showing

that AH,H2 (#) ≪ #/(log log #)2 for some absolute constant 2 > 0. It turns out that the assumption that

%1, . . . , %< have distinct degrees in Theorem 1.1 is the exact condition needed to adapt the argument

of [14] to the integers in full. We will say more about why this is the case in Section 3.

We now briefly discuss the proof of Theorem 1.1 in comparison to the arguments in [14] and [15].

The proof of Theorem 1.1 proceeds via a density increment argument where, as in [15], it is shown

that any subset of [#] with no nontrivial polynomial progressions has increased density on a long

arithmetic progression with very small common difference. This is done by following the strategy for

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.11


Forum of Mathematics, Pi 3

proving quantitative bounds in the polynomial Szemerédi theorem originating in [14], which is to first

show that the count of polynomial progressions in a set is controlled by some Gowers *B-norm and

then to show that, in certain situations, one can combine this *B-control with understanding of shorter

progressions to deduce*B−1-control. We refer to this second part of the argument as a ‘degree-lowering’

result, and it is here that it is crucial that %1, . . . , %< have distinct degrees. A key feature of the proof of

the degree-lowering result is that, though the *B-norm plays a role in the argument for arbitrarily large

B, it bypasses the use of any inverse theorems for uniformity norms of degree greater than 2. Starting

with control by any *B-norm, one can repeatedly apply the degree-lowering result to deduce control

in terms of the *2- or *1-norm, which are much easier to deal with than higher degree uniformity

norms.

In contrast to the finite field situation of [14], the main challenge in this artice is to first prove that the

count of polynomial progressions is controlled by some*B-norm. By using repeated applications of the

van der Corput inequality following Bergelson and Leibman’s [2] PET induction scheme, we can prove

control in terms of an average of a certain family of Gowers box norms. In [25], Tao and Ziegler use the

results of their paper on concatenation [24] to prove that such an average is qualitatively controlled by

a global *B-norm but with no quantitative bounds. The results of [24] are purely qualitative and so are

not suitable for our purposes. In this article, we prove a new quantitative concatenation result, which

we use to control (with polynomial bounds) the averages of Gowers box norms just mentioned by a*B-

norm for some B depending only on the degrees of the polynomials involved. In [15], this was done for

the special case of the average of Gowers box norms controlling the progression G, G + H, G + H2, which

is the simplest case requiring a nontrivial concatenation argument. In the general situation covered by

Theorem 1.1, these averages of Gowers box norms can become arbitrarily complex, necessitating a new

and more general approach. The concatenation theory developed in this article is significantly stronger

than that in [15], and the bulk of the new ideas in this article go into proving these concatenation results.

We must also be more careful during the PET induction step than in previous works in order to produce

an average of Gowers box norms of the particular form that our concatenation result can be applied

to. Though the proof of Theorem 1.1 only requires a *B-control result for polynomial progressions

involving polynomials with distinct degrees, a result for general polynomial progressions can be proved

with a little more work using our methods. Because it may be of independent interest, we record this

result in Theorem 6.1.

In [15], the author and Prendiville adapted the degree-lowering method of [14] to handle the pro-

gression G, G + H, G + H2 in the integer setting. The adaptation in that paper quickly breaks down for

essentially all other nonlinear progressions, however. To prove a degree-lowering result that works in

the generality of Theorem 1.1, we must prove several intermediate degree-lowering results by induc-

tion. This induction is intertwined with an induction proving several intermediate ‘major arc lemmas’.

These lemmas are ingredients in the proofs of the intermediate degree-lowering results whose proofs

themselves require other intermediate major arc lemmas and degree-lowering results, along with the

*B-control result mentioned in the previous paragraph. Despite the additional complications of this in-

ductive argument, the proof of each intermediate degree-lowering result (assuming the corresponding

major arc lemma) is still based on the proof of the degree-lowering result of [15].

This article is organised as follows. In Section 2, we set notation and recall some facts about the

Gowers uniformity and box norms. In Section 3, we give a detailed outline of the proof of Theo-

rem 1.1, stating the most important intermediate results needed. In Section 4, we prove that weighted

counts of the polynomial progressions we consider are controlled by an average of a certain fam-

ily of Gowers box norms. In Section 5, we prove our main concatenation result, which we combine

with the results of Section 4 to deduce control by uniformity norms in Section 6. In Section 7, we

prove several lemmas needed to carry out the degree-lowering argument, and in Section 8 we prove

our general degree-lowering result. We repeatedly combine the degree-lowering result with the *B-

control result proven in Section 6 to deduce a local *1-control result in Section 9. In Section 10, we

use this local *1-control result to carry out the density increment argument, completing the proof of

Theorem 1.1.
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2. Notation and preliminaries

We are interested in the regime where # → ∞, and so we will assume that # is sufficiently large so

that, for example, the quantity log log # is well defined and positive. The standard asymptotic notation

$ and Ω, along with ≪,≫ and ≍, will be used throughout the article. Therefore, � = $ (�), � = Ω(�),

� ≪ � and � ≫ � all mean that |�| ≤ � |� | for some absolute constant � > 0, and � ≍ � means

that � ≪ � and � ≪ �. When $, Ω, ≪, ≫ or ≍ appear with a subscript, this means that the implied

constant � may depend on the subscript. We will also use expressions of the form $ (�) to denote a

quantity that has size at most an absolute constant times �, and analogously for Ω(�).

For any function 5 : Z= → C and finite subset ( ⊂ Z=, we denote the average of 5 over ( by

EG∈( 5 (G) :=
1

|( |

∑
G∈(

5 (G),

and if ` : Z= → [0,∞) is finitely supported, we similarly denote the average of 5 with respect to ` by

E
`
G 5 (G) :=

∑
G∈Z=

5 (G)`(G).

We say that 5 is 1-bounded if ‖ 5 ‖!∞ ≤ 1. We normalise the ℓ?-norms on the space of functions Z= → C

by setting ‖ 5 ‖
?

ℓ?
:=

∑
G∈Z= | 5 (G) |

? . For any ! > 0, we define the weight `! : Z→ [0, 1] by

`! (ℎ) :=
#{(ℎ1, ℎ2) ∈ [!]2 : ℎ1 − ℎ2 = ℎ}

!2
,

so that supp `! ⊂ (−!, !), ‖`! ‖ℓ1 = 1, and ‖`! ‖
2
ℓ2 ≤ 1/!. Set 4(G) := 42c8G . When 5 : Z → C is

finitely supported, we define its Fourier transform 5̂ : T→ C by

5̂ (b) :=
∑
G∈Z

5 (G)4(−bG)

and the convolution of 5 with another finitely supported function 6 : Z→ C by

( 5 ∗ 6) (G) :=
∑
H∈Z

5 (H)6(G − H).

With this choice of normalisations, note that �5 ∗ 6 = 5̂ · 6̂, 5 (G) =
∫
T
5̂ (b)4(bG)3b for all G ∈ Z, and∑

G∈Z 5 (G)6(G) =
∫
T
5̂ (b)6̂(b)3b.

For any 5 : Z → C and ℎ ∈ Z, we define functions )ℎ 5 : Z → C and Δℎ 5 : Z → C by )ℎ 5 (G) =

5 (G + ℎ) and Δℎ 5 (G) := 5 (G + ℎ) 5 (G) and also define, for ℎ1, . . . , ℎB , the function Δℎ1 ,...,ℎB 5 : Z→ C

by Δℎ1 ,...,ℎB 5 = Δℎ1
· · ·ΔℎB 5 . Note that Δℎ1

Δℎ2
5 = Δℎ2

Δℎ1
5 for any ℎ1, ℎ2 ∈ Z. Thus, for any finite

subset � ⊂ Z, we may unambiguously define Δ (ℎ8)8∈� 5 to equal Δℎ81 ,...,ℎ8|� |
5 where 81, . . . , 8 |� | is any

enumeration of the elements of �. In the same vein, we will use the notation Δℎ 5 when ℎ = (ℎ1, . . . , ℎ: )

to denote the function Δℎ1 ,...,ℎ: 5 . Finally, for any (ℎ1, ℎ
′
1
) ∈ Z2 we similarly define Δ ′

(ℎ1 ,ℎ
′
1
)
5 : Z→ C

by Δ ′
(ℎ1 ,ℎ

′
1
)
5 (G) := 5 (G + ℎ1) 5 (G + ℎ

′
1
) and also define Δ ′

(ℎ1 ,ℎ
′
1
) ,..., (ℎB ,ℎ

′
B)
5 and Δ ′

(ℎ8 ,ℎ
′
8
)8∈�

5 analogously

to Δℎ1 ,...,ℎB 5 and Δ (ℎ8)8∈� 5 .

We can now define the Gowers box and uniformity norms.
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Definition 2.1. Let 3 ∈ N, &1, . . . , &3 ⊂ Z be finite subsets and 5 : Z→ C be a function supported on

a finite subset ( ⊂ Z. We define the (normalised) Gowers box norm of 5 with respect to &1, . . . , &3 by

‖ 5 ‖23

�
3
&1 ,...,&3

(()
:=

1

|( |

∑
G∈Z

Eℎ8 ,ℎ′8 ∈&8

8=1,...,3

Δ
′
(ℎ1 ,ℎ

′
1
) ,..., (ℎ3 ,ℎ

′
3
) 5 (G).

When & ⊂ Z is any finite subset, we define the Gowers*B-norm of 5 with respect to & by

‖ 5 ‖* B
&
(() := ‖ 5 ‖�B

&,...,&
(() .

We will occasionally use the Gowers-Cauchy-Schwarz inequalities, which we now recall. The fol-

lowing two results are standard (see Lemma B.2 of [9], for example).

Lemma 2.2. Let -1, . . . , -B be finite sets, 5 :
∏B
8=1 -8 → C, and, for each 8 ∈ [B], 68 :

∏B
8=1 -8 → C

be a 1-bounded function such that the value of 68 (G1, . . . , GB) does not depend on G8 . We have

�����E G8 ∈-8

8=1,...,B

5 (G1, . . . , GB)

B∏
8=1

68 (G1, . . . , GB)

�����
2B

≤ EG0
8
,G1

8
∈-8

8=1,...,B

∏
l∈{0,1}B

C
|l | 5 (G

l1

1
, · · · , GlB

B ).

Lemma 2.3. Let &1, . . . , &3 ⊂ Z be finite subsets and, for each l ∈ {0, 1}3 , let 5l : Z → C be a

function supported on a finite subset ( ⊂ Z. We have

������
1

|( |

∑
G∈Z

Eℎ8 ,ℎ′8 ∈&8

8=1,...,3

∏
l∈{0,1}3

C
|l | 5l (G + ℎ · l + ℎ′ · (1 − l))

������ ≤
∏

l∈{0,1}3

‖ 5l ‖�3
&1 ,...,&3

(() .

In the above lemmas and elsewhere in the article, C : C → C denotes the complex conjugation

operator and 1 denotes the tuple with entries all equal to 1, whose dimensions will be clear from context.

Similarly, 0 denotes the tuple with entries all equal to 0.

Finally, we will need an inverse theorem for *2-norms of the form ‖ · ‖*2
[X′! ]

( [! ]) . This is the only

inverse result for uniformity norms used in the proof of Theorem 1.1.

Lemma 2.4. Let ! > 0. If 5 : Z→ C is 1-bounded, supported on the interval [!] and satisfies

‖ 5 ‖*2
[X′! ]

( [! ]) ≥ X,

then there exists a V ∈ T such that

��EG∈[! ] 5 (G)4(VG)�� ≫ (XX′)$ (1) .

Proof. By making the change of variables G ↦→ G − ℎ′
1
− ℎ′

2
in the definition of ‖ · ‖*2

[X′! ]
( [! ]) , we have

1

!

∑
G,ℎ1 ,ℎ2∈Z

Δℎ1 ,ℎ2
5 (G)`X′! (ℎ1)`X′! (ℎ2) ≥ X

4.

By Fourier inversion, it follows that

(∫
T

| ̂̀X′! (b) |3b
)2

· max
b1 , b2∈T

����� 1!
∑

G,ℎ1 ,ℎ2∈Z

Δℎ1 ,ℎ2
5 (G)4(b1ℎ1)4(b2ℎ2)

����� ≥ X4.
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Note that ∫
T

| ̂̀X′! (b) |3b =
∫
T

|�1[X′! ] (b) |
2

(X′!)2
3b =

‖1[X′! ] ‖
2
ℓ2

(X′!)2
=

1

X′!
,

because `X′! = (1[X′! ] ∗ 1−[X′! ])/(X
′!)2. Thus,

����� 1

!3

∑
G,ℎ1 ,ℎ2∈Z

5 (G)4((b1 + b2)G) 5 (G + ℎ1)4(b1(G + ℎ1)) 5 (G + ℎ2)4(b2(G + ℎ2)) 5 (G + ℎ1 + ℎ2)

�����
is at least (X′)2X4 for some b1, b2 ∈ T. The result now follows by applying the Gowers-Cauchy-Schwarz

inequality and*2-inverse theorem in Z/5⌈!⌉Z (see [22], for example, for these standard results). �

3. Outline of the proof of Theorem 1.1

To aid the reader, Figure 1 shows the logical dependencies between the key intermediate results stated

in this section, as well as Theorem 1.1.

As mentioned in the Introduction, Theorem 1.1 is proved using a density increment argument. Let

%1, . . . , %< ∈ Z[H] be polynomials with distinct degrees, each having zero constant term. We show that

if � ⊂ [#] has density U and contains no nontrivial progressions of the form G, G+%1 (H), . . . , G+%< (H),

then there exists an arithmetic progression 0 + @[# ′] ⊂ [#] with # ′ ≍%1 ,...,%<
#Ω%1 ,...,%< (1) and

Theorem 1.1

Theorem 3.2

Theorem 3.3

Theorem 3.5

Theorem 3.7

Proposition 3.4 Proposition 3.6

Corollary 3.8

Lemma 3.11

Lemma 3.10 for = 2

Lemma 3.9 for = 2

Lemma 3.10 for = m − 1

Lemma 3.9 for = m − 1

Lemma 3.10 for = m

Lemma 3.9 for = m

.

.

.

Figure 1. Logical dependencies between key results.
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@ ≪%1 ,...,%<
U−$%1 ,...,%< (1) such that

|� ∩ (0 + @[# ′]) |

# ′
≥ U +Ω%1 ,...,%<

(U$%1 ,...,%< ).

Note that if � ⊂ [#] contains no nontrivial progressions of the form G, G+%1 (H), . . . , G+%< (H), then the

rescaled set �′ := {= ∈ [# ′] : 0+@= ∈ �∩ (0+@[# ′])} contains no nontrivial progressions of the form

G, G +
%1 (@H)

@
, . . . , G +

%< (@H)

@
, (1)

and the polynomials %
(@)
8

(H) :=
%8 (@H)

@
for 8 = 1, . . . , < all have integer coefficients and zero constant

term.

To continue the density increment argument, we must prove that �′ also has increased density on

a long arithmetic progression with small common difference. To ensure that our density increment

iteration terminates, we want the size of the density increment for �′ to depend only on the original

polynomials %1, . . . , %<, and not on @. For this reason, we make the following useful definition.

Definition 3.1. A polynomial % = 03H
3 + · · · + 01H has (�, @)-coefficients if |08 | ≤ � |03 | for all

8 = 1, . . . , 3 − 1 and 03 = 0′
3
@3−1 with 0 < |0′

3
| ≤ �.

Note that any polynomial with (�, @)-coefficients has zero constant term by definition and that any

polynomial with zero constant term trivially has (�, 1)-coefficients for some � > 0. The usefulness of

this definition comes from the fact that if %1, . . . , %< all have (�, A)-coefficients, then %
(@)

1
, . . . , %

(@)
<

all have (�, @A)-coefficients.

Now we can state our density increment result.

Theorem 3.2. Let # > 0, @ ∈ N, and %1, . . . , %< ∈ Z[H] be polynomials with (�, @)-coefficients

such that deg %1 < · · · < deg %<. If � ⊂ [#] has density U := |�|/# and contains no nontrivial

progressions of the form G, G + %1 (H), . . . , G + %< (H), then there exist positive integers @′ and # ′

satisfying @′ ≪�,deg %<
U−$deg %< (1) and

#deg %1/deg %< ≥ # ′ ≫�,deg %<
#deg %1/deg %< (U/@)$deg %< (1)

such that

|� ∩& |

# ′
≥ U +Ω�,deg %<

(U$deg %< (1) )

for some arithmetic progression & ⊂ [#] of the form & = 0 + @′@1 [# ′] with 1 ≪deg %<
1, provided

that # ≫�,deg %<
(@/U)$deg %< (1) .

Note that, though the length of the progression on which � has increased density in Theorem 3.2

may depend on @, the lower bound Ω�,deg %<
(U$deg %< (1) ) on the density increment is unchanged when

%1, . . . , %< are replaced by %
(@)

1
, . . . , %

(@)
< . We are thus guaranteed that our density increment argument

will terminate, yielding the bound in Theorem 1.1.

We prove Theorem 3.2 by studying, for functions 50, . . . , 5ℓ : Z→ C supported in the interval [#]

and characters kℓ+1, . . . , k< : Z→ (1, the following general multilinear average:

Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) :=

1

#"

∑
G∈Z

∑
H∈[" ]

50(G) 51(G + %1 (H)) · · · 5ℓ (G + %ℓ (H))kℓ+1(%ℓ+1 (H)) · · ·k<(%< (H)).
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When < = ℓ and 50 = · · · = 5< = 5 , we denote Λ
# ,"
%1 ,...,%<

( 50, . . . , 5<) by Λ
# ,"
%1 ,...,%<

( 5 ). Note that

for any � ⊂ [#] and " sufficiently large, the quantity Λ
# ,"
%1 ,...,%<

(1�) is 1/#" times the number of

nontrivial progressions G, G +%1 (H), . . . , G +%< (H) in �. It is necessary for us to study the more general

averages Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) in order to run some of the inductive arguments within

the proof Theorem 1.1.

Theorem 3.2 is a consequence of the following result, whose proof takes up the bulk of this article.

Theorem 3.3. Let # > 0, @ ∈ N and %1, . . . , %< ∈ Z[H] be polynomials with (�, @)-coefficients such

that deg %1 < · · · < deg %<. Set " := (#/@deg %<−1)1/deg %< . If 50, . . . , 5< : Z → C are 1-bounded

functions supported on the interval [#] and

���Λ# ,"%1 ,...,%<
( 50, . . . , 5<)

��� ≥ X,
then there exist positive integers @′, 1 and # ′ satisfying @′ ≪�,deg %<

X−$deg %< (1) , 1 ≪deg %<
1 and

"deg %1 ≥ # ′ ≫�,deg %<
"deg %1 (X/@)$deg< (1)

such that

1

#

∑
G∈Z

��EH∈[# ′ ] 51(G + @
′@1H)

�� ≫�,deg %<
X$deg %< (1) ,

provided that # ≫�,deg %<
(@/X)$deg %< (1) .

As discussed in the Introduction, to prove Theorem 3.3 we must show that the average

Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ , kℓ+1, . . . , k<) is controlled by some*B-norm of the form ‖ · ‖* B
2 [X′! ]

( [! ]) . We do

this by first showing that Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ , kℓ+1, . . . , k<) is controlled by an average of a family of

Gowers box norms of a special form and then proving the main concatenation result of Section 5 and

repeatedly applying it to averages of such Gowers box norms.

We now describe the special form of the families of Gowers box norms just mentioned. Let ℓ and

2 be nonzero integers with ℓ > 0. For each 9 = 0, . . . , ℓ − 1, we define a sequence of finite sets

� 9 = � 9 ((:8)8∈� 9−1
) that depend on the choice of :8 ∈ N for each 8 ∈ � 9−1 when 9 ≥ 1 and sets of

polynomials A 9 = A 9 (ℓ, 2; (:8)8∈� 9−1
) = {?8 : 8 ∈ � 9 }, which are indexed by � 9 , recursively as follows:

1. �0 = {0}, �1(:0) = {0, 1}:0 \ {0}, and

� 9 ((:8)8∈� 9−1
) := {0, 1}{(8,A ):8∈� 9−1 ,A ∈[:8 ] } \ {0}

for 9 = 2, . . . , ℓ − 1, and

2. A0(ℓ, 2) := {2}, A1(ℓ, 2; :0) := {(ℓ20
(1)

0,1
, . . . , ℓ20

(1)

0,:0
) · l : l ∈ �1(:0)}, and

A 9 (ℓ, 2; (:8)8∈� 9−1
) := {((ℓ − ( 9 − 1))?80

( 9)

8,A
)8∈� 9−1 ,A ∈[:8 ] · l : l ∈ � 9 }

for 9 = 2, . . . , ℓ − 1.

For example, when ℓ = 3, 2 = 1, :0 = 2, : (0,1) = : (1,1) = 1 and : (1,0) = 2, we have �0 = {0},

�1(:0) = {(0, 1), (1, 0), (1, 1)},

�2(: (0,1) , : (1,0) , : (1,1) ) = {0, 1}{( (0,1) ,1) , ( (1,0) ,1) , ( (1,0) ,2) , ( (1,1) ,1) } \ {0},
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A0 (ℓ, 2) = {1},A1 (ℓ, 2; :0) = {30
(1)

0,1
, 30

(1)

0,2
, 30

(1)

0,1
+30

(1)

0,2
}, andA2 (ℓ, 2; (: (0,1) , : (1,0) , : (1,1) )) equaling

{(60
(1)

0,1
0
(2)

(1,0) ,1
, 60

(1)

0,2
0
(2)

(0,1) ,1
, 60

(1)

0,2
0
(2)

(0,1) ,2
, 6(0

(1)

0,1
+ 0

(1)

0,2
)0

(2)

(1,1) ,1
) · l : l ∈ {0, 1}4 \ {0}}.

We will show that Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) is controlled by an average of Gowers box

norms of the form ‖ · ‖
�
|�ℓ−1 |

(&8 (0) )8∈�ℓ−1

( [# ])
, where&8 (0) = ?8 (0) [X

′"] for suitable 0 < X′ < 1. Note that it

suffices to prove such a result in the case when deg %8 = 8 for each 8 = 1, . . . , <, because any polynomial

progression considered in Theorem 1.1 is a subprogression of such a progression. One may also assume

thatkℓ+1 = · · · = k< = 1, because the general case follows from this special case by the Cauchy-Schwarz

inequality. We thus restrict to this situation in the following proposition for ease of notation.

Proposition 3.4. Let #, " > 0, @ ∈ N and %1, . . . , %ℓ ∈ Z[H] be polynomials with (�, @)-coefficients

such that deg %8 = 8 for 8 = 1, . . . , ℓ and %ℓ has leading coefficient 2ℓ . There exist positive integers

:8 ≪ℓ 1 for each 8 ∈ � 9 and 9 = 0, . . . , ℓ − 2 such that the following holds. If 1/� ≤ @ℓ−1"ℓ/# ≤ �,

50, . . . , 5ℓ : Z→ C are 1-bounded functions supported on the interval [#],���Λ# ,"%1 ,...,%ℓ
( 50, . . . , 5ℓ)

��� ≥ X,
and X′ ≪�,ℓ X

$ℓ (1) , then we have

E0∈�‖ 5ℓ ‖
�
|�ℓ−1 |

(? (0) [X′" ])?∈Aℓ−1

( [# ])
≫�,ℓ X

$ℓ (1) ,

where �ℓ−1 := �ℓ−1 ({:8 : 8 ∈ �ℓ−2}) and Aℓ−1 := Aℓ−1(ℓ, 2ℓ ; (:8)8∈�ℓ−2
) are defined as above and

� := ((−X′", X′") ∩ Z)
∑ℓ−2

9=0

∑
8∈� 9

:8 .

In Section 5, we prove that the averages of Gowers box norms appearing in Proposition 3.4 are

controlled by some*B-norm with B ≪ℓ 1. The most important ingredient of this proof is the following

theorem, which is our main concatenation result.

Theorem 3.5. Let #, "1, "2 > 0 with "2 ≤ "1 and "1"2 ≤ #/|2 | and 11, . . . , 1B ∈

[−�#/"1, �#/"1] ∩Z. If 5 : Z→ C is a 1-bounded function supported on the interval [#] such that

E0∈["2 ] ‖ 5 ‖�B( (20+18 ) ["1 ])
B
8=1

( [# ]) ≥ X, (2)

and X′ ≪�,B X
$B (1) , then there exists an B′ ≪B 1 such that

‖ 5 ‖* B′

2 [X′"1"2 ]
( [# ]) ≫�,B X

$B (1) ,

provided that "1"2 ≫�,B (XX
′)−$B (1) .

Many averages of Gowers box norms appearing naturally can be controlled by global Gowers

uniformity norms through repeated applications of Theorem 3.5, so we expect that this result could

be of independent interest. Another general concatenation result appearing later that may also be of

independent interest is Lemma 5.1.

In the special case when "1 = "2 = #1/2, 2 = 1 and 11, . . . , 1B = 0, after an application of

Lemma 2.2, Theorem 3.5 implies that the average E0∈[# 1/2 ]EG∈[# ]Eℎ1 ,...,ℎB ∈[# 1/2 ]Δ0ℎ1 ,...,0ℎB 5 (G) of

‘local Gowers uniformity norms’ (as defined in [23]) is controlled by some *B-norm, with polynomial

bounds. This thus gives a quantitative version of Proposition 1.26 of [24] for arbitrary B, though with a

worse dependence of B′ on B.
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We take advantage of the special structure of Aℓ−1 to prove the following proposition using repeated

applications of Theorem 3.5, showing that averages of Gowers box norms of the form appearing in

Proposition 3.4 are controlled by*B-norms.

Proposition 3.6. Let #, " > 0, @ ∈ N and %1, . . . , %ℓ ∈ Z[H] be polynomials with (�, @)-coefficients

such that deg %8 = 8 for 8 = 1, . . . , ℓ and %ℓ has leading coefficient 2ℓ . There exists an B ≪ℓ 1 such

that the following holds. Let �ℓ−1, Aℓ−1 and � be as in Proposition 3.4. If 1/� ≤ @ℓ−1"ℓ/# ≤ �,

5 : Z→ C is a 1-bounded function supported on the interval [#],

E0∈�‖ 5 ‖
�
|�ℓ−1 |

(? (0) [X′" ])?∈Aℓ−1

( [# ])
≥ X,

and X′ ≪�,ℓ X
$ℓ (1) , then we have

‖ 5 ‖* B

ℓ!2ℓ [X
′"ℓ ]

( [# ]) ≫�,ℓ X
$ℓ (1) ,

provided that # ≫�,ℓ (@/XX′)$ℓ (1) .

Combining Propositions 3.4 and 3.6, we thus deduce using the Cauchy-Schwarz inequality that

Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) is controlled by an average of*B-norms.

Theorem 3.7. Let #, " > 0, 1 ≤ ℓ ≤ < and %1, . . . , %< ∈ Z[H] be polynomials such that %1, . . . , %ℓ
have (�, @)-coefficients, deg %1 < · · · < deg %<, and %ℓ has leading coefficient 2ℓ . There exists an

B ≪deg %ℓ 1 such that the following holds. If 1/� ≤ @deg %ℓ−1"deg %ℓ/# ≤ �, 50, . . . , 5ℓ : Z → C are

1-bounded functions supported on the interval [#], kℓ+1, . . . , k< : Z→ (1 are characters,

���Λ# ,"%1 ,...,%<
( 50, . . . , 5ℓ ;kℓ+1, . . . , k<)

��� ≥ X,
and X′ ≪�,deg %ℓ X

$deg %ℓ
(1) , then we have

‖ 5ℓ ‖* B

(deg %ℓ ) !2ℓ [X
′"deg %ℓ ]

( [# ]) ≫�,deg %ℓ X
$deg %ℓ

(1) ,

provided that # ≫�,deg %ℓ (@/XX′)$deg %ℓ
(1) .

We will next use the Cauchy-Schwarz inequality to deduce from Theorem 3.7 control of

Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) in terms of an average of*B-norms of dual functions.

Corollary 3.8. Let #, " > 0, @ ∈ N, 1 ≤ ℓ ≤ < and %1, . . . , %< ∈ Z[H] be polynomials such

that %1, . . . , %ℓ have (�, @)-coefficients, deg %1 < · · · < deg %<, and %ℓ has leading coefficient

2ℓ . There exists an B ≪deg %ℓ 1 such that the following holds. If 1/� ≤ @deg %ℓ−1"deg %ℓ/# ≤ �,

50, . . . , 5ℓ : Z→ C are 1-bounded functions supported on the interval [#] and kℓ+1, . . . , k< : Z→ (1

are characters, ���Λ# ,"%1 ,...,%<
( 50, . . . , 5ℓ ;kℓ+1, . . . , k<)

��� ≥ X,
and X′ ≪deg %ℓ ,� X

$deg %ℓ
(1) , then we have

‖�ℓ ‖* B

(deg %ℓ ) !2ℓ [X
′"deg %ℓ ]

( [$deg %ℓ
(�# ) ]) ≫deg %ℓ ,� X

$deg %ℓ
(1) ,
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provided that # ≫deg %ℓ ,� (@/XX′)$deg %ℓ
(1) , where �ℓ is the dual function

�ℓ (G) := EH∈[" ] 50(G − %ℓ (H)) · · · 5ℓ−1(G + %ℓ−1 (H) − %ℓ (H))kℓ+1(%ℓ+1 (H)) · · ·k< (%< (H)).

The next step of the proof of Theorem 1.1 is to show our general degree-lowering result.

Lemma 3.9 (Degree lowering for ℓ). Let #, " > 0, @ ∈ N, 2 ≤ ℓ ≤ <, %1, . . . , %< ∈ Z[H] be

polynomials such that %1, . . . , %ℓ have (�, @)-coefficients, deg %1 < · · · < deg %<, and %ℓ has leading

coefficient 2ℓ satisfying 1/� ≤ |2ℓ/2 | ≤ �, 50, . . . , 5ℓ : Z → C be 1-bounded functions supported on

the interval [#], and kℓ+1, . . . , k< : Z → (1 be characters. Let �ℓ be as in Corollary 3.8. If B ≥ 3,

1/� ≤ |2 |"deg %ℓ/# ≤ �, 0 < X′ ≤ 1 and

‖�ℓ ‖* B

2 [X′"deg %ℓ ]
( [�# ]) ≥ X,

then

‖�ℓ ‖* B−1

2 [X′"deg %ℓ ]
( [�# ]) ≫�,deg %ℓ ,B (XX

′)$deg %ℓ ,B
(1) ,

provided that # ≫�,deg %ℓ ,B (@/XX
′)$deg %ℓ ,B

(1) .

Lemma 3.9 is labeled as ‘Degree lowering for ℓ’ because it is proved by induction on ℓ using the

following lemma.

Lemma 3.10 (Major arc lemma for ℓ). Let #, " > 0, @ ∈ N, 2 ≤ ℓ ≤ <, %1, . . . , %< ∈ Z[H] be

polynomials such that %1, . . . , %ℓ have (�, @)-coefficients, deg %1 < · · · < deg %<, and %8 has leading

coefficient 28 for 8 = 1, . . . , <, and kℓ , . . . , k< : Z→ (1 be characters with k8 (G) = 4(U8G) with U8 ∈ T

for 8 = ℓ, . . . , <. Assume further that 1/� ≤ |2 |"deg %ℓ/# ≤ �. If there exist 1-bounded functions

50, . . . , 5ℓ−1 : Z→ C supported on the interval [#] such that����� 1

#/2

∑
G∈Z

�ℓ (2G)kℓ (2G)

����� ≥ X,
where �ℓ is as in Corollary 3.8, then there exists a positive integer C ≪�,deg %<

X−$deg %< (1) and a

2′ ≪� (|22< |)
$deg %< (1) such that

‖C2′2<U<‖ ≪�,deg %<

X−$deg %< (1)

"deg %</2′
,

provided that # ≫�,deg %<
(@/X)$deg %< (1) .

The proof of Lemma 3.10 for each ℓ is itself part of the inductive proof of Lemma 3.9. We first prove

Lemma 3.10 in the ℓ = 2 case, then show that Lemma 3.9 for ℓ ≥ 2 follows from Lemma 3.10 for ℓ and

finally show that Lemma 3.10 for ℓ ≥ 3 follows from Lemmas 3.9 and 3.10 for ℓ − 1. Taken together,

this shows that Lemmas 3.9 and 3.10 hold for each ℓ.

As promised in the Introduction, we now discuss why we must assume that %1, . . . , %< have distinct

degrees in Theorem 1.1, instead of just requiring them to be linearly independent over Q as in [14].

The proof of the degree-lowering result in [14] is made simpler by the fact that there is only ever one

‘major arc’ in the finite field setting (the trivial character) and a character of F? is either equal to the

trivial character or it is not. In contrast, the notion of major arc in the integer setting is more flexible.

For the proof of Lemma 3.9, we need the full strength of the conclusion of Lemma 3.10: that U< is

within some factor of "− deg %< of a rational with small denominator. But if we relax the hypotheses of
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Lemma 3.10 to allow %1, . . . , %< to be merely linearly independent, then one can only show that U<
is major arc in a quantitatively weaker sense: that U< is within some factor of "− deg %1 of a rational

with small denominator. This is not strong enough to prove a corresponding degree-lowering result.

Of course, if %1, . . . , %< are not even linearly independent, the degree-lowering phenomenon certainly

does not occur even in the finite field setting.

For the final stage of the proof of Theorem 3.2, we combine Corollary 3.8 with repeated applications

of Lemma 2.4 and Lemma 3.9 for each ℓ ≤ < to show that, when Λ
# ,"
%1 ,...,%<

( 50, . . . , 5<) is large,

averages of related multilinear averages with successive 58s replaced by characters are also large. This

is captured in the following lemma.

Lemma 3.11. Let#, " > 0, @ ∈ N, 2 ≤ ℓ ≤ <, %1, . . . , %< ∈ Z[H] be polynomials such that %1, . . . , %ℓ
have (�, @)-coefficients, deg %1 < · · · < deg %<, and %ℓ has leading coefficient 2ℓ , 50, . . . , 5ℓ : Z→ C

be 1-bounded functions supported on the interval [#] and kℓ+1, . . . , k< : Z → (1 be characters. If

1/� ≤ @deg %ℓ−1"deg %ℓ/# ≤ � and���Λ# ,"%1 ,...,%<
( 50, . . . , 5ℓ ;kℓ+1, . . . , k<)

��� ≥ X,
then

E D,ℎ=0,..., |2′ |−1
0≤F< (# / |2′ |)/�′# ′

����Λ�′# ′," ′

%ℎ
1
,...,%ℎ

<

( 5 D,ℎ,F
0

, . . . , 5
D,ℎ,F

ℓ−1
;kℓ,D , kℓ+1, . . . , k<)

���� ≫�,deg %ℓ X
$deg %ℓ

(1)

for some characters kℓ,D : Z → (1, where � ′ ≍deg %ℓ �, 2′ := (deg %ℓ)!2ℓ , "
′ := "/|2′ |, # ′ :=

(" ′)deg %ℓ−1 (@ |2′ |)deg %ℓ−1−1,

%ℎ8 (I) :=

{
%8 (2

′I+ℎ)−%8 (ℎ)
2′

8 = 1, . . . , ℓ − 1

%8 (2
′I + ℎ) − %8 (ℎ) 8 = ℓ, . . . , <

,

and

5
D,ℎ,F
8

(G) :=

{
)2′�′# ′F)−%ℓ (ℎ))−D ( 50kℓ,D) (2

′G) · 1[�′# ′ ] (G) 8 = 0

)2′�′# ′F)%8 (ℎ)−%ℓ (ℎ))−D 58 (2
′G) · 1[�′# ′ ] (G) 8 = 1, . . . , ℓ − 1

,

provided that # ≫�,deg %ℓ (@/X)$deg %ℓ
(1) .

Note that if %1, . . . , %ℓ−1 ∈ Z[H] have (�, @)-coefficients, then %ℎ
1
, . . . , %ℎ

ℓ−1
∈ Z[H], as defined in

Lemma 3.11, have ($deg %ℓ (�), 2
′@)-coefficients for each ℎ ∈ [2′]. To prove Theorem 3.3, we repeatedly

apply Lemma 3.11 and van der Corput’s inequality to deduce that if |Λ# ,"
%1 ,...,%<

( 50, . . . , 5<) | ≥ X, then

an average of multilinear averages of the form Λ
# ′," ′

&1 ,...,&<
(60, 61;k2, . . . , k<) is large as well, where

61 equals various shifts and scalings of 51 and deg&8 = deg %8 − (deg %1 − 1). It is not hard to

show that, usually, the phases k2, . . . , k< must all be major arc, so that after passing to sufficiently

short subprogressions modulo an integer of the form @′@1 for some @′ ≪�,deg %<
X−$deg %< (1) and

1 ≪deg %1
1 and unravelling the definition of 61, we are left with an average of the form appearing in

Theorem 3.3.

4. Control by an average of Gowers box norms

As in previous work on the polynomial Szemerédi theorem, we will frequently use van der Corput’s

inequality, which we now recall. See, for example, [12].
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Lemma 4.1 (van der Corput’s inequality). Let " > � > 0 and 6 : Z→ C. We have

��EH∈[" ]6(H)
��2 ≤

" + �

"

∑
ℎ∈Z

`� (ℎ)


1

"

∑
H∈[" ]∩( [" ]−ℎ)

6(H + ℎ)6(H)


.

As mentioned in Section 3, we will use repeated applications of the Cauchy-Schwarz and van der

Corput inequalities to control Λ
# ,"
%1 ,...,%<

by an average of Gowers box norms of the form appearing in

Proposition 3.4. To do this, we follow Bergelson and Leibman’s PET induction scheme [2]. Tao and

Ziegler [23, 25] have also used PET induction to prove that counts of polynomial progressions are

controlled by averages of Gowers box norms in their work on polynomial progressions in the primes.

Our argument differs in that we care about the precise structure of the average of Gowers box norms so

that we can apply Theorem 3.5. Thus, we will have to make more careful choices at certain points of

the PET induction argument and also keep track of more information.

We first record, for the sake of convenience, the most common way in which the Cauchy-Schwarz

and van der Corput inequalities are combined in this section. Like Lemmas 4.4, 4.5 and 4.6 to follow,

the statement of Lemma 4.2 is long because of the amount of information we will want to keep track

of, but its proof is short.

Lemma 4.2. Let #, " > 0, � and � ⊂ Z= be finite sets, 80 ∈ �, ` : Z= → [0,∞) be supported on � with

‖`‖ℓ1 ≤ 1, &8 ∈ Z[01, . . . , 0=] [H] for each 8 ∈ � and 50, 58 : Z→ C be 1-bounded functions supported

on the interval [#] for each 0 ∈ � and 8 ∈ �. Assume that

min
8∈�

max
0∈�

max
H∈[" ]

|&8 (0, H) | ≤ �#. (3)

If

E
`

0∈�

����� 1

#

∑
G∈Z

EH∈[" ] 50 (G)
∏
8∈�

58 (G +&8 (0, H))

�����
2

≥ W, (4)

then for all W′ ≪� W, we have

E
`′

0′∈�′
1

#

∑
G∈Z

EH∈[" ] 580 (G)
∏
8′∈� ′

68′ (G +&
′
8′ (0

′, H)) ≫ W,

where

1. � ′ = (� × {0, 1}) \ {(80, 0)},

2. �′ = � × ((−W′", W′") ∩ Z),

3. `′(0′) = `(01, . . . , 0=)`W′" (0=+1),

4. for each 8′ = (8, n) ∈ � ′, we have

& ′
8′ (0

′, H) = &8 (01, . . . , 0=, H + n0=+1) −&80 (01, . . . , 0=, H)

5. and for each 8′ = (8, n) ∈ � ′, we have

68′ =

{
58 n = 0

58 n = 1
.

Proof. For each 0 ∈ �, we first apply the Cauchy-Schwarz inequality in the G variable and use that 50
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is 1-bounded and supported on [#] to bound the left-hand side of (4) by

E
`

0∈�

1

#

∑
G∈Z

�����EH∈[" ]

∏
8∈�

58 (G +&8 (0, H))

�����
2

.

Applying van der Corput’s inequality with 6G,0 (H) :=
∏
8∈� 58 (G+&8 (0, H)) and� = W′" for 0 < W′ < 1

bounds the above by

≪ E
`

0∈�

1

#

∑
G∈Z


∑
0=+1∈Z

`W′" (0=+1)
1

"

∑
H∈[" ]∩( [" ]−0=+1)

6G,0 (H + 0=+1)6G,0 (H)


,

where we have used the fact that " + � = (1 + W′)" ≪ " .

Now, note that 6G,0 is 1-bounded because the 58s are 1-bounded and, for each 0 ∈ �, 6G,0 is identically

zero for all G ∈ Z outside of a set of size ≪ �# by the assumption (3) because each 58 is supported on

the interval [#]. Thus, recalling that `W′" is supported on (−W′", W′") and ‖`W′" ‖ℓ1 ≤ 1, for each

0=+1 ∈ (−W′", W′") ∩ Z we may extend the sum over H ∈ ["] ∩ (["] − 0=+1) to a sum over all of

["] at the cost of an error of $ (�W′). Thus, as long as W′ ≪ �W, we have

E
`′

0∈�′
1

#

∑
G∈Z

EH∈[" ]

∏
8∈�

58 (G +&8 (01, . . . , 0=, H + 0=+1)) 58 (G +&8 (01, . . . , 0=, H)) ≫ W.

To conclude, we make the change of variables G ↦→ G −&80 (0, H). �

To describe the PET induction scheme, we need the notion of a weight vector. This is the one-

dimensional case of the weight matrix of Bergelson and Leibman [2], who also consider more general

multidimensional polynomial configurations.

Definition 4.3. Let = ∈ N, � be a finite set and &8 ∈ Z[01, . . . , 0=] [H] for each 8 ∈ �. Set Q := (&8)8∈� ,

and let !(&8) denote the leading coefficient of &8 for each 8 ∈ �. The weight vector of Q is defined to be

+ (Q) := (#{!(&8) : deg&8 = 9 , 8 ∈ �})∞9=1.

We also define the degree of Q to be max8∈� deg&8 .

Clearly, the weight vector of any finite set of polynomials has only finitely many nonzero entries.

One can define an ordering ≺ on the set of weight vectors by saying that + (Q) ≺ + (Q′) if there

exists a 3 ∈ N such that #{!(&) : deg& = 3, & ∈ Q} < #{!(& ′) : deg& ′ = 3, & ′ ∈ Q′} and

#{!(&) : deg& = 4, & ∈ Q} = #{!(& ′) : deg& ′ = 4, & ′ ∈ Q′} for all 4 > 3. It is easy to see that ≺ is

a well-ordering on the set of weight vectors. PET induction is simply an induction on the weight vector

of collections of polynomials using the ordering ≺, with collections of linear polynomials forming the

base case of the induction. This method is based on the fact that one can use the Cauchy-Schwarz and

van der Corput inequalities to control an average over the polynomial configuration (G +&(H))&∈Q∪{0}

by an average over a polynomial configuration (G +& ′(H))&′∈Q′∪{0} with + (Q′) ≺ + (Q).

As mentioned in Section 3, if one can control Λ
# ,"
%1 ,...,%ℓ

( 51, . . . , 5ℓ) by an average of *B-norms,

then one can also control Λ
# ,"
%1 ,...,%<

( 51, . . . , 5ℓ ;kℓ+1, . . . , k<) by an average of *B+1-norms for any

characters kℓ+1, . . . , k< : Z→ (1 by using the Cauchy-Schwarz inequality. The first goal of this section

is to control Λ
# ,"
%1 ,...,%ℓ

( 50, . . . , 5ℓ) in terms of an average of averages over the linear configuration

(G + ?(0)H)?∈Aℓ−1∪{0}, with Aℓ−1 as in Proposition 3.4. In order to verify that the linear configuration

we get at the end of the PET induction argument has this particular form, it will be necessary to keep

track of additional details besides the weight vector. In particular, we will keep track of the set of leading

coefficients of polynomials of highest degree 3 and the coefficients of their degree 3 − 1 terms.
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We will now state three basic lemmas on controlling averages over general progressions (G +

&(H))&∈Q∪{0}, which apply in different situations depending on the weight vector of Q. These lemmas

have long statements, but each proof is just an application of the Cauchy-Schwarz and van der Corput

inequalities followed by a change of variables.

Lemma 4.4. Let #, " > 0, � and � ⊂ Z= be finite sets, 80 ∈ �, ` : Z= → [0,∞) be supported on � with

‖`‖ℓ1 ≤ 1 and ‖`‖2
ℓ2 ≤ � 1

|� |
, &8 ∈ Z[01, . . . , 0=] [H] for each 8 ∈ � and 50, 58 : Z→ C be 1-bounded

functions supported on the interval [#] for each 0 ∈ � and 8 ∈ �. Set Q := (&8)8∈� and let 3 be the

degree of Q, A = + (Q)3 , C denote the set of leading coefficients of degree 3 polynomials in Q, 280 be the

leading coefficient of &80 and 3 ′ be the smallest index such that + (Q)3′ ≠ 0. Assume further that

1. 1 ≤ 3 ′ < 3,

2. there exists an B ∈ N such that, for all 2 ∈ C, there are B degree 3 polynomials & in Q with leading

coefficient 2, each having the form

2(01, . . . , 0=)H
3 + 2′& (01, . . . , 0=)H

3−1 + lower degree terms,

where the coefficients 2′
&
(01, . . . , 0=) are all distinct

3. deg&80 = 3
′

4. and

max
8∈�

max
0∈�

max
H∈[" ]

|&8 (0, H) | ≤ �
′#.

If �����E`0∈� 1

#

∑
G∈Z

EH∈[" ] 50 (G)
∏
8∈�

58 (G +&8 (0, H))

����� ≥ W, (5)

then for all W′ ≪�,�′ W2, we have

E
`′

0′∈�′
1

#

∑
G∈Z

EH∈[" ] 580 (G)
∏
8′∈� ′

68′ (G +&
′
8′ (0, H)) ≫� W

2,

where

1. � ′ = (� × {0, 1}) \ {(80, 0)},

2. �′ = � × ((−W′", W′") ∩ Z),

3. `′(0′) =
1� (01 ,...,0=)

|� |
`W′" (0=+1),

4. for 8′ ∈ � ′, we have & ′
8′ (0

′, H) = &8 (0, H + n0=+1) −&80 (0, H),

5. the set of leading coefficients of degree 3 polynomials in Q′ := (& ′
8′)8′∈� ′ is C,

6. for all 2 ∈ C, there are 2B degree 3 polynomials in Q′ with leading coefficient 2, and for each

8′ = (8, n) ∈ � ′ with deg&8 = 3 and &8 having leading coefficient 2, the polynomial & ′
8′ has the form

2(01, . . . , 0=)H
3 + [2′&8

(01, . . . , 0=) + n32(01, . . . , 0=)0=+1 − 13′=3−1280 (01, . . . , 0=)]H
3−1

+ lower degree terms,

so that the coefficients of the degree 3 − 1 terms of these polynomials are still distinct,

7. we have

+ (Q′) = (=1, . . . , =3′−1, + (Q)3′ − 1, + (Q)3′+1, . . . , + (Q)3 , 0, . . . ),

where =1 + · · · + =3′−1 < |� ′ | = 2|� | − 1
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8. and, for 8′ = (8, n) ∈ � ′, we have

68′ =

{
58 n = 0

58 n = 1
.

Proof. We expand the definition of E` to write the left-hand side of (5) as������
∑
0∈�

`(0)

[
1

#

∑
G∈Z

EH∈[" ] 50 (G)
∏
8∈�

58 (G +&8 (0, H))

] ������ ≥ W
and apply the Cauchy-Schwarz inequality in the 0 variable to deduce that

E0∈�

����� 1

#

∑
G∈Z

50 (G)EH∈[" ]

∏
8∈�

58 (G +&8 (0, H))

�����
2

≫� W
2,

using the assumption ‖`‖2
ℓ2 ≤ � 1

|� |
.

We now apply Lemma 4.2 to conclude. Indeed, if &8 has degree 3 and leading coefficient 2, then, by

the binomial theorem, &8 (01, . . . , 0=, H + n0=+1) equals

2(01, . . . , 0=)H
3 + [2′&8

(01, . . . , 0=) + n32(01, . . . , 0=)0=+1]H
3−1 + lower degree terms.

In addition, if &8 has degree > 3 ′, then & (8, n ) (as defined in Lemma 4.2) has the same degree and

leading coefficient as &8 , if &8 has degree 3 ′ and leading coefficient equal to 280 , then & (8, n ) has degree

≤ 3 ′ − 1 and if &8 has degree 3 ′ and leading coefficient 28 ≠ 280 , then & (8, n ) also has degree 3 ′ and has

leading coefficient 28 − 280 , thus confirming conclusion (7) of the lemma. �

Lemma 4.5. Let #, " > 0, � and � ⊂ Z= be finite sets, 80 ∈ �, ` : Z= → [0,∞) be supported on � with

‖`‖ℓ1 ≤ 1 and ‖`‖2
ℓ2 ≤ � 1

|� |
, &8 ∈ Z[01, . . . , 0=] [H] for each 8 ∈ � and 50, 58 : Z→ C be 1-bounded

functions supported on the interval [#] for each 0 ∈ � and 8 ∈ �. Set Q := (&8)8∈� , and let 3 be the

degree of Q and A = + (Q)3 . Assume further that

1. 3 > 1 and A = 1,

2. + (Q)3′ = 0 for all 3 ′ < 3,

3. the polynomials & ∈ Q each have the form

2(01, . . . , 0=)H
3 + 2′& (01, . . . , 0=)H

3−1 + lower degree terms,

where the coefficients 2′
&
(01, . . . , 0=) are all distinct

4. and

max
8∈�

max
0∈�

max
H∈[" ]

|&8 (0, H) | ≤ �
′#.

If �����E`0∈� 1

#

∑
G∈Z

EH∈[" ] 50 (G)
∏
8∈�

58 (G +&8 (0, H))

����� ≥ W,
then for all W′ ≪�,�′ W2, we have

E
`′

0′∈�′
1

#

∑
G∈Z

EH∈[" ] 580 (G)
∏
8′∈� ′

68′ (G +&
′
8′ (0, H)) ≫� W

2,

where
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1. � ′ = (� × {0, 1}) \ {(80, 0)},

2. �′ = � × ((−W′", W′") ∩ Z),

3. `′(0′) =
1� (01 ,...,0=)

|� |
`W′" (0=+1),

4. for 8′ = (8, n) ∈ � ′, we have & ′
8′ (0

′, H) = &8 (0, H + n0=+1) −&80 (0, H),

5. the set Q′ := (& ′
8′)8′∈� ′ consists of 2|� | − 1 degree 3 − 1 polynomials, each with distinct leading

coefficient, and the set of such coefficients is

{2′&8
(01, . . . , 0=) + n32(01, . . . , 0=)0=+1 − 2

′
&80

(01, . . . , 0=) : (8, n) ∈ � ′},

6. we have

+ (Q′) = (

3−2︷   ︸︸   ︷
0, . . . , 0, 2|� | − 1, 0, . . . )

7. and for 8′ = (8, n) ∈ � ′, we have

68′ =

{
58 n = 0

58 n = 1
.

Proof. Apply the Cauchy-Schwarz inequality and Lemma 4.2 in exactly the same manner as in the proof

of Lemma 4.4. �

Lemma 4.6. Let #, " > 0, � and � ⊂ Z= be finite sets, 80 ∈ �, ` : Z= → [0,∞) be supported on � with

‖`‖ℓ1 ≤ 1 and ‖`‖2
ℓ2 ≤ � 1

|� |
, &8 ∈ Z[01, . . . , 0=] [H] for each 8 ∈ �, and 50, 58 : Z→ C be 1-bounded

functions supported on the interval [#] for each 0 ∈ � and 8 ∈ �. Set Q := (&8)8∈� and let 3 be the

degree of Q, A = + (Q)3 , C denote the set of leading coefficients of degree 3 polynomials in Q and 280 be

the leading coefficient of &80 . Assume further that

1. 3 > 1 and A > 1,

2. + (Q)3′ = 0 for all 3 ′ < 3,

3. there exists an B ∈ N such that, for all 2 ∈ C, there are B degree 3 polynomials & in Q with leading

coefficient 2, each having the form

2(01, . . . , 0=)H
3 + 2′& (01, . . . , 0=)H

3−1 + lower degree terms,

where the coefficients 2′
&
(01, . . . , 0=) are all distinct

4. and

max
8∈�

max
0∈�

max
H∈[" ]

|&8 (0, H) | ≤ �
′#.

If �����E`0∈� 1

#

∑
G∈Z

EH∈[" ] 50 (G)
∏
8∈�

58 (G +&8 (0, H))

����� ≥ W,
then for all W′ ≪�,�′ W2, we have

E
`′

0′∈�′
1

#

∑
G∈Z

EH∈[" ] 580 (G)
∏
8′∈� ′

68′ (G +&
′
8′ (0, H)) ≫� W

2,

where

1. � ′ = (� × {0, 1}) \ {(80, 0)},

2. �′ = � × ((−W′", W′") ∩ Z),
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3. `′(0′) =
1� (01 ,...,0=)

|� |
`W′" (0=+1),

4. for 8′ = (8, n) ∈ � ′, we have & ′
8′ (0

′, H) = &8 (0, H + n0=+1) −&80 (0, H),

5. the set of leading coefficients of degree 3 polynomials in Q′ := (& ′
8′)8′∈� ′ is {2 − 280 : 2 ∈ C} \ {0},

6. for each 2 ∈ C \ {280 } there are 2B degree 3 polynomials in Q′ with leading coefficient 2 − 280 , and

for 8′ = (8, n) ∈ � ′ with deg&8 = 3 and &8 having leading coefficient 2, the polynomial & ′
8′ (0

′, H)

has the form

(2 − 280) (01, . . . , 0=)H
3 + [2′&8

(01, . . . , 0=) + n32(01, . . . , 0=)0=+1 − 2
′
&80

(01, . . . , 0=)]H
3−1

+ lower degree terms,

so that the coefficients of the degree 3 − 1 terms of these polynomials are still distinct,

7. we have

+ (Q′) = (=1, . . . , =3−1, + (Q)3 − 1, 0, . . . ),

where =1 + · · · + =3′−1 < |� ′ | = 2|� | − 1

8. and for 8′ = (8, n) ∈ � ′, we have

68′ =

{
58 n = 0

58 n = 1
.

Proof. As with the previous lemma, the proof is the same as that of Lemma 4.4. �

The next two lemmas are proved by many applications of the previous three lemmas, with the choice

of 80 in many uses of these lemmas being particularly important. Recall that the set Aℓ−1 was defined

recursively. Correspondingly, the proof that the averageΛ
# ,"
%1 ,...,%ℓ

( 51, . . . , 5ℓ) is controlled by an average

of averages over the linear progression (G + ?(0)H)?∈Aℓ−1∪{0} proceeds iteratively. Lemma 4.7 produces

the initial situation that we will apply Lemma 4.8 to repeatedly.

Lemma 4.7. Let #, " > 0 and %1, . . . , %ℓ ∈ Z[H] be polynomials with (�, @)-coefficients such that

deg %8 = 8 for 8 = 1, . . . , ℓ and %ℓ has leading coefficient 2ℓ . If 1/� ≤ @ℓ−1"ℓ/# ≤ �, 50, . . . , 5ℓ :

Z→ C are 1-bounded functions supported on the interval [#],���Λ# ,"%1 ,...,%ℓ
( 50, . . . , 5ℓ)

��� ≥ W,
and W′ ≪�,ℓ W

$ℓ (1) , then we have

E
`

0∈�

1

#

∑
G∈Z

EH∈[" ] 5ℓ (G)
∏
8∈�

5 ′8 (G +&8 (0, H)) ≫�,ℓ W
$ℓ (1) ,

where

1. � = {0, 1}C \ {0} for some C ≪ℓ 1,

2. � = ((−W′", W′") ∩ Z)C ,

3. `(01, . . . , 0C ) =
1� (01 ,...,0C )

(2 ⌊W′" ⌋+1) C−1 `W′" (0C ),

4. the collection Q := (&8)8∈� consists only of polynomials of degree ℓ − 1, each of which has distinct

leading coefficient, and the set of such leading coefficients is

{(ℓ2ℓ01, . . . , ℓ2ℓ0C ) · l : l ∈ �},

5. we have

max
8∈�

max
0∈�

max
H∈[" ]

|&8 | (0, H) ≪�,ℓ #

6. and 5 ′8 equals either 5ℓ or 5ℓ for all 8 ∈ �.
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In this lemma and those to follow, if& = 03H
3 + · · · + 00 ∈ C[H] is any polynomial, then |& | denotes

the polynomial |03 |H
3 + · · · + |00 |.

Proof. The proof proceeds by applying Lemma 4.4 some number of times depending on ℓ and then

Lemma 4.5 once. Suppose that %ℓ has degree ℓ − 1 coefficient 2′
ℓ

and %ℓ−1 has leading coefficient 2ℓ−1.

Set �0 = [ℓ], �0 = {0}, `0 = 1{0},Q0 = {%1, . . . , %ℓ }, C
′
0
= {2′

ℓ
}, 80,0 = 1 and 6 9 ,0 = 5 9 for 9 = 1, . . . , ℓ.

We apply Lemma 4.4 repeatedly to produce a sequence of C − 1 ≪ℓ 1 finite sets �: and �: , measures

`: , collections of polynomials Q: ⊂ Z[01, . . . , 0: ] [H], sets C′
:
⊂ Z[01, . . . , 0: ] of coefficients of the

degree ℓ − 1 term of degree ℓ polynomials in Q: , elements 80,: ∈ �: and 1-bounded functions 6 9 ,: for

each 9 ∈ �: satisfying

1. �: = ((�:−1 \ { 9 ∈ �:−1 : deg& 9 = 0}) × {0, 1}) \ {(80,:−1, 0)} for : = 1, . . . , C − 1,

2. �: = ((−W′", W′") ∩ Z): for : = 1, . . . , C − 1,

3. `: (01, . . . , 0: ) =
1�:−1

(01 ,...,0:−1)

(2 ⌊W′" ⌋+1):−1 `W′" (0: ) for : = 1, . . . , C − 1,

4. Q: = (& 9 ) 9∈�: for : = 1, . . . , C − 1, where, for 9 = ( 9 ′, n) ∈ �: , we have

& 9 (01, . . . , 0: , H) = & 9′ (01, . . . , 0:−1, H + n0: ) −&80,:−1
(01, . . . , 0:−1, H),

5. C′
:
= {2′

ℓ
− n (:)2ℓ−1 + ℓ2ℓ (01, . . . , 0: ) · l : l ∈ {0, 1}: } for : = 1, . . . , C − 1, where n (:) = 1 if

1 ≪ℓ : ≤ C − 1 and n (:) = 0 otherwise,

6. for 9 = ( 9 ′, n) ∈ �: , we have 6 9 ,: equal to either 6 9′,:−1 or 6 9′,:−1,

7. 80,: ∈ �: is the index of any nonconstant (in H) polynomial of smallest degree inQ: for : = 1, . . . , C−1,

and 80,C−1 ∈ �C−1 is the index (ℓ, 0)

8. and

+ (QC−1) = (

ℓ−1︷   ︸︸   ︷
0, . . . , 0, 1, 0, . . . ),

such that

E
`:
0∈�:

1

#

∑
G∈Z

EH∈[" ] 50,: (G)
∏
9∈�:

deg& 9≠0

6 9 ,: (G +& 9 (01, . . . , 0: , H)) ≫: W
$: (1) ,

where

50,: (G) = 680,:−1 ,:−1(G)
∏
9∈�:

deg& 9=0

6 9 ,: (G +& 9 (01, . . . , 0: , H))

for all : = 1, . . . , C − 1, provided that W′ ≪�,ℓ W
$ℓ (1) . Indeed, we have that ‖`: ‖

2
ℓ2 ≤ 1

|�:−1 |W′"
≤ 3

|�: |

for each : = 1, . . . , C − 1, and to check that the condition

max
9∈�:

max
0∈�:

max
H∈[" ]

|& 9 (0, H) | ≪�,ℓ # (6)

holds for each application of Lemma 4.4, note that

max
8=1,...,ℓ

sup
H∈[−2",2" ]

|%8 (H) | ≤ ℓ2
ℓ�3#

for any 2 ∈ N by the assumptions that %1, . . . , %ℓ have (�, @)-coefficients, deg %8 = 8 for 8 = 1, . . . , ℓ,

and @ℓ−1"ℓ ≤ �# , which implies that (6) holds by the recursive definition of the & 9s and the triangle

inequality.

Note thatQC−1 consists only of constant polynomials (in H) and polynomials of degree ℓ (in H), we have

�C−1 \ { 9 ∈ �C−1 : deg& 9 = 0} = {ℓ} × {0, 1}C−1, 80,C−1 is the index of the degree ℓ polynomial in QC−1
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whose degree ℓ− 1 term has coefficient 2′
ℓ
− 2ℓ−1, and 6 9 ,C−1 equals either 5ℓ or 5ℓ for every 9 ∈ �: such

that deg& 9 = ℓ. We may thus apply Lemma 4.5 with �C−1 \ { 9 ∈ �C−1 : deg& 9 = 0}, �C−1, `C−1, 80,C−1,

50,C−1 and 5 9 = 6 9 ,C−1 for each 9 ∈ �C−1 \ { 9 ∈ �C−1 : deg& 9 = 0}, again assuming that W′ ≪�,ℓ W
$ℓ (1) .

The conclusion of the lemma then follows after relabelling indices in [ℓ] × {0, 1}C \ {(ℓ, 0)} by the

corresponding elements of {0, 1}C \ {0}. The bound on |&8 | (0, H) follows in the same manner as (6)

using the triangle inequality. �

Lemma 4.7 may be used, for example, to control the progression G, G + H, G + H3 in terms of averages

over the progression G, G + 301H
2 + 302

1
H, G + 302H

2 + 302
2
H, G + 3(01 + 02)H

2 + 3(02
1
+ 02

2
+ 20102)H,

where we have absorbed the constant (in H) terms into the definitions of the 50s for the sake of

simplicity.

Lemma 4.8. Let #, " > 0, � and � ⊂ ([−", "] ∩ Z)= be finite sets, ` : Z= → [0,∞) be supported

on � with ‖`‖ℓ1 ≤ 1 and ‖`‖2
ℓ2 ≤ � 1

|� |
, &8 ∈ Z[01, . . . , 0=] [H] be degree 3 ≥ 2 polynomials for

each 8 ∈ �, C be the set of leading coefficients of polynomials in Q := (&8)8∈� with < := |C| and

5 , 58 : Z → C be 1-bounded functions supported on the interval [#] for each 8 ∈ �. Assume further

that

1. � and C have the form � = {0, 1}� \ {0} and

C = {(20
9 (01, . . . , 0=)) 9∈� · l : l ∈ �} (7)

for some finite set � and polynomials 20
9
∈ Z[01, . . . , 0=],

2. < = |� |, so that the leading coefficients of elements of Q are all distinct,

3. we have

max
8∈�

max
0∈�

max
H∈[" ]

|&8 | (0, H) ≤ �#

4. and 58 equals either 5 or 5 for each 8 ∈ �.

If �����E`0∈� 1

#

∑
G∈Z

EH∈[" ] 5 (G)
∏
8∈�

58 (G +&8 (0, H))

����� ≥ W
and W′ ≪�,3,< W

$3,< (1) , then we have

E
`′

0∈�′
1

#

∑
G∈Z

EH∈[" ] 5 (G)
∏
8′∈� ′

5 ′8′ (G +&
′
8 (0

′, H)) ≫�,3,< W
$3,< (1) ,

where

1. � ′ = {0, 1}{(8,A ):8∈� ,A ∈[:8 ] } \ {0} for some :8 ≪3,< 1 for each 8 ∈ �,

2. �′ = � × ((−W′", W′") ∩ Z)
∑

8∈� :8 ,

3. `′(0, (08,A )8∈� ,A ∈[:8 ]) =
1�′ (0, (08,A )8∈� ,A∈[:8 ] )

|� | (2 ⌊W′" ⌋+1)
∑
8∈� :8−1 `W′" (0 9 ,: 9 ) for some 9 ∈ �,

4. Q′ := (& ′
8′)8′∈� ′ consists only of polynomials of degree 3 − 1, each of which has distinct leading

coefficient, and the set of such leading coefficients is

{(328 (01, . . . , 0=)08,A )8∈� ,A ∈[:8 ] · l : l ∈ � ′},

5. we have

max
8′∈� ′

max
0′∈�′

max
H∈[" ]

|& ′
8′ | (0

′, H) ≪�,3,< #

6. and 5 ′8′ equals either 5 or 5 for every 8′ ∈ � ′.
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Proof. The proof proceeds by applying Lemma 4.5 once after repeating the following<−1 times: apply

Lemma 4.6 once and then Lemma 4.4 as many times as necessary with careful choices of distinguished

index 80 to produce a bound in terms of an average over a polynomial progression involving only

polynomials of degree 3. Each repetition of this procedure reduces the number of distinct leading

coefficients of polynomials of degree 3 by one.

We first enumerate the elements 21, . . . , 2< of C by picking any ordering such that if : ≤ : ′,

then 2: (0) = (20
9
(0)) 9∈� · l and 2:′ (0) = (20

9
(0)) 9∈� · l′ with |l| ≤ |l′ |. This means that 2< (0) =∑

9∈� 2
0
9
(0). Enumerate the elements&1, . . . , &< ofQ similarly, so that&8 has leading coefficient 28 (0),

and let 2′8 (0) denote the coefficient of the degree 3 − 1 term of &8 for each 8 = 1, . . . , <. Set 20(0) := 0.

Let �0 = [<], �0 = �, `0 = `, Q0 = Q, C0 = C, C
(:)

0
= {2′

:
} for each : = 1, . . . , <, and 80,0 = 1. We

will show that applying Lemma 4.6 and then Lemma 4.4 repeatedly produces a sequence of < − 1 finite

sets � 9 and � 9 , measures ` 9 supported on � 9 , sets Q 9 = (&8, 9 )8∈� 9 of degree 3 polynomials with set of

leading coefficients C 9 , sets C
(:)
9

of the coefficients of the degree 3 − 1 terms of polynomials in Q 9 with

leading coefficient 2: − 2 9 for each : = 9 + 1, . . . , <, and elements 80, 9 ∈ � 9 satisfying

1. � 9 = { 9 + 1, . . . , <} × {0, 1}{(B,A ):0≤B≤ 9 ,A ∈[:B, 9 ] } for some :B, 9 ≪3,< 1 for each 0 ≤ B ≤ 9 and

9 = 1, . . . , < − 1, where :0, 9 = 1,

2. � 9 = � 9−1 × ((−W′", W′") ∩ Z): 9, 9+1 for 9 = 1, . . . , < − 1,

3. ` 9 (0, (0B,A )0≤B≤ 9 ,A ∈[:B, 9 ]) =
1�9

(0, (0B,A )0≤B≤ 9,A∈[:B, 9 ]
)

|� 9−1 | (2 ⌊W′" ⌋+1)
: 9, 9

`W′" (0 9 ,: 9, 9 ) for 9 = 1, . . . , < − 1,

4. C 9 = {2 9+1 − 2 9 , . . . , 2<− 2 9 } for 9 = 1, . . . , <−1 and, for 8 = (B, l) ∈ � 9 , the polynomial&8, 9 ∈ Q 9

has leading coefficient 2B − 2 9 ,

5. C
(:)
9

= {(2′
:
− 2′9 ) (0) + (3 (2: − 2B) (0)0B,A )0≤B≤ 9 ,A ∈[:B, 9 ] · l : l ∈ {0, 1}{(B,A ):0≤B≤ 9 ,A ∈[:B, 9 ] }} for

each : = 9 + 1, . . . , < and 9 = 1, . . . , < − 1,

6. we have

max
8∈� 9

max
0 9 ∈� 9

max
H∈[" ]

|&8, 9 | (0 9 , H) ≪�,3, 9 #

for 9 = 1, . . . , < − 1,

7. and 80, 9 ∈ � 9 equals the index such that &80, 9 , 9 has leading coefficient 2 9+1 − 2 9 and degree 3 − 1

coefficient

2′9 ,0 (0, (0B,A )0≤B≤ 9 ,A ∈[:B, 9 ]) := (2′9+1 − 2
′
9 ) (0) + 3

∑
0≤B≤ 9
A ∈[:B, 9 ]

(2 9+1 − 2B) (0)0B,A

for 9 = 1, . . . , < − 2, and 80,<−1 ∈ �<−1 equals the index such that &80,<−1 ,<−1 has degree 3 − 1

coefficient (2′< − 2′
<−1

) (0)

such that

E
` 9

0∈� 9

1

#

∑
G∈Z

EH∈[" ] 50, 9 (G)
∏
8∈� 9

5 ′8 (G +&8 (0, H)) ≫�,3, 9 W
$3, 9 (1) ,

where 50, 9 is 1-bounded for each 0 ∈ � 9 and 5 ′8 equals 5 or 5 for each 8 ∈ � 9 , provided that

W′ ≪�,3,< W$3,< (1) . Before showing that such a sequence of sets, measures and elements exist, note

that if W′ ≪�,3,< W
$3,< (1) , then the conclusion of the lemma follows from one application of Lemma 4.5

when 9 = < − 1, because as B ranges over 0 ≤ B ≤ < − 1, the polynomials 2< − 2B range over all of the

28s by the assumption (7) and our choice of enumeration 21, . . . , 2<.

It remains to prove that the above sequence exists. As mentioned earlier, for each 9 = 1, . . . , < − 1

this will follow from one application of Lemma 4.6 and then repeated applications of Lemma 4.4, as in

the proof of Lemma 4.7. Let us assume then that � 9 , � 9 , ` 9 ,Q 9 ,C 9 ,C
(:)
9

for : = 9 + 1, . . . , <, and 80, 9
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satisfying the above conditions exist for some 9 = 0, . . . , < − 2. We first apply Lemma 4.6, which we

may do assuming that W′ ≪�,3,< W
$3,< (1) , to get that

E
` 9,0

0∈� 9,0

1

#

∑
G∈Z

EH∈[" ] 5 (G)
∏
8∈� 9,0

58 (G +&8, 9 ,0 (0, H)) ≫�,3, 9 W
$3, 9 (1) ,

where

1. � 9 ,0 = (� 9 × {0, 1}) \ {(80, 9 , 0)},

2. � 9 ,0 = � 9 × ((−W′", W′") ∩ Z),

3. ` 9 ,0 (0) =
1�9,0

(0)

|� 9 |
`W′" (0 9 ,0),

4. Q 9 ,0 := (&8, 9 ,0)8∈� 9,0 has a set of leading coefficients of degree 3 polynomials, C 9+1,

5. C
(:)

9 ,0
, the set of coefficients of the degree 3−1 terms of the degree 3 polynomials in Q 9 ,0 with leading

coefficient 2: − 2 9+1, equals

{
(2′: − 2

′
9+1) (0) − 3

∑
0≤B≤ 9
A ∈[:B, 9 ]

(2 9+1 − 2B) (0)0B,A + (3 (2: − 2B)(0)0B,A )0≤B≤ 9 ,A ∈[:B, 9,0 ] · l

: l ∈ {0, 1}{(B,A ):0≤B≤ 9 ,A ∈[:B, 9,0 ] }
}

for all : = 9 + 2, . . . , <, where :B, 9,0 = :B, 9 when B < 9 and : 9 , 9 ,0 = : 9 , 9 + 1,

6. we have

max
8∈� 9,0

max
0∈� 9,0

max
H∈[" ]

|&8, 9 ,0 | (0, H) ≪�,3, 9 #

7. and 58 equals either 5 or 5 for all 8 ∈ � 9 ,0.

Let Q′
9 ,0

denote the subset of Q 9 ,0 consisting of polynomials of degree 3 − 1. By our assumptions on

Q 9 , the set of leading coefficients of elements of Q′
9 ,0

is

C
′
9 ,0 :={2 − 2′9 ,0 : 2 ∈ C

( 9+1)

9
} \ {0}

={(3 (2 9+1 − 2B) (0)0B,A )0≤B≤ 9 ,A ∈[:B, 9 ] · (l − 1) : l ∈ {0, 1}{(B,A ):0≤B≤ 9 ,A ∈[:B, 9 ] } \ {1}}.

Note that if &8 ∈ Q′
9 ,0

, then 8 has the form 8 = ( 9 + 1, l) ∈ � 9 ,0.

Next, we set <′ := |C
( 9+1)

9
\ {2′

9 ,0
}| and enumerate the elements 2′

9 ,1
, . . . , 2′9 ,<′ of C

( 9+1)

9
\ {2′

9 ,0
} by

picking any ordering such that if : ≤ : ′, then

2′9 ,: (0, (0B,A )0≤B≤ 9 ,A ∈[:B, 9 ]) = (2′9+1 − 2
′
9 ) (0) + (3 (2 9+1 − 2B) (0)0B,A )0≤B≤ 9 ,A ∈[:B, 9 ] · l

and

2′9 ,:′ (0, (0B,A )0≤B≤ 9 ,A ∈[:B, 9 ]) = (2′9+1 − 2
′
9 ) (0) + (3 (2 9+1 − 2B) (0)0B,A )0≤B≤ 9 ,A ∈[:B, 9 ] · l

′

with |l| ≥ |l′ | (note that this inequality goes in the opposite direction of the one used for the enumeration

of elements of C). This means that 2′9 ,<′ = 2
′
9+1

− 2′9 .

Finally, to verify that we can indeed apply Lemma 4.4 repeatedly as in the proof of Lemma 4.7, we note

that if  is any finite set, � = ((−W′", W′") ∩Z)D with D ∈ N and 0 < W′ ≤ 1, %: ∈ Z[11, . . . , 1D] [H]

for each : ∈  is a polynomial of degree at most 3,

max
:∈ 

max
1∈�

max
H∈[" ]

|%: | (1, H) ≤ �#,
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and :0 ∈  , then

max
(:,n ) ∈( ×{0,1})\{(:0 ,0) }

max
1∈�×( (−W′",W′" )∩Z)

max
H∈[" ]

|%′
:,n | (1, H) ≪3 �#,

where %′
:,n

(1, H) := %: (11, . . . , 1D , H + n1D+1) − %:0
(11, . . . , 1D , H). To see this, just note that

|%′
:,n | (1, H) ≤ |%: | (11, . . . , 1D , H + n1D+1) + |%:0

| (11, . . . , 1D , H) ≤ |%: | (11, . . . , 1D , H + n1D+1) + �#

and

|%: | (11, . . . , 1D , H + n1D+1) ≤ |%: | (11, . . . , 1D , 2") ≤ 23�#

for all 1 ∈ � × ((−W′", W′") ∩ Z) and H ∈ ["].

We now assume that W′ ≪�,3,< W$3,< (1) and apply Lemma 4.4 repeatedly (C 9′ ≪3,< 1 times for

each 9 ′) to produce a sequence of <′ finite sets � 9 , 9′ and � 9 , 9′ , measures ` 9 , 9′ supported on � 9 , 9′ and

sets of polynomials Q 9 , 9′ and Q′
9 , 9′ satisfying

1. � 9 , 9′ = (� 9 , 9′−1 \ {8 ∈ � 9 , 9′−1 : &8, 9 , 9′−1 ∈ Q 9 , 9′−1 and &8, 9 , 9′−1 has leading coefficient 2′9 , 9′ −

2′
9 , 9′−1

}) × {0, 1}C 9′ for some C 9′ ≪3,< 1 for 9 ′ = 1, . . . , <′,

2. � 9 , 9′ = � 9 , 9′−1 × ((−W′", W′") ∩ Z)C 9′ for 9 ′ = 1, . . . , <′,

3. ` 9 , 9′ (0, (0B,A )0≤B≤ 9+1,A ∈[:B, 9, 9′ ]) =
1�9, 9′

(0, (0B,A )0≤B≤ 9+1,A∈[:B, 9, 9′ ]
)

|� 9, 9′−1 | (2 ⌊W
′" ⌋+1)

C 9′ −1 `W′" (0 9+1,:B, 9, 9′ ), where :B, 9, 9′ =

:B, 9 for B < 9 , : 9 , 9 , 9′ = : 9 , 9 + 1, and : 9+1, 9 , 9′ = : 9+1, 9 , 9′−1 +$3,< (1) for 9 ′ = 1, . . . , <′,

4. Q′
9 , 9′ consists of all degree 3 − 1 polynomials in Q 9 , 9′ ,

5. the set of leading coefficients of degree 3 polynomials in Q 9 , 9′ is C 9+1,

6. Q′
9 , 9′ has set of leading coefficients C′

9 , 9′ ,

7. Q 9 , 9′ has set of coefficients of degree 3 −1 terms of polynomials of degree 3 with leading coefficient

2: − 2 9+1 equal to C
(:)
9 , 9′

for each : = 9 + 2, . . . , <,

8. C
(:)
9 , 9′

is equal to

{2′:−2
′
9−2

′
9 , 9′+(3 (2:−2B) (01, . . . , 0=)0B,A )0≤B≤ 9+1,A ∈[:B, 9, 9′ ] ·l : l ∈ {0, 1}{(B,A ):0≤B≤ 9+1,A ∈[:B, 9, 9′ ] }}

for all : = 9 + 2, . . . , < and 9 ′ = 1, . . . , <′

9. and

max
8∈� 9, 9′

max
0∈� 9, 9′

max
H∈[" ]

|&8, 9 , 9′ | (0, H) ≪�,3, 9+1 #

such that

E
` 9, 9′

0∈� 9, 9′

1

#

∑
G∈Z

EH∈[" ] 50, 9, 9′ (G)
∏
8∈� 9, 9′

58 (G +&8, 9 , 9′ (0, H)) ≫�,3, 9+1 W
$3, 9+1 (1) ,

where 50, 9, 9′ is 1-bounded for every 0 ∈ � 9 , 9′ and 58 equals either 5 or 5 for every 8 ∈ � 9 , 9′ , by picking 80
corresponding to elements of Q′

9 , 9′−1
with leading coefficient equal to 2′9′, 9 − 2

′
9′−1, 9

for each application

of Lemma 4.4. We then take � 9+1 = � 9 ,<′ , � 9+1 = � 9 ,<′ , ` 9+1 = ` 9 ,<′ and Q 9+1 = Q 9 ,<′ . �

Continuing the example from after Lemma 4.7, Lemma 4.8 may be used to control an average over

the progression G, G + 301H
2 + 302

1
H, G + 302H

2 + 302
2
H, G + 3(01 + 02)H

2 + 3(02
1
+ 02

2
+ 20102)H in terms

of an average over progressions of the form

(G + [(6(01 + 02)11, 60112, 60113, 60214, · · · , 602111, ) · l]H)l∈{0,1}11 . (8)

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.11


24 Sarah Peluse

Lemmas 4.7 and 4.8 combined show thatΛ
# ,"
%1 ,...,%ℓ

( 50, . . . , 5ℓ) is controlled by an average of averages

over the linear progression (G + ?(0)H)?∈Aℓ−1∪{0}.

Lemma 4.9. Let #, " > 0 and %1, . . . , %ℓ ∈ Z[H] be polynomials with (�, @)-coefficients such that

deg %8 = 8 for 8 = 1, . . . , ℓ and %ℓ has leading coefficient 2ℓ . Let � 9 andA 9 for 9 = 0, . . . , ℓ−1 be defined

as in Section 3 with 2ℓ playing the role of 2. There exist :8 ≪ℓ 1 for all 8 ∈ � 9 and 9 = 0, . . . , ℓ − 2

such that the following holds. If 1/� ≤ @ℓ−1"ℓ/# ≤ �, 50, . . . , 5ℓ : Z → C are 1-bounded functions

supported on [#], ���Λ# ,"%1 ,...,%ℓ
( 50, . . . , 5ℓ)

��� ≥ W,
and W′ ≪�,ℓ W

$ℓ (1) , then we have

E
`

0∈�

1

#

∑
G∈Z

EH∈[" ] 5ℓ (G)
∏
8∈�ℓ−1

5 ′8 (G + !8 (0, H)) ≫�,ℓ W
$ℓ (1) ,

where

1. � = ((−W′", W′") ∩ Z)
∑ℓ−2

9=1

∑
8∈� 9

:8 ,

2. `((0
( 9)

8,A
)0≤ 9≤ℓ,8∈� 9−1 ,A ∈[:8 ]) =

1� (0)

(2 ⌊W′" ⌋+1)
−1+

∑ℓ−2
9=0

∑
8∈� 9

:8
`W′" (0

(ℓ−1)

8,:8
) for some 8 ∈ �ℓ−2,

3. !8 ∈ Z[0] [H] is a linear (in H) polynomial with leading coefficient equal to ?8 (0) ∈ Aℓ−1 for all

8 ∈ �ℓ−1,

4. we have

max
8∈�ℓ−1

max
0∈�

max
H∈[" ]

|!8 | (0, H) ≪�,ℓ #

5. and 5 ′8 equals 5ℓ or 5ℓ for all 8 ∈ �ℓ−1.

Proof. Apply Lemma 4.7 once and then Lemma 4.8 (ℓ − 2) times. �

Controlling the averages of linear progressions appearing in Lemma 4.9 by Gowers box norms is

standard and just requires |�ℓ−1 | − 1 more applications of the Cauchy-Schwarz and van der Corput

inequalities.

Lemma 4.10. Let #, " > 0, !1, . . . , !< ∈ Z[H] be linear polynomials with zero constant term such

that !8 has leading coefficient 28 and 50, . . . , 5< : Z → C be 1-bounded functions supported on the

interval [#]. Assume further that

max
8=1,...,<

max
H∈[" ]

|!8 | (H) ≤ �#.

If ���Λ# ,"!1 ,...,!<
( 50, . . . , 5<)

��� ≥ W,
and W′ ≪�,< W

$< (1) , then we have

‖ 5<‖�<
&0 ,...,&<−1

( [# ]) ≫< W
$< (1) ,

where &0 = 2< [W
′"] and &8 = (2< − 28) [W

′"] for 8 = 1, . . . , < − 1.
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Proof. This will follow from <−1 applications of Lemma 4.2 but applied in a slightly different manner

than in the proofs of the other lemmas in this section. When W′ ≪� W
2 we have, by Lemma 4.2, that

Eℎ0 ,ℎ
′
0
∈[W′" ]

1

#

∑
G

EH∈[" ]Δ
′
21ℎ0 ,21ℎ

′
0
51(G)

<∏
8=2

Δ
′
28ℎ0 ,28ℎ

′
0
58 (G + (!8 − !1) (H)) ≫ W2

by unravelling the definition of `W′" and making the change of variables H ↦→ H + ℎ′
0
. Next, we apply

Lemma 4.2 again to the quantity inside of the average Eℎ0 ,ℎ
′
0
∈[W′" ] above and then use the Cauchy-

Schwarz inequality (instead of applying Lemma 4.2 to the entire quantity in the left-hand side above, as

we did before). Repeating this < − 2 more times yields the conclusion of the lemma, because !8 − ! 9
has leading coefficient 28 − 2 9 for all 8, 9 ∈ [<]. �

Finishing our example, we see that Lemma 4.10 can be used to control (8), and thus the progression

G, G + H, G + H3, in terms of an average over 01, 02, 11, . . . , 111 of the norm ‖ · ‖
�

211−1
(&l )

0≠l∈{0,1}11
( [# ])

, where

&l = ((6(01 + 02)11, 60112, 60113, 60214, · · · , 602111, ) · l) [W
′"]

for each nonzero l ∈ {0, 1}11.

Now we can prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 4.9, we have that

E
`

0∈�

1

#

∑
G∈Z

EH∈[" ] 5ℓ (G)
∏
8∈�ℓ−1

5 ′8 (G + !8 (0, H)) ≫ℓ,� X
$ℓ (1)

when X′ ≪�,ℓ X
$ℓ (1) , where �, �ℓ−1, Aℓ−1, 5 ′8 for 8 ∈ �ℓ−1, and !8 for 8 ∈ �ℓ−1 are as in the conclusion

of Lemma 4.9.

Set < := |�ℓ−1 | and enumerate the elements ?1, . . . , ?< of Aℓ−1 by picking any ordering such that if

: ≤ : ′, then ?: = (?8 (0)0
(ℓ−1)
8,A

)8∈�ℓ−2 ,A ∈[:8 ] ·l and ?:′ = (?8 (0)0
(ℓ−1)
8,A

)8∈�ℓ−2 ,A ∈[:8 ] ·l
′ with |l| ≤ |l′ |.

This means that ?< =
∑
8∈�ℓ−2 ,A ∈[:8 ]

?8 (0)0
(ℓ−1)
8,A

. Enumerate the !:s in the same manner, so that !: has

leading coefficient ?: . Denote the constant term of !: by ?′
:

for each : ∈ [<] as well.

We now apply Lemma 4.2 once to deduce that

E 0∈�

ℎ0 ,ℎ
′
0
∈[X′" ]

Λ
# ,"

?2 (0)H,..., ?< (0)H
()?′

1
(0)Δ

′
?1 (0) (ℎ0 ,ℎ

′
0
) 5

′
1 (G), . . . , )?′< (0)Δ

′
?< (0) (ℎ0 ,ℎ

′
0
) 5

′
<(G)) ≫�,ℓ X

$ℓ (1) ,

assuming that X′ ≪�,ℓ X
$ℓ (1) . We now apply, for each fixed 0 ∈ � and (ℎ0, ℎ

′
0
) ∈ [X′"]2, Lemma 4.10

to Λ
# ,"

?2 (0)H,..., ?< (0)H
()?′

1
(0)Δ

′
?1 (0) (ℎ0 ,ℎ

′
0
)
5 ′
1
(G), . . . , )?′< (0)Δ

′
?< (0) (ℎ0 ,ℎ

′
0
)
5 ′<(G)) to get that

E0∈�‖)?′< (0) 5ℓ ‖
�
|�ℓ−1 |

(? (0) [X′" ])?∈Aℓ−1

( [# ])
≫�,ℓ X

$ℓ (1) ,

again assuming that X′ ≪�,ℓ X
$ℓ (1) and recalling our choice of enumeration of elements of Aℓ−1. To

conclude, we note that ‖)?′< (0) 5ℓ ‖
�
|�ℓ−1 |

(? (0) [X′" ])?∈Aℓ−1

( [# ])
= ‖ 5ℓ ‖

�
|�ℓ−1 |

(? (0) [X′" ])?∈Aℓ−1

( [# ])
for each 0 ∈ � by

making the change of variables G ↦→ G − ?′< (0) inside of the definition of the Gowers box norm. �

5. Concatenation

The main ingredient in the proof of Theorem 3.5 is the following result, whose proof will occupy the

first part of this section.
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Lemma 5.1. Let #, "1, "2 > 0 with "2 ≤ "1 and "1"2 ≤ #/|2 |, 11, . . . , 1B ∈ Z, and 5 : Z → C

be a 1-bounded function supported on the interval [#]. If gcd(0 + 18 , 0 + 1 9 ) ≪B 1/W′′ for all distinct

8, 9 ∈ [B] and |0 + 11 | ≥ W
′′"1 for all but a $B (W

′′) proportion of 0 ∈ ["1],

E0∈["1 ] ‖ 5 ‖�B(2 (0+18 ) ["2 ])
B
8=1

( [# ]) ≥ W,

and W′, W′′ ≪B W
$B (1) , then there exists an B′ ≪B 1 such that

‖ 5 ‖* B′

2 [W′"1"2 ]
( [# ]) ≫B W

$B (1) ,

provided that "1"2 ≫B (WW
′)−$B (1) .

Before beginning the proof of Lemma 5.1, we record a couple of lemmas.

Lemma 5.2. Let " > 0. For all but a $B (W)-proportion of B-tuples (01, . . . , 0B) ∈ ["]B , we have that

gcd((01, . . . , 0B) · l, (01, . . . , 0B) · l
′) < W−1

for all distinct l, l′ ∈ {0, 1}B \ {0}, and for all but a $B (W)-proportion of pairs of B-tuples

(01, . . . , 0B , 11, . . . , 1B) ∈ ["]2B , we have that

gcd((01 − 11, . . . , 0B − 1B) · l, (01 − 11, . . . , 0B − 1B) · l
′) < W−1

for all distinct l, l′ ∈ {0, 1}B \ {0}.

Proof. These statements follow easily from the union bound and the fact that gcd(0, 0′) < Y−1 for all

but a $ (Y)-proportion of 0, 0′ ∈ ["]. Indeed, for each pair of distinct l, l′ ∈ {0, 1}B \ {0}, the pair

((01, . . . , 0B) · l, (01, . . . , 0B) · l
′) ranges over a subset of [B"]2 of density ≥ 1/B2 as 01, . . . , 0B

ranges over ["], and this pair hits each point in its range with multiplicity at most "B−2. Thus, the

total number of B-tuples (01, . . . , 0B) ∈ ["]B for which gcd((01, . . . , 0B) · l, (01, . . . , 0B) · l
′) ≥ W−1

is ≪ WB2"B . We conclude the first statement by taking the union bound over all ≪B 1 pairs of distinct

l, l′ ∈ {0, 1}B \ {0}. The proof of the second statement is essentially the same. �

As in [15], we will also need an inverse theorem for certain two-dimensional Gowers box norms. The

one we prove next holds in greater generality than the inverse theorem in [15], at the cost of a slightly

weaker conclusion.

Lemma 5.3. Let #, "1, "2 > 0 with "2 ≤ "1 and "1"2 ≤ #/< and suppose that |2 |, |3 | ∈ ["1]

with |2 | ≥ W1"1< and gcd(2, 3) = <. Let 5 : Z→ C be a 1-bounded function supported on the interval

[#]. If

‖ 5 ‖
�

2
2 [W2"2 ],3 [W2"2 ]

( [# ]) ≥ W

and 0 < W3 < W2 ≤ W1 ≤ 1, then there exist 1-bounded functions ;, A : Z→ C satisfying

#{G ∈ [#] : ; (G) ≠ ; (G + 3I) for some I ∈ [W3"2]} ≪
W3

W2

#

and

#{G ∈ [#] : A (G) ≠ A (G + 2H) for some H ∈ [W3"2]} ≪
W3

W2

#
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such that ����� 1

#

∑
G∈Z

5 (G); (G)A (G)

����� ≥ W4.

Proof. By splitting Z up into progressions modulo < and arguing as in the proof of Corollary 5.4

of [15], it suffices to prove the < = 1 case of the lemma. Therefore, we assume for the remainder of the

proof that < = 1.

Because 2 and 3 are relatively prime, every G ∈ Z can be expressed uniquely as G = 2H + 3I with

H ∈ Z and I ∈ [|2 |]. Thus, ‖ 5 ‖4

�
2
2 [W2"2 ],3 [W2"2 ]

( [# ])
can be written as

1

#

∑
D∈Z
E ∈[2 ]

EH,H′,I,I′∈[W2"2 ] [ 5 (2(H + D) + 3 (I + E)) 5 (2(H
′ + D) + 3 (I + E))

5 (2(H + D) + 3 (I′ + E)) 5 (2(H′ + D) + 3 (I′ + E))] .

We split Z and [|2 |] up into intervals of length W2"2 to write the above as

1

#/W2
2
"2

2

∑
D′′∈Z

0≤E′′< |2 |/W2"2

EH,H′,I,I′,D′,E′∈[W2"2 ] [ 5 (2(H + D
′ + W2"2D

′′) + 3 (I + E′ + W2"2E
′′))

5 (2(H′ + D′ + W2"2D′′) + 3 (I + E′ + W2"2E′′))

5 (2(H + D′ + W2"2D′′) + 3 (I′ + E′ + W2"2E′′))

5 (2(H′ + D′ + W2"2D
′′) + 3 (I′ + E′ + W2"2E

′′))],

using the fact that |2 | ≥ W2"2. By the pigeonhole principle, there thus exist H′, I′, D′, E′ ∈ [W2"2] such

that

W4 ≤
1

#/W2
2
"2

2

∑
D′′∈Z

0≤E′′< |2 |/W2"2

EH,I∈[W2"2 ] [)2 (D′+W2"2D
′′)+3 (E′+W2"2E

′′) 5 (2H + 3I)

)2 (D′+W2"2D′′)+3 (E′+W2"2E′′) 5 (2H
′ + 3I)

)2 (D′+W2"2D
′′)+3 (E′+W2"2E

′′) 5 (2H + 3I′)

)2 (D′+W2"2D′′)+3 (E′+W2"2E′′) 5 (2H
′ + 3I′)] .

Fix such H′, I′, D′ and E′. For each pair of integers D′′ and 0 ≤ E′′ < |2 |/W2"2, we define 1-bounded

functions !D′′,E′′ , 'D′′,E′′ : [W2"2] → C by setting

!D′′,E′′ (H) := )2 (D′+W2"2D′′)+3 (E′+W2"2E′′) 5 (2H + 3I
′)

and

'D′′,E′′ (I) := )2 (D′+W2"2D′′)+3 (E′+W2"2E′′) 5 (2H
′ + 3I) · )2 (D′+W2"2D′′)+3 (E′+W2"2E′′) 5 (2H

′ + 3I′).

We can then define ;0, A0 : Z→ C by setting, for each G ∈ Z with G = 2(H + W2"2H
′′) + 3 (I + W2"2I

′′)

for H, I ∈ [W2"2], H
′′ ∈ Z, and 0 ≤ I′′ < 2/W2"2 an integer, ;0 (G) := !H′′,I′′ (H) and A0 (G) = 'H′′,I′′ (I).

Then the above tells us that

1

#

∑
G∈Z

5 (G + 2D′ + 3E′);0(G)A0 (G) ≥ W
4. (9)
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Next, we will show that

#{G ∈ (−2#, 2#) ∩ Z : ;0 (G) ≠ ;0 (G + 3F) for some F ∈ [W3"2]} ≪
W3

W2

#.

By our definition of ;0, the left-hand side of the above is exactly the number of G ∈ (−2#, 2#) ∩ Z that

can be written as G = 2(H + W2"2H
′′) + 3 (I + W2"2I

′′) with H ∈ [W2"2], I ∈ [(W2 − W3)"2, W2"2],

H′′ ∈ Z, and 0 ≤ I′′ < |2 |/W2"2 an integer. The number of possible choices for (H, I) is bounded

by W2W3"
2
2
. To count the number of possible choices for (H′′, I′′) for each fixed pair (H, I), note

that because |2H + 3I | ≪ W2# and the map Z × ([0, |2 |/W2"2) ∩ Z) ∋ (H′′, I′′) ↦→ 2H′′ + 3I′′ is

injective, the number of possible choices is bounded by the number of integers 0 ≤ I′′ < |2 |/W2"2

and F′′ ∈ [−$ (#/W2"2), $ (#/W2"2)] such that 3I′′ − F′′ is divisible by 2. This quantity is bounded

by ≪ (|2 |/W2"2) (#/W2"22), so that the number of possible (H′′, I′′) is ≪ #/(W2"2)
2. We conclude

that the number of such possible (H, I, H′′, I′′) is ≪
W3

W2
# . The same argument shows the corresponding

bound for A0.

To conclude, we make the change of variables G ↦→ G− (2D′+ 3E′) in (9) and set ; (G) := ;0 (G− (2D′+

3E′)) and A (G) := A0 (G−(2D′+3E′)) and note that because |2D′+3E′ | ≪ # , G−(2D′+3E′) ∈ (−2#, 2#)

whenever G ∈ [#]. �

The proof of Lemma 5.1 proceeds by induction on B. We first prove the B = 1 and B = 2 cases as

separate lemmas.

Lemma 5.4 (B = 1 case of Lemma 5.1). Let #, "1, "2 > 0 with "2 ≤ "1, 1 ∈ Z, and 5 : Z→ C be a

1-bounded function supported on the interval [#]. If

E0∈["1 ] ‖ 5 ‖�1
2 (0+1) ["2 ]

( [# ]) ≥ W

and 0 < W′ ≤ 1, then

‖ 5 ‖*2
2 [W′"1"2 ]

( [# ]) ≫ W$ (1) ,

provided that "1"2 ≫ W−$ (1) .

Proof. Applying the Cauchy-Schwarz inequality to the average over 0 ∈ ["1] and expanding the

definition of ‖ 5 ‖2

�
1
2 (0+1) ["2 ]

( [# ])
, we have that

E0∈["1 ]

1

#

∑
G∈Z

Eℎ,ℎ′∈["2 ] 5 (G + 2(0 + 1)ℎ) 5 (G + 2(0 + 1)ℎ
′) ≥ W2.

Making the change of variables G ↦→ G − 2(0 + 1)ℎ and swapping the order of summation, we get from

the above that

1

#

∑
G∈Z

5 (G)
(
E0∈["1 ]Eℎ,ℎ′∈["2 ] 5 (G + 2(0 + 1) [ℎ

′ − ℎ])
)
≥ W2.

Because 5 is 1-bounded and supported on [#], we have by another application of the Cauchy-Schwarz

inequality and change of variables that

1

#

∑
G∈Z

E0,0′∈["1 ]Eℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ] 5 (G) 5 (G + 2(0 + 1) [ℎ
′ − ℎ] − 2(0′ + 1) [ℎ′′′ − ℎ′′]) ≥ W4,
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and then, by one more application of the Cauchy-Schwarz inequality and a change of variables, that

1

#

∑
G∈Z

E0,0′,0′′,0′′′∈["1 ]Eℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ] 5 (G) 5 (G + 2(0
′′ − 0) [ℎ′ − ℎ] − 2(0′′′ − 0′) [ℎ′′′ − ℎ′′])

is ≥ W8.

Note that |ℎ′ − ℎ|, |ℎ′′′ − ℎ′′ | > W9"2 for all but a $ (W9) proportion of (ℎ, ℎ′, ℎ′′, ℎ′′′) ∈ ["2]
4 and,

by Lemma 5.2, we have gcd(ℎ′− ℎ, ℎ′′′ − ℎ′′) < W−9 for all but a$ (W9) proportion of (ℎ, ℎ′, ℎ′′, ℎ′′′) ∈

["2]
4. Thus, it follows from the above that

1

#

∑
G∈Z

E0,0′,0′′,0′′′∈["1 ]E ℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ]

|ℎ′−ℎ |, |ℎ′′′−ℎ′′ |>W9"2

gcd(ℎ′−ℎ,ℎ′′′−ℎ′′)<W−9

5 (G) 5 (G + 2(0′′ − 0) [ℎ′ − ℎ] − 2(0′′′ − 0′) [ℎ′′′ − ℎ′′])

is ≫ W8. We can write this as

1

#

∑
G∈Z

∑
F ∈Z

5 (G) 5 (G + 2F)`(F) ≫ W8,

where

`(F) := E0,0′,0′′,0′′′∈["1 ]E ℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ]

|ℎ′−ℎ |, |ℎ′′′−ℎ′′ |>W9"2

gcd(ℎ′−ℎ,ℎ′′′−ℎ′′)<W−9

1F=(0′′−0) [ℎ′−ℎ]−(0′′′−0′) [ℎ′′′−ℎ′′ ] .

Note that ` is supported on the interval [−2"1"2, 2"1"2] ∩ Z.

By Fourier inversion, we have

∫
T

̂̀(b) ©­«
1

#

∑
G∈Z

∑
|F | ≤2"1"2

5 (G) 5 (G + 2F)4(bF)
ª®¬
3b ≫ W8,

so that (∫
T

|̂̀(b) |3b) · ©­«
max
b ∈T

������
1

#

∑
G∈Z

∑
|F | ≤2"1"2

5 (G) 5 (G + 2F)4(bF)

������
ª®¬
≫ W8.

Now, note that

` = E ℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ]

|ℎ′−ℎ |, |ℎ′′′−ℎ′′ |>W9"2

gcd(ℎ′−ℎ,ℎ′′′−ℎ′′)<W−9

aℎ ∗ ãℎ ,

where aℎ (F) = E0,0′∈["1 ]1F=0 [ℎ′−ℎ]−0′ [ℎ′′′−ℎ′′ ] and ãℎ (F) = aℎ (−F). Thus, we have

∫
T

|̂̀(b) |3b = E ℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ]

|ℎ′−ℎ |, |ℎ′′′−ℎ′′ |>W9"2

gcd(ℎ′−ℎ,ℎ′′′−ℎ′′)<W−9

∫
T

|âℎ (b) |
23b = E ℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ]

|ℎ′−ℎ |, |ℎ′′′−ℎ′′ |>W9"2

gcd(ℎ′−ℎ,ℎ′′′−ℎ′′)<W−9

∑
F ∈Z

|aℎ (b) |
2,

by Parseval’s identity. Expanding the definition of aℎ , the above equals

E ℎ,ℎ′,ℎ′′,ℎ′′′∈["2 ]

|ℎ′−ℎ |, |ℎ′′′−ℎ′′ |>W9"2

gcd(ℎ′−ℎ,ℎ′′′−ℎ′′)<W−9

#{0, 0′, 0′′, 0′′′ ∈ ["1] : (0′′ − 0) [ℎ′ − ℎ] = (0′′′ − 0′) [ℎ′′′ − ℎ′′]

"4
1

,

which is bounded above by 1

" 4
1

· "2
1
· "1

W18"2
= W−18 1

"1"2
, using the assumption "1 ≥ "2.
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Also note that, for each b ∈ T, the quantity | 1
#

∑
G∈Z E |F | ≤2"1"2

5 (G) 5 (G + 2F)4(bF) | is bounded

above by 1 + 2| 1
#

∑
G∈Z EF ∈[2"1"2 ] 5 (G) 5 (G + 2F)4(bF) | because 5 is 1-bounded and supported on

[#].

Putting our two observations together, splitting the average over [2"1"2] up into averages over

intervals of length W′"1"2 and using the pigeonhole principle, we thus deduce that there exists a

F′ ∈ [2/W′] for which

����� 1

#

∑
G∈Z

EF ∈[W′"1"2 ] 5 (G))2F′W′"1"2
5 (G + 2F)4(bF)

����� ≫ W$ (1) ,

assuming that "1"2 ≫ W−$ (1) . Inserting extra averaging in the G variable by shifting by elements of

2[W′"1"2] and applying the triangle inequality, we deduce from the above that

1

#

∑
G∈Z

���EI,F ∈[W′"1"2 ] 5 (G + 2I))2F′W′"1"2
5 (G + 2I + 2F)4(bF)

��� ≫ W$ (1) .

It now follows from Lemma 2.2 that ‖)2F′W′"1"2
5 ‖*2

2 [W′"1"2 ]
( [# ]) ≫ W$ (1) . To conclude, we make

the change of variables G ↦→ G − 2F′W′"1"2 in the definition of the Gowers box norm. �

The B = 2 case of Lemma 5.1 is a generalisation of Lemma 5.5 of [15] (with a slightly weaker con-

clusion, getting *5-control instead of *4-control), and thus its proof closely follows the corresponding

proof from [15].

Lemma 5.5 (B = 2 case of Lemma 5.1). Let #, "1, "2 > 0 with "2 ≤ "1 and "1"2 ≤ #/2, 11, 12 ∈

Z, and 5 : Z→ C be a 1-bounded function supported on the interval [#]. If gcd(0 + 11, 0 + 12) ≤ 1/W′′

and |0 + 11 | > W
′′"1 for all but a $ (W′′) proportion of 0 ∈ ["1],

E0∈["1 ] ‖ 5 ‖�2
2 (0+11 ) ["2 ],2 (0+12 ) ["2 ]

( [# ]) ≥ W,

W′ ≪ (WW′′)$ (1) and W′′ ≪ W$ (1) , then

‖ 5 ‖*5
2 [W′"1"2 ]

( [# ]) ≫ W$ (1) ,

provided that "1"2 ≫ (WW′)−$ (1) .

Proof. By splitting Z up into arithmetic progressions modulo 2 and arguing as in the proof of Corol-

lary 5.6 of [15], it suffices to prove the result in the 2 = 1 case. In the 2 = 1 case, the proof of Lemma 5.5

of [15] goes through with a small number of changes. Because that proof is seven pages long, we will

mostly just indicate the differences. These differences mainly arise from the fact that "1 and "2 can

have very different sizes in this lemma, whereas in the corresponding lemma in [15], "1 = "2 = #1/2.

With a view towards applying Lemma 5.3, let *11 ,12
denote the set of all 0 ∈ ["1] such that

|0 + 11 | > W
′′"2 and gcd(0 + 11, 0 + 12) ≤ 1/W′′, so that |*11 ,12

| = (1−$ (W′′))"1 by hypothesis. The

set *11 ,12
will play the same role as the set *1 does in the proof in [15]. By applying Lemma 5.3 with

2 = 0 + 11, 3 = 0 + 12 and W1 = W2 = (W′′)2, we then get that

E0∈*11 ,12

1

#

∑
G∈Z

5 (G);0+12
(G)A0+11

(G) ≫ W$ (1) , (10)
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where

#{G ∈ [#] : ;0+12
(G) ≠ ;0+12

(G + (0 + 12)I) for some I ∈ [Y"2/(W
′′)2]} ≪

Y

(W′′)2
#

and

#{G ∈ [#] : A0+11
(G) ≠ A0+11

(G + (0 + 11)H) for some H ∈ [Y"2/(W
′′)2]} ≪

Y

(W′′)2
#

for every 0 < Y ≤ (W′′)2. Because 5 is supported on [#], we may assume without loss of generality

that ;0+12
and A0+11

are supported on [#] as well.

Inserting extra averaging in the G variable in the left-hand side of (10) by shifting by elements of

(0 + 11) [W
′"2], taking advantage of the almost-invariance of A0+11

under shifts from this progression

and then applying the Cauchy-Schwarz inequality once, we can assume that (10) holds (with a worse

implied constant in the exponent of W on the right-hand side) with A0+11
replaced by the function

A ′
0+11

(G) := E
`W′"2
F 5 (G + (0 + 11)F);0+12

(G + (0 + 11)F) for each 0 ∈ *11 ,12
. As in [15], we then apply

the Cauchy-Schwarz inequality to double the 0 variable, take advantage of the almost-invariance of

;0+12
, ;0′+12

and A ′
0′+11

again to insert extra averaging by elements of (0 + 12) [W
′"2], (0

′ + 12) [W
′"2]

and (0′ + 11) [W
′"2], respectively, and then use Lemma 2.2 to get that

E0,0′∈*11 ,12
‖A ′0+11

‖8

�
3
(0+12 ) [W

′"2 ], (0
′+12 ) [W

′"2 ], (0
′+11 ) [W

′"2 ]
( [# ])

≫ W$ (1) ,

assuming that W′ ≪ W$ (1) .

One can then continue to argue in an almost identical manner as in [15], with the only differences

being that we use Lemma 2.2 in place of the version of the Gowers-Cauchy-Schwarz inequality used

in [15] and, instead of the measures a0,0′,W8 (using the notation of that paper) being supported on an

interval of length on the order of # , they are supported on an interval of length on the order of "1"2,

to get that

E0∈["1 ] ‖ 5 ;0+12
‖*3

[W′"1"2 ]
( [# ]) ≫ W$ (1) .

Taking advantage of the almost-invariance of ;0+12
and applying the Cauchy-Schwarz inequality as in

the end of the proof of Lemma 5.5 of [15], the above inequality implies that

Eℎ1 ,ℎ
′
1
,ℎ2 ,ℎ

′
2
,ℎ3 ,ℎ

′
3
∈[W′"1"2 ]

[
E0∈["1 ] ‖Δ

′
(ℎ1 ,ℎ

′
1
) , (ℎ2 ,ℎ

′
2
) , (ℎ3 ,ℎ

′
3
) 5 ‖�1

(0+11 ) [W
′"1"2 ]

( [# ])

]
≫ W$ (1) .

We can then apply Lemma 5.4 to the inner average to conclude. �

Now we can finally prove Lemma 5.1 in general.

Proof of Lemma 5.1. The proof of the lemma proceeds by induction on B, with the B = 1 and B = 2

cases handled in Lemmas 5.4 and 5.5, respectively. So suppose that the result holds for a general B ≥ 2,

and assume that 11, . . . , 1B+1 ∈ Z satisfy the hypotheses of the lemma. Let 5 : Z→ C be a 1-bounded

function supported on [#] such that E0∈["1 ] ‖ 5 ‖�B+1

(2 (0+18 ) ["2 ])
B+1
8=1

( [# ]) ≥ W.

For each 0 ∈ ["1] and ℎ, ℎ′ ∈ ["2]
B−1, we define the function 60,ℎ,ℎ′ : Z→ C by

Δ
′

(2 (0+18) (ℎ8 ,ℎ
′
8
))B−1
8=1

5 (G) = 5

(
G +

B−1∑
8=1

2(0 + 18)ℎ8

)
60,ℎ,ℎ′ (G).
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Note that 60,ℎ,ℎ′ is 1-bounded because 5 is 1-bounded. Because gcd(0 + 1B , 0 + 1B+1) < 1/W′′ for all

but a $B (W
′′)-proportion of the 0 ∈ ["1], we can thus apply Lemma 5.3 to deduce that�������E 0∈["1 ]

ℎ1 ,...,ℎB−1∈["2 ]
ℎ′

1
,...,ℎ′

B−1
∈["2 ]

1

#

∑
G∈Z

5 (G +

B−1∑
8=1

2(0 + 18)ℎ8)60,ℎ,ℎ′ (G);0,ℎ,ℎ′ (G)A0,ℎ,ℎ′ (G)

������� ≫ W$B (1) , (11)

where, for all 0 ∈ ["1] and ℎ, ℎ′ ∈ ["2]
B−1, we have

#{G ∈ [#] : A0,ℎ,ℎ′ (G) ≠ A0,ℎ,ℎ′ (G + (0 + 1B+1)I) for some H ∈ [Y"2/(W
′′)2]} ≪B

Y

(W′′)2
#

and

#{G ∈ [#] : ;0,ℎ,ℎ′ (G) ≠ ;0,ℎ,ℎ′ (G + (0 + 1B)I) for some I ∈ [Y"2/(W
′′)2]} ≪B

Y

(W′′)2
#

for all 0 < Y < (W′′)2. (For the$ (W′′) proportion of 0 ∈ ["1] not satisfying the size or greatest common

divisor hypotheses, we can just take A0,ℎ,ℎ′ and ;0,ℎ,ℎ′ to be identically zero.)

We rearrange the left-hand side of (11) as

����� 1

#

∑
G∈Z

Eℎ1 ,...,ℎB−1∈["2 ] 5 (G +

B−1∑
8=1

2(0 + 18)ℎ8)

(
E 0∈["1 ]
ℎ′

1
,...,ℎ′

B−1
∈["2 ]

60,ℎ,ℎ′ (G);0,ℎ,ℎ′ (G)A0,ℎ,ℎ′ (G)

)�����
and then apply the Cauchy-Schwarz inequality to get that

E 0,0′∈["1 ]
ℎ1 ,...,ℎB−1∈["2 ]
ℎ′

1
,...,ℎ′

B−1
∈["2 ]

:′
1
,...,:′

B−1
∈["2 ]

1

#

∑
G∈Z

60,ℎ,ℎ′ (G)60′,ℎ,:′ (G);0,ℎ,ℎ′ (G);0′,ℎ,:′ (G)A0,ℎ,ℎ′ (G)A0′,ℎ,:′ (G) ≫B W
$B (1) ,

using that 5 is 1-bounded and supported on [#]. By the pigeonhole principle, there exists ℎ ∈ ["2]
B−1

such that

E 0,0′∈["1 ]
ℎ′

1
,...,ℎ′

B−1
∈["2 ]

:′
1
,...,:′

B−1
∈["2 ]

1

#

∑
G∈Z

60,ℎ,ℎ′ (G)60′,ℎ,:′ (G);0,ℎ,ℎ′ (G);0′,ℎ,:′ (G)A0,ℎ,ℎ′ (G)A0′,ℎ,:′ (G) ≫B W
$B (1) . (12)

Fix this ℎ.

Because the quantity inside of the averages on the left-hand side of (12) is ≪B 1 for all 0, 0′ ∈ ["1]

and ℎ′, : ′ ∈ ["2]
B−1, we have that this quantity is ≫B W

$B (1) for a ≫B W
$B (1) proportion of 0, 0′ ∈ ["1]

and ℎ′, : ′ ∈ ["2]
B−1. For such 0, 0′, ℎ′, : ′, we have that

W$B (1) ≪B

1

#

∑
G∈Z

Eℓ1 ,...,ℓ4∈[W′"2 ] (60,ℎ,ℎ′60′,ℎ,:′)(G + (0 + 1B , 0
′ + 1B , 0 + 1B+1, 0

′ + 1B+1) · ℓ)

;0,ℎ,ℎ′ (G + (0′ + 1B , 0 + 1B+1, 0
′ + 1B+1) · (ℓ2, ℓ3, ℓ4))

;0′,ℎ,:′ (G + (0 + 1B , 0 + 1B+1, 0′ + 1B+1) · (ℓ1, ℓ3, ℓ4))

A0,ℎ,ℎ′ (G + (0 + 1B , 0
′ + 1B , 0

′ + 1B+1) · (ℓ1, ℓ2, ℓ4))

A0′,ℎ,:′ (G + (0 + 1B , 0′ + 1B , 0 + 1B+1) · (ℓ1, ℓ2, ℓ3)),

by the almost-invariance of ;0,ℎ,ℎ′ (G), ;0′,ℎ,:′ (G), A0,ℎ,ℎ′ (G) and A0′,ℎ,:′ (G) under shifts by elements of
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their corresponding progressions, and then, using Lemma 2.2, we thus deduce that

Eℓ1 ,...,ℓ4∈[W′"2 ]
ℓ′

1
,...,ℓ′

4
∈[W′"2 ]

1

#

∑
G∈Z

Δ
′
(0+1B) (ℓ1 ,ℓ

′
1
) , (0′+1B) (ℓ2 ,ℓ

′
2
) , (0+1B+1) (ℓ3 ,ℓ

′
3
) , (0′+1B+1) (ℓ4 ,ℓ

′
4
) (60,ℎ,ℎ′60′,ℎ,:′) (G) ≫ W$B (1) ,

assuming that W′ ≪B W
$B (1) .

Expanding the definition of 60,ℎ,ℎ′ and 60′,ℎ,:′ and using that theΔ ′ operator distributes over products

of functions, it follows that the quantity

E 0,0′∈["1 ]
ℎ′

1
,...,ℎ′

B−1
∈["2 ]

:′
1
,...,:′

B−1
∈["2 ]

ℓ1 ,...,ℓ4∈[W
′"2 ]

ℓ′
1
,...,ℓ′

4
∈[W′"2 ]

1

#

∑
G∈Z

∏
l∈{0,1}B−1

l≠0

[ 50,0′,ℎ,ℓ,ℓ′,l (G + (2(0 + 18)
B−1
8=1 ℎ

′
8) · l)·

5 ′
0,0′,ℎ,ℓ,ℓ′,l

(G + (2(0′ + 18)
B−1
8=1

: ′
8
) · l)]

is ≫B W
$B (1) , where

50,0′,ℎ,ℓ,ℓ′,l (G) := Δ
′
(0+1B) (ℓ1 ,ℓ

′
1
) , (0′+1B) (ℓ2 ,ℓ

′
2
) , (0+1B+1) (ℓ3 ,ℓ

′
3
) , (0′+1B+1) (ℓ4 ,ℓ

′
4
) 5 (G+(2(0+18)ℎ8)

B−1
8=1 · (1−l))

and

5 ′
0,0′,ℎ,ℓ,ℓ′,l

(G) := Δ
′
(0+1B) (ℓ1 ,ℓ

′
1
) , (0′+1B) (ℓ2 ,ℓ

′
2
) , (0+1B+1) (ℓ3 ,ℓ

′
3
) , (0′+1B+1) (ℓ4 ,ℓ

′
4
) 5 (G+(2(0

′+18)ℎ8)
B−1
8=1 ·(1−l)).

Taking the averages over ℎ′
2
, . . . , ℎ′

B−1
∈ ["2] and : ′

2
, . . . , : ′

B−1
∈ ["2] inside, we can rewrite the

average above as

E 0,0′∈["1 ]
ℎ′

1
,:′

1
∈["2 ]

ℓ1 ,...,ℓ4∈[W
′"2 ]

ℓ′
1
,...,ℓ′

4
∈[W′"2 ]

1

#

∑
G∈Z

[ 50,0′,ℎ,ℓ,ℓ′,l0
(G + 2(0 + 11)ℎ

′
1) 5

′
0,0′,ℎ,ℓ,ℓ′,l0

(G + 2(0′ + 11):
′
1
)·

D0,0′,ℎ′
1
,ℎ,ℓ,ℓ′ (G)D

′
0,0′,:′

1
,ℎ,ℓ,ℓ′

(G)],

where l0 = (1, 0, . . . , 0) and D0,0′,ℎ′
1
,ℎ,ℓ,ℓ′ (G) and D′

0,0′,:′
1
,ℎ,ℓ,ℓ′

(G) equal

Eℎ′
2
,...,ℎ′

B−1
∈["2 ]

∏
l∈{0,1}B−2

l≠0

()2 (0+11)ℎ
′
1
50,0′,ℎ,ℓ,ℓ′,1l · 50,0′,ℎ,ℓ,ℓ′,0l) (G + (2(0 + 18)ℎ

′
8)
B−1
8=2 · l)

and

E:′
2
,...,:′

B−1
∈["2 ]

∏
l∈{0,1}B−2

l≠0

()2 (0′+11):
′
1
5 ′
0,0′,ℎ,ℓ,ℓ′,1l

· 5 ′
0,0′,ℎ,ℓ,ℓ′,0l

) (G + (2(0′ + 18):
′
8)
B−1
8=2 · l),

respectively.

By Lemma 2.2, if 6 : Z → C is any function supported on the interval [#] such that

| 1
#

∑
G∈Z 5 (G)D0,0′,ℎ′

1
,ℎ,ℓ,ℓ′ (G) | ≥ X, then ‖ 5 ‖

�
B−2
2 (0+12 ) ["2 ],...,2 (0+1B−1 ) ["2 ]

( [# ]) ≥ X. In this situation, we

say thatD0,0′,ℎ′
1
,ℎ,ℓ is structured for the norm ‖ · ‖

�
B−2
2 (0+12 ) ["2 ],...,2 (0+1B−1 ) ["2 ]

( [# ]) . Similarly,D′
0,0′,:′

1
,ℎ,ℓ,ℓ′

is structured for the norm ‖ · ‖
�
B−2
2 (0′+12 ) ["2 ],...,2 (0

′+1B−1 ) ["2 ]
( [# ]) . Using that D0,0′,ℎ′

1
,ℎ,ℓ,ℓ′ is structured for

‖ · ‖
�
B−2
2 (0+12 ) ["2 ],...,2 (0+1B−1 ) ["2 ]

( [# ]) for every 0, 0′ ∈ ["1], ℎ
′
1
∈ ["2] and ℓ, ℓ′ ∈ [W′"2]

4, we thus
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deduce that

W$B (1) ≪B E 0,0′∈["1 ]
ℎ′

1
,:′

1
∈["2 ]

ℓ1 ,...,ℓ4∈[W
′"2 ]

ℓ′
1
,...,ℓ′

4
∈[W′"2 ]

ℎ′′
2
,...,ℎ′′

B−1
∈["2 ]

ℎ′′′
2
,...,ℎ′′′

B−1
∈["2 ]

1

#

∑
G∈Z

[
Δ

′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2

50,0′,ℎ,ℓ,l0
(G + 2(0 + 11)ℎ

′
1)

Δ ′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2

5 ′
0,0′,ℎ,ℓ,l0

(G + 2(0′ + 11):
′
1
)

Δ
′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2

D
′
0,0′,:′

1
,ℎ,ℓ,ℓ′

(G)

]
.

We now analyze, for each 0, 0′ ∈ ["1], :
′
1

∈ ["2] and ℓ, ℓ′ ∈ [W′"2]
4, the function

Δ ′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2

D′
0,0′,:′

1
,ℎ,ℓ,ℓ′

(G), which equals

E
:l

′

2
,...,:l

′

B−1
∈["2 ]

l′∈{0,1}B−2

∏
l,l′∈{0,1}B−2

l≠0

5 ′
0,0′,:′

1
,ℎ,ℎ′′,ℎ′′′,ℓ,ℓ′,l,l′ (G + (2(0′ + 18)

B−1
8=2 :

l′

8 ) · l), (13)

where 5 ′
0,0′,:′

1
,ℎ,ℎ′′,ℎ′′′,ℓ,ℓ′,l,l′ (G) equals

()2 (0′+11):
′
1
5 ′
0,0′,ℎ,ℓ,ℓ′,1l

· 5 ′
0,0′,ℎ,ℓ,ℓ′,0l

) (G + (2(0 + 18)ℎ8))
B−1
8=2 · l′ + (2(0 + 18)ℎ

′′′
8 )B−1

8=2 · (1 − l′)).

It is not hard to show that any function of the form (13) can be approximated by an average of structured

functions for the norm ‖ · ‖
�
B−2
2 (0′+12 ) [W

′"2 ],...,2 (0
′+1B−1 ) [W

′"2 ]
( [# ]) . More specifically, any function of the form

D(G) := E
:l

′

1
,...,:l

′

C ∈["2 ]

l′∈{0,1}C

∏
l,l′∈{0,1}C

l≠0

5l,l′ (G + (2(0′ + 18)
C
8=1:

l′

8 ) · l)

can be approximated by

E(G) := E
:l

′

1
,...,:l

′

C ∈["2 ]

l′∈{0,1}C

E:0
1
,...,:0

1
∈[W′"2 ]

∏
l,l′∈{0,1}C

l≠0

5 ′
l,l′,:l

′ (G + (2(0′ + 18)
C
8=1:

0
8 ) · l),

where 5 ′
l,l′,:l

′ (G) := 5l,l′ (G + (2(0′ + 1′8):
l′

1
) ·l), assuming that W′ ≪ W$B (1) and all of the 5l,l′s

are 1-bounded and supported on an interval of length ≪ # .

Indeed, to see that E approximates D, we make the change of variables :l
′

8
↦→ :l

′

8
+ :0

8
for each

l′ ∈ {0, 1}C and 8 = 1, . . . , C and average over :0
1
, . . . , :0

C ∈ [W′"2] to get that D(G) equals

E:0
1
,...,:0

C ∈[W
′"2 ]

∑
:l

′

1
,...,:l

′

C ∈Z

l′∈{0,1}C

∏
l′∈{0,1}C

8=1,...,C

1["2 ] (:
l′

8
+ :0

8
)

"2

∏
l,l′∈{0,1}C

l≠0

5l,l′ (G+(2(0′+18) (:
l′

8 +:0
8 ))

C
8=1 ·l).

Note that, for every G ∈ Z, one can replace each 1["2 ] (:
l′

8
+ :0

8
) above with 1["2 ] (:

l′

8
), at the cost of

an error of size $ (W′), because the functions 1["2 ] (·) and 1["2 ] (· + :
0
8
) are equal outside of a set of

size $ (W′"2). Hence, E(G) = D(G) +$C (W
′) for all G ∈ Z. Note, too, that E(G) and D(G) are supported

on intervals of size ≪ # , so that they are in fact both equal to 0 outside of a set of size ≪ # . As a

consequence, we have that ‖D − E‖ℓ1 ≪C W
′# .
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In the particular situation we care about, the above argument implies that there exists a finite set ,

for which

E 0,0′∈["1 ]
ℎ′

1
,:′

1
∈["2 ]

ℓ1 ,...,ℓ4∈[W
′"2 ]

ℓ′
1
,...,ℓ′

4
∈[W′"2 ]

ℎ′′
2
,...,ℎ′′

B−1
∈["2 ]

ℎ′′′
2
,...,ℎ′′′

B−1
∈["2 ]

F ∈,

1

#

∑
G∈Z

[
Δ

′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2

50,0′,ℎ,ℓ,ℓ′,l0
(G + 2(0 + 11)ℎ

′
1)

Δ ′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2

5 ′
0,0′,ℎ,ℓ,ℓ′,l0

(G + 2(0′ + 11):
′
1
)D′

0,0′,:′
1
,ℎ,ℎ′′,ℎ′′′,ℓ,ℓ′,F

(G)

]

is ≫B W
$B (1) , where each D′

0,0′,:′
1
,ℎ,ℎ′′,ℎ′′′,ℓ,ℓ′,F

is structured for ‖ · ‖
�
B−2
2 (0′+12 ) [W

′"2 ],...,2 (0
′+1B−1 ) [W

′"2 ]
( [# ]) .

As a consequence, we get that

E 0,0′∈["1 ]
ℎ′

1
,:′

1
∈["2 ]

ℓ1 ,...,ℓ4∈[W
′"2 ]

ℓ′
1
,...,ℓ′

4
∈[W′"2 ]

ℎ′′
2
,...,ℎ′′

B−1
∈["2 ]

ℎ′′′
2
,...,ℎ′′′

B−1
∈["2 ]

:′′
2
,...,:′′

B−1
∈[W′"2 ]

:′′′
2
,...,:′′′

B−1
∈[W′"2 ]

1

#

∑
G∈Z

[
Δ

′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2
, (2 (0′+18) (:

′′
8
,:′′′

8
))B−1
8=2

50,0′,ℎ,ℓ,ℓ′,l0
(G + 2(0 + 11)ℎ

′
1)

Δ ′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2
, (2 (0′+18) (:

′′
8
,:′′′

8
))B−1
8=2

5 ′
0,0′,ℎ,ℓ,ℓ′,l0

(G + 2(0′ + 11):
′
1
)

]

is ≫B W
$B (1) . Making the change of variables G ↦→ G − 2(0′ + 11):

′
1

and arguing as in the proof of

Lemma 5.4, it follows that

E 0,0′∈["1 ]
:1 ,:

′
1
,:2 ,:

′
2
∈[W′"1"2 ]

ℓ1 ,...,ℓ4∈[W
′"2 ]

ℓ′
1
,...,ℓ′

4
∈[W′"2 ]

ℎ′′
2
,...,ℎ′′

B−1
∈["2 ]

ℎ′′′
2
,...,ℎ′′′

B−1
∈["2 ]

:′′
2
,...,:′′

B−1
∈[W′"2 ]

:′′′
2
,...,:′′′

B−1
∈[W′"2 ]

1

#

∑
G∈Z

[
Δ

′

(2 (0+18) (ℎ
′′
8
,ℎ′′′

8
))B−1
8=2
, (2 (0′+18) (:

′′
8
,:′′′

8
))B−1
8=2
,2 (:1 ,:

′
1
) ,2 (:2 ,:

′
2
)
50,0′,ℎ,ℓ,ℓ′,l0

(G)

]

is ≫B W
$B (1) , provided that "1"2 ≫B (WW

′)$B (1) . Recalling the definition of 50,0′,ℎ,ℓ,ℓ′,l0
, making the

change of variables G ↦→ G − (2(0 + 18)ℎ8) · (0, 1, . . . , 1) in the above, using the pigeonhole principle to

restrict the ℎ′′8 s and ℎ′′′8 s to lie in intervals of length W′"2, applying Lemma 2.3 and making a change

of variables in G now yields

W$B (1) ≪B E 0,0′∈["1 ]
:1 ,:

′
1
,:2 ,:

′
2
∈[W′"1"2 ]

ℎ′′
1
,ℎ′′

2
,...,ℎ′′B ∈[W

′"2 ]

ℎ′′′
1
,...,ℎ′′′B ∈[W′"2 ]

:′′
1
,...,:′′B ∈[W

′"2 ]

:′′′
1
,...,:′′′B ∈[W′"2 ]

1

#

∑
G∈Z

Δ
′
(2 (0+18) (ℎ

′′
8
,ℎ′′′

8
))B
8=1
, (2 (0′+18) (:

′′
8
,:′′′

8
))B
8=1
,2 (:1 ,:

′
1
) ,2 (:2 ,:

′
2
) 5 (G)

= E 0′∈["1 ]
:1 ,:

′
1
,:2 ,:

′
2
∈[W′"1"2 ]

:′′
1
,...,:′′B ∈[W

′"2 ]

:′′′
1
,...,:′′′B ∈[W′"2 ]

[
E0∈["1 ] ‖Δ

′
(2 (0′+18) (:

′′
8
,:′′′

8
))B
8=1
,2 (:1 ,:

′
1
) ,2 (:2 ,:

′
2
) 5 ‖

2B

�
B

(2 (0+18 ) [W
′"2 ])

B
8=1

( [# ])

]
.

We conclude by applying the induction hypothesis twice. �
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For the sake of convenience, we record next how to combine Lemmas 5.1 and 5.2 for use in the proof

of Theorem 3.5.

Lemma 5.6. Let #, "1, "2 > 0 with "2 ≤ "1 and "1"2 ≤ #/2 and 5 : Z → C be a 1-bounded

function supported on the interval [#]. If

Eℎ1 ,...,ℎB ∈["1 ]
ℎ′

1
,...,ℎ′B ∈["1 ]

‖ 5 ‖
�

2B−1
( (2 (ℎ−ℎ′) ·l) ["2 ])0≠l∈{0,1}B

( [# ]) ≥ W

and W′ ≪B W
$B (1) , then there exists an B′ ≪B 1 such that

E ℎ1 ,...,ℎB−1∈["1 ]
ℎ′

1
,...,ℎ′

B−1
∈["1 ]

ℓ1 ,...,ℓB′ ∈[W
′"1"2 ]

ℓ′
1
,...,ℓ′

B′
∈[W′"1"2 ]

‖Δ ′

(2 (ℓ8 ,ℓ
′
8
))B

′

8=1

5 ‖
�

2B−1−1
( (2 (ℎ−ℎ′) ·l) ["2 ])0≠l∈{0,1}B−1

( [# ])
≫B W

$B (1) ,

provided that "1"2 ≫B (WW
′)−$B (1) .

Proof. Using Hölder’s inequality and expanding the definition of the Gowers box norm gives

Eℎ1 ,...,ℎB ∈["1 ]
ℎ′

1
,...,ℎ′B ∈["1 ]

1

#

∑
G∈Z

E:l ,:′l ∈["2 ]
0≠l∈{0,1}B

Δ
′
( (2 (ℎ−ℎ′) ·l) (:l ,:

′
l))0≠l∈{0,1}B

5 (G) ≥ W$B (1) .

For all but a$B (W
$B (1) ) proportion of ℎ1, . . . , ℎB−1, ℎ

′
1
, . . . , ℎ′B , we have |ℎB − ℎ

′
B + (ℎ1 − ℎ

′
1
, . . . , ℎB−1 −

ℎ′
B−1

) · l| > W$B (1)"1 for every l ∈ {0, 1}B−1 for all but a $B (W
$B (1) )-proportion of ℎB ∈ ["1] and,

by Lemma 5.2, we have

gcd(ℎB − ℎ
′
B + (ℎ1 − ℎ

′
1, . . . , ℎB−1 − ℎ

′
B−1) · l, ℎB − ℎ

′
B + (ℎ1 − ℎ

′
1, . . . , ℎB−1 − ℎ

′
B−1) · l

′) < W−$B (1)

for every pair of distinct l, l′ ∈ {0, 1}B−1 for all but a $B (W
$B (1) )-proportion of ℎB ∈ ["1]. For such

ℎ1, . . . , ℎB−1, ℎ
′
1
, . . . , ℎ′B ∈ ["1] we apply Lemma 5.1 with ℎB playing the role of 0, 1l = −ℎ′B + (ℎ1 −

ℎ′
1
, . . . , ℎB−1 − ℎ

′
B−1

) · l for each l ∈ {0, 1}B−1 and the function Δ ′
( (2 (ℎ−ℎ′) ·l′′) (:l′′0 ,:

′
l′′0

))
0≠l′′∈{0,1}B−1

5

playing the role of 5 . This yields

E:l′′0 ,:
′
l′′0

∈["2 ]

0≠l′′∈{0,1}B−1

Eℎ1 ,...,ℎB−1∈["1 ]
ℎ′

1
,...,ℎ′

B−1
∈["1 ]

‖Δ ′
( (2 (ℎ−ℎ′) ·l′′) (:l′′0 ,:

′
l′′0

))
0≠l′′∈{0,1}B−1

5 ‖2B
′

* B′

2 [W′"1"2 ]
( [# ])

≫B W
$B (1)

for some B′ ≪B 1 by the positivity of Gowers box norms. Expanding the definition of the *B
′
-norm

shows that the left-hand side above equals

E:l′′0 ,:
′
l′′0

∈["2 ]

0≠l′′∈{0,1}B−1

E ℎ1 ,...,ℎB−1∈["1 ]
ℎ′

1
,...,ℎ′

B−1
∈["1 ]

ℓ1 ,...,ℓB′ ∈[W
′"1"2 ]

ℓ′
1
,...,ℓ′

B′
∈[W′"1"2 ]

1

#

∑
G∈Z

Δ
′

(2 (ℓ8 ,ℓ
′
8
))B

′

8=1

Δ
′
( (2 (ℎ−ℎ′) ·l′′) (:l′′0 ,:

′
l′′0

))
0≠l′′∈{0,1}B−1

5 (G),

and then using that the operators Δ ′

(2 (ℓ8 ,ℓ
′
8
))B

′

8=1

and Δ ′
( (2 (ℎ−ℎ′) ·l′′) (:l′′0 ,:

′
l′′0

))
0≠l′′∈{0,1}B−1

commute gives

the conclusion of the lemma. �

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. For each pair of B-tuples ℎ, ℎ′ ∈ ["1]
B , we associate linear polynomials

!ℎ,ℎ′,l ∈ Z[0] with !ℎ,ℎ′,l (0) := 2(ℎ · l + ℎ′ · (1 − l))0 and 1-bounded functions 5ℎ,ℎ′,l : Z→ C
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with 5ℎ,ℎ′,l := )(11ℎ1 ,...,1BℎB) ·l+(11ℎ
′
1
,...,1Bℎ

′
B) ·(1−l) 5 for each l ∈ {0, 1}B . Enumerate the polynomi-

als !1, . . . , !2B in {!ℎ,ℎ′,l : l ∈ {0, 1}B} and corresponding functions 51, . . . , 52B in { 5ℎ,ℎ′,l : l ∈

{0, 1}B} by picking any ordering such that !2B = !ℎ,ℎ′,1, so that the assumption (2) implies that

Eℎ1 ,...,ℎB ∈["1 ]
ℎ′

1
,...,ℎ′B ∈["1 ]

Λ
$B (�# ) ,"2

!1 ,...,!2B
(1, 51, . . . , 52B ) ≥ X

$B (1) .

Then, because |2(ℎ ·l+ℎ′(1−l))0 | ≪B # for all 0 ∈ ["2] and ℎ, ℎ′ ∈ ["1], we can apply Lemma 4.10

to deduce that

Eℎ1 ,...,ℎB ∈["1 ] ‖ 5 ‖
22B−1

�
2B−1
( (2 (ℎ−ℎ′) ·l) [W′"2 ])l∈�

( [# ])
≫�,B X

$B (1) ,

provided that X′ ≪�,B X
$B (1) . The conclusion of the lemma now follows by B applications of Lemma 5.6.

�

The following lemma shows how Theorem 3.5 can be used to control averages of Gowers box norms

of the type appearing in Proposition 3.4 in terms of averages of Gowers box norms in which some of

the differencing directions ?(0) are replaced by directions ?′(0) of smaller degree depending on fewer

entries of 0. We will then prove Proposition 3.6 by applying this lemma many times.

Lemma 5.7. Let #, "1, "2 > 0 with "2 ≤ "1 and "1"2 ≤ #/|2 |, � and � ⊂ Z= be finite sets,

?8 ∈ Z[01, . . . , 0=] for each 8 ∈ �, and 50 : Z→ C for each 0 ∈ � be 1-bounded functions supported on

the interval [#]. Let :8 ∈ N for each 8 ∈ �, set C :=
∑
8∈� :8 , define finite sets �′ := ((−"2, "2) ∩ Z)

C ,

� ′ := {0, 1}{(8,A ):8∈� ,A ∈[:8 ] } \ {0} and A′ ⊂ Z[01, . . . , 0=] [08,A : 8 ∈ �, A ∈ [:8]] by

A
′ := {(?8 (01, . . . , 0=)08,A )8∈� ,A ∈[:8 ] · l : l ∈ � ′}

and set ?′l (01, . . . , 0=, (08,A )8∈� ,A ∈[:8 ]) := (?8 (01, . . . , 0=)08,A )8∈� ,A ∈[:8 ] · l for each l ∈ � ′. Further

assume that

max
8∈�

max
0∈�

|?8 (0) |"1"2 ≤ �#. (14)

Let :l ∈ N for each l ∈ � ′. If

E0∈�E0′∈�′ ‖ 50‖
�

∑
l∈� ′ :l

(?′l (0,0′) ["1 ])l∈� ′,A′∈[:l ]
( [# ])

≥ W

and W′ ≪�,C, (:l)l∈� ′
W$C (1) , then for every (80, A0) ∈ � × [:80 ], we have

E0∈�E1∈� ‖ 50‖
�
C′+

∑
l∈� :′l

(?80
(0) [W′"1"2 ])D∈[C′ ] , (@l (0,1) ["1 ])l∈�,A′∈[:′l ]

( [# ])
≫�,C, (:l )l∈� ′

W
$C, (:l )l∈� ′

(1)
,

where

1. � := ((−"2, "2) ∩ Z)
C−1,

2. � := {0, 1}{(8,A ):8∈� ,A ∈[:8 ] }\{(80 ,A0) } \ {0} for some C ′ ≪C , (:l)l∈� ′
1

3. and, for l ∈ �, we have @l := ?′l′ and : ′l := :l′ , where

l′
(8,A ) :=

{
l (8,A ) (8, A) ≠ (80, A0)

0 (8, A) = (80, A0)
,

provided that "1"2 ≫�,C, (:l)l∈� ′
(WW′)

−$C, (:l )l∈� ′
(1)

.
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For example, Lemma 5.7 allows us to control the average

E01∈�E |00,1 |, |00,2 |<"2
‖ 50‖�3

0100,1 ["1 ],0100,2 ["1 ], (0100,1+0100,2 ) ["1 ]
( [# ])

in terms of an average of the form

E01∈�Eℓ1 ,...,ℓC′ ∈[W′"1"2 ]
ℓ′

1
,...,ℓ′

C′
∈[W′"1"2 ]

E |00,2 |<"2
‖Δ ′

01 (ℓ1 ,ℓ
′
1
) ,...,01 (ℓC′ ,ℓ

′
C′
) 50‖�1

0100,2 ["1 ]
( [# ])

for some C ′ ≪ 1.

Proof. Because ‖ 50‖
�

∑
l∈� ′ :l

(?′l (0,0′) ["1 ])l∈� ′,A′∈[:l ]
( [# ])

≤ 1 for all 0 ∈ � and 0′ ∈ �′, it follows that for at

least a ≫ W proportion of 0 ∈ � and (08,A )8∈� ,A ∈[:8 ], (8,A )≠(80 ,A0) ∈ ((−"2, "2) ∩ Z)
C−1 we have

E |080 ,A0
|<"2

‖ 50‖
�

∑
l∈� ′ :l

(?′l (0,0′) ["1 ])l∈� ′,A′∈[:l ]
( [# ])

≫ W.

Expanding the definition of the Gowers box norm, we have that

E |080 ,A0
|<"2

1

#

∑
G∈Z

Eℎl,A′ ,ℎ
′
l,A′

∈["1 ]

l∈� ′,A ′∈[:l ]

Δ
′
(?′l (0,0′) (ℎl,A′ ,ℎ

′
l,A′

))l∈� ′,A′∈[:l ]
50 (G) ≫ W

$C, (:l )l∈� ′
(1)
, (15)

which is of the form that Theorem 3.5 can be applied to. Indeed, the left-hand side of (15) can be written

as

E<l′,A′ ,<
′
l′,A′

∈["1 ]

l′∈� ′,l′
(80 ,A0 )

=0

A ′∈[:l′ ]

E |080 ,A0
| ≤"2

1

#

∑
G∈Z

Eℎl,A′′ ,ℎ
′
l,A′′

∈["1 ]

l∈� ′,l(80 ,A0 )
=1

A ′′∈[:l ]

Δ
′
( (?80 (0)080 ,A0

+10,l) (ℎl,A′′ ,ℎ
′
l,A′′

))l∈� ′,l(80 ,A0 )
=1,A′′∈[:l ]

60,< (G),

where

10,l = (?8 (0)08,A )8∈� ,A ∈[:8 ] · l − ?80 (0)080 ,A0

and

60,< = Δ
′
( ( (?8 (0)08,A )8∈� ,A∈[:8 ] ·l

′) (<l′,A′ ,<
′
l′,A′

))l′∈� ′,l′
80 ,A0

=0,A′∈[:l′ ]
50 .

The conclusion of the lemma now follows from Theorem 3.5. �

We can now finally prove Proposition 3.6. As mentioned above, this will be done by applying

Lemma 5.7 many times. To illustrate how Lemma 5.7 will be applied, we will show how to control an

average of norms of the form ‖ · ‖
�
|�2 |

?8 (0) [#
1/3 ]

( [# ])
by a global *B-norm for some B ≪ 1, where �2 and

(?8)8∈�2 = A2(3, 1; (1, 2, 1)) are as in the example between Theorem 3.3 and Proposition 3.4.

Assuming that 5 : Z→ C is 1-bounded and supported on the interval [#] and that

E
00,1 ,00,2 ,0(1,0) ,1≤#

1
3

0(0,1) ,1 ,0(0,1) ,2 ,0(1,1) ,1≤#
1
3

‖ 5 ‖
�

15

( (6(00,10(1,0) ,1 ,00,20(0,1) ,1 ,00,20(0,1) ,2 , (00,1+00,2 )0(1,1) ,1 ) ·l) [#
1
3 ])

l∈{0,1}4\{0}

( [# ]) ≥ W,
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we apply Lemma 5.7 with (80, A0) = ((1, 0), 1) to deduce that

E
ℓ1 ,...,ℓB1

≤W′#
2
3

ℓ′
1
,...,ℓ′B1

≤W′#
2
3

00,1 ,00,2 ,0(0,1) ,1≤#
1
3

0(0,1) ,2 ,0(1,1) ,1≤#
1
3

‖Δ ′
600,1 (ℓ1 ,ℓ

′
1
) ,...,600,1 (ℓB1

,ℓ′B1
) 5 ‖�7

( (6(00,20(0,1) ,1 ,00,20(0,1) ,2 , (00,1+00,2 )0(1,1) ,1 ) ·l) [#
1
3 ])

l∈{0,1}3\{0}

( [# ])

is ≫ W$ (1) for some B1 ≪ 1 when W′ ≪ W$ (1) . For each fixed ℓ1, . . . , ℓB1 , ℓ
′
1
, . . . , ℓ′B1 , we apply

Lemma 5.7 with (80, A0) = ((0, 1), 2) to get that

E
ℓ1 ,...,ℓB1

≤W′#
2
3

ℓ′
1
,...,ℓ′B1

≤W′#
2
3

<1 ,...,<B2
≤W′#

2
3

<′
1
,...,<′

B2
≤W′#

2
3

00,1 ,00,2≤#
1
3

0(0,1) ,1 ,0(1,1) ,1≤#
1
3

‖Δ ′
600,1 (ℓ1 ,ℓ

′
1
) ,...,600,1 (ℓB1

,ℓ′B1
) ,

600,2 (<1 ,<
′
1
) ,...,600,2 (<B2

,<′
B2
)

5 ‖
�

3

( (6(00,20(0,1) ,1 , (00,1+00,2 )0(1,1) ,1 ) ·l) [#
1
3 ])

l∈{0,1}2\{0}

( [# ]) ≫ W$ (1)

for some B2 ≪ 1 when W′ ≪ W$ (1) and argue similarly with (80, A0) = ((0, 1), 1) and (80, A0) = ((1, 1), 1)

to deduce that

1

#

∑
G

E
ℓ1 ,...,ℓB1

,ℓ′
1
,...,ℓ′B1

≤W′#
2
3

<1 ,...,<B2
,<′

1
,...,<′

B2
≤W′#

2
3

D1 ,...,DB3
,D′

1
,...,D′B3

≤W′#
2
3

E1 ,...,EB4
,E′

1
,...,E′B4

≤W′#
2
3

00,1 ,00,2≤#
1
3

Δ
′

600,1 (ℓ1 ,ℓ
′
1
) ,...,600,1 (ℓB1

,ℓ′B1
) ,

600,2 (<1 ,<
′
1
) ,...,600,2 (<B2

,<′
B2
)

600,2 (D1 ,D
′
1
) ,...,600,2 (DB3

,D′B3
) ,

6(00,1+00,2) (E1 ,E
′
1
) ,...,6(00,1+00,2) (EB4

,E′B4
)

5 (G) ≫ W$ (1)

for some B3, B4 ≪ 1 and W′ ≪ W$ (1) . We write the above as

E
00,1 ,00,2≤#

1
3
‖ 5 ‖

�
B1+B2+B3+B4

( (6(00,1 ,00,2 ) ·l) [W′#
2
3 ])

l∈{0,1}2\{0},A′∈[:l ]

( [# ])
≫ W$ (1)

with : (1,0) = B1, : (0,1) = B2 + B3 and : (1,1) = B4, and apply Lemma 5.7 twice more with (80, A0) = (0, 2)

and then (80, A0) = (0, 1) to deduce that ‖ 5 ‖* B
[W′′# ]

( [# ]) ≫ W$ (1) for W′′ ≪ W$ (1) and some B ≪ 1.

Proof of Proposition 3.6. By applying Lemma 5.7
∑
8∈�ℓ−1

:8 times, once with (80, A0) = (8, A) for each

8 ∈ �ℓ−2 and A ≤ :8 , we get that

E0∈�‖ 5 ‖
�

∑
8∈�ℓ−2

C8

(?8 (0) [X
′"2 ])8∈�ℓ−2 ,A

′∈[C8 ]

( [# ])
≫�,ℓ X

$ℓ (1) , (16)

where 1 ≤ C8 ≪ℓ 1 for each 8 ∈ �ℓ−2, assuming that X′ ≪�,ℓ X
$ℓ (1) . More generally, whenever

9 = 1, . . . , ℓ − 1, from

E0∈�‖ 5 ‖
�

∑
8∈�ℓ− 9

C8

(?8 (0) [X
′" 9 ])8∈�ℓ− 9 ,A

′∈[C8 ]

( [# ])
≥ W

one can deduce

E0∈�‖ 5 ‖
�

∑
8∈�ℓ−( 9+1)

C8

(?8 (0) [X
′" ( 9+1) ])8∈�ℓ−( 9+1) ,A

′∈[C8 ]

( [# ])
≫�,ℓ W

$ℓ (1) ,
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where 1 ≤ C8 ≪ℓ 1 for each 8 ∈ �ℓ−( 9+1) , by applying Lemma 5.7 once with (80, A0) = (8, A) for each

8 ∈ �ℓ−( 9+1) and A ≤ :8 . Starting from (16) and repeating this implication ℓ − 2 more times gives the

conclusion of the proposition. �

6. Control by uniformity norms

In this section, we combine the results of Sections 4 and 5 to control the general average

Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) in terms of *B-norms of 5ℓ and �ℓ . We will also state and prove

Theorem 6.1, the control result for general polynomial progressions mentioned in the Introduction.

Theorem 3.7 follows almost immediately from the results already proven.

Proof of Theorem 3.7. Set 2′ := (deg %ℓ)!2ℓ . By making the change of variables G ↦→ G + 2′I in the

definition of Λ
# ,"
%1 ,...,%<

and averaging over I ∈ [X′"deg %ℓ ], we have that

�����EH∈[" ]kℓ+1 (%ℓ+1 (H)) · · ·k<(%< (H))
1

#

∑
G∈Z

(
EI∈[X′" ℓ ] 50(G + 2

′I) · · · 5ℓ (G + 2
′I + %ℓ (H))

)����� ≥ X.
By one application of the Cauchy-Schwarz inequality in the G and H variables, we thus get���EI,I′∈[X′" ℓ ]Λ

# ,"
%1 ,...,%ℓ

(Δ ′
2′ (I,I′) 50, . . . ,Δ

′
2′ (I,I′) 5ℓ)

��� ≫�,deg %ℓ X
2,

so it follows from Propositions 3.4 and 3.6 that

EI,I′∈[X′" ℓ ]

1

#

∑
G∈Z

Eℎ8 ,ℎ′8 ∈[X
′" ℓ ]

8=1,...,B

Δ2′ (ℎ1 ,ℎ
′
1
) ,...,2′ (ℎB ,ℎB′ ) (Δ2′ (I,I′) 5 ) (G) ≫�,deg %ℓ X

$deg %ℓ
(1)

for some B ≪ℓ 1, which gives the conclusion of the theorem. �

We now deduce control for Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) in terms of*B-norms of dual func-

tions by using the Cauchy-Schwarz inequality once and then applying Theorem 3.7.

Proof of Corollary 3.8. Note that Λ
# ,"
%1 ,...,%<

( 50, . . . , 5ℓ ;kℓ+1, . . . , k<) =
1
#

∑
G 5ℓ (G)�ℓ (G), so that an

application of the Cauchy-Schwarz inequality gives���Λ# ,"%1 ,...,%<
( 50, . . . , 5ℓ−1, �ℓ ;kℓ+1, . . . , k<)

��� ≥ X2.

Corollary 3.8 now follows from Theorem 3.7 with �ℓ (which is a 1-bounded function supported on an

interval of the form [$deg %ℓ (�#)]) playing the role of 5ℓ . �

6.1. Control for general polynomial progressions

In this subsection, we prove the following result, whose proof largely follows the proofs of Proposi-

tions 3.4 and 3.6.

Theorem 6.1. Let #, " > 0, %1, . . . , %< ∈ Z[H] be polynomials such that deg %1 ≤ · · · ≤ deg %< and

each %8 has leading coefficient 28 . There exists an B ≪deg %1 ,...,deg %<
1 such that the following holds. If

<′ := #{8 ∈ [<−1] : deg %8 = deg %<}, 1/� ≤ |28 |"
deg %</# ≤ � for each <−<′ ≤ 8 ≤ <, all of the

coefficients of %1, . . . , %< have absolute value bounded by � |2< |, 50, . . . , 5< : Z → C are 1-bounded

functions supported on the interval [#],

|Λ%1 ,...,%<
( 50, . . . , 5<) | ≥ X,
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and X′ ≪�,deg %1 ,...,deg %<
X$deg %1 ,...,deg %< (1) , then we have

‖ 5<‖�B
&1 ,...,&B

( [# ]) ≫�,deg %1 ,...,deg %<
X$deg %1 ,...,deg %< (1) ,

where each &8 equals (deg %<)!2< [X
′"deg %< ] or (deg %<)!(2< − 2 9 ) [X

′"deg %< ] for some < −<′ ≤

9 < <, provided that # ≫�,deg %1 ,...,deg %<
(|2< |/XX

′)$deg %1 ,...,deg %< (1) .

If 2<−(<′−1) , . . . , 2< are uniformly bounded or, more generally, are of the form 2′8@ for bounded 2′8 ,

then it follows easily from Theorem 6.1 that Λ%1 ,...,%<
( 50, . . . , 5<) is controlled by a *B-norm of 5<.

To prove Theorem 6.1, all we need beyond the results of Sections 4 and 5 is a more general version of

Lemma 4.7, which we now prove.

Lemma 6.2. Let#, " > 0 and %1, . . . , %< ∈ Z[H] be polynomials such that deg %1 ≤ · · · ≤ deg %< and

each %8 has leading coefficient 28 . If<
′ := #{8 ∈ [<−1] : deg %8 = deg %<}, 1/� ≤ |28 |"

deg %</# ≤ �

for each < − <′ ≤ 8 ≤ <, all of the coefficients of %1, . . . , %< have absolute value bounded by � |2< |,

50, . . . , 5< : Z→ C are 1-bounded functions supported on the interval [#],

|Λ%1 ,...,%<
( 50, . . . , 5<) | ≥ W,

and W′ ≪�,deg %1 ,...,deg %<
W$deg %1 ,...,deg %< (1) , then we have

E
`

0∈�

1

#

∑
G∈Z

EH∈[" ] 5<(G)
∏
8∈�

5 ′8 (G +&8 (0, H)) ≫�,deg %1 ,...,deg %<
W$deg %1 ,...,deg %< (1) ,

where

◦ � = {0, 1}C \ {0} for some C ≪deg %1 ,...,deg %<
1,

◦ � = ((−W′", W′") ∩ Z)C ,

◦ `(01, . . . , 0C ) =
1� (01 ,...,0C )

(2 ⌊W′" ⌋+1) C−1 `W′" (0C ),

◦ the collection Q := (&8)8∈� consists only of polynomials of degree deg %< − 1, each of which has

distinct leading coefficient, and the set of such leading coefficients is

{((deg %<)3101, . . . , (deg %<)3C0C ) · l : l ∈ �},

where each 38 equals 2< or 2< − 2 9 for some < − <′ ≤ 9 < <,

◦ we have

max
8∈�

max
0∈�

max
H∈[" ]

|&8 | (0, H) ≪�,deg %1 ,...,deg %<
#

◦ and 5 ′8 equals either 5< or 5< for all 8 ∈ �.

Proof. Arguing as in the proof of Lemma 4.7, we apply Lemma 4.4 C0 ≪deg %1 ,...,deg %<−<′−1
1 times to

deduce that

E
`0

0∈�0

1

#

∑
G∈Z

EH∈[" ] 50,0 (G)
∏
9∈�0

deg& 9≠0

6 9 ,0 (G +& 9 (01, . . . , 0C1 , H)) ≫C0 W
$C0

(1) ,

where �0 ⊂ [<] × {0, 1}C0 , �0 = ((−W′", W′") ∩ Z)C0 , `1 (01, . . . , 0C0 ) =
1�0

(01 ,...,0C0 )

(2 ⌊W′" ⌋+1) C0−1 `W′" (0C0 ),

Q0 := (&0) 9∈�0
consists only of polynomials of degree deg %< and constant (in H) polynomials, the

leading coefficients of degree deg %< polynomials in Q0 are 2<−<′ , . . . , 2<, there are 2C0 polynomials

of degree deg %< in Q0 with leading coefficient equal to 28 for each < − <′ ≤ 8 ≤ < with set
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of degree deg %< − 1 coefficients equal to {(2801, . . . , 280C0 ) · l : l ∈ {0, 1}C0 }, 50,0 is 1-bounded

for each 0 ∈ �0 and 6 9 ,0 equals either 5 9′ or 5 9′ if & 9 has leading coefficient 2 9′ , provided that

W′ ≪�,deg %1 ,...,deg %<−<′−1
W
$deg %1 ,...,deg %<−<′−1

(1) , by arguing exactly as in the proof of Lemma 4.7,

except using the assumption that the coefficients of %1, . . . , %< are all bounded in absolute value by

� |2< | in place of the (�, @)-coefficients hypothesis.

The conclusion of the lemma now follows by arguing almost exactly as in the proof of Lemma 4.8,

with the only differences being that we start with more polynomials of degree deg %< with each leading

coefficient and we already have an ordering 2<−(<′−1) , . . . , 2< of these coefficients (and do not care

whether they have any particular structure), by applying Lemma 4.5 after repeating the following <′−1

times: apply Lemma 4.6 once and then Lemma 4.4 as many times as necessary until we can apply one

of Lemmas 4.5 or 4.6. �

The proof of Theorem 6.1 is exactly the same as the proof of Theorem 3.7, except that one uses

Lemma 6.2 in place of Lemma 4.7 and does not need to do the initial application of the Cauchy-Schwarz

inequality done in the proof of Theorem 3.7.

Proof of Theorem 6.1. Following the proof of Proposition 3.4, we apply Lemma 6.2 once, Lemma 4.8

(deg %< − 2) times, Lemma 4.10 once and then, following the proof of Proposition 3.6, Lemma 5.7

≪deg %1 ,...,deg %<
1 times. �

7. Lemmas for degree lowering

In this section, we collect and prove various lemmas needed for the proofs of Lemmas 3.9 and 3.10.

The first two lemmas are standard results on Weyl sums that can be found, for example, in [22] as

Lemmas 1.1.16 and 1.1.14, respectively.

Lemma 7.1. Let # > 0 and % ∈ R[H] be a polynomial with %(H) = 0<H
< + · · · + 00. If������

∑
=∈[# ]

4(%(H))

������ ≥ W#,
then there exists @ ∈ N satisfying @ ≪ W−$< (1) such that

‖@08 ‖ ≪
W−$< (1)

# 8

for each 8 = 1, . . . , <.

Lemma 7.2. Let #, Y, W > 0 with Y ≪ 1, W ≫ Y and # ≫ W−1. If ‖=V‖ ≤ Y for at least a W-proportion

of = ∈ [−#, #] ∩ Z, then there exists a positive integer @ ≪ W−1 such that ‖@V‖ ≤ Y@/W# .

We also record, for the sake of convenience, the following result, which can be found in [15] as

Lemma 6.5.

Lemma 7.3. Let U ∈ T. If 0, 1 ∈ N are such that���U −
0

1

��� ≤ W,
then, for any � ≥ 1, there exists an integer : with |: | ≤ � and a \ ∈ [−1, 1] such that

U =
0

1
+ :

W

�
+ \

W

�
.
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Before stating and proving the remaining lemmas in this section, we need one more piece of notation.

For B ∈ N and � ⊂ Z2B , let �B (�) denote the set of 3B-tuples

(:
(1)

1
, . . . , :

(1)
B , :

(2)

1
, . . . , :

(2)
B , :

(3)

1
, . . . , :

(3)
B ) ∈ Z3B

such that (:
(1)

1
, . . . , :

(1)
B , :

(l1+2)

1
, . . . , :

(lB+2)
B ) ∈ � for all l ∈ {0, 1}B . Note that this is not the same

definition of �B (�) that appeared in [15], where �B (�) instead consisted of 2B-tuples.

The following lemma will play a similar role in the proof of the degree-lowering result in this

article as Lemma 6.3 of [15] played in that paper, and its proof follows the same general strategy, with

differences mainly arising from dealing with more general dual functions and from the use of different

definitions of the*B-norm.

Lemma 7.4. Let !, " > 0, 2 ≤ ℓ ≤ <, � ⊂ [W′!]2B with |� | ≥ W!2B , 50, . . . , 5ℓ−1 : Z → C be 1-

bounded functions supported on the interval [!] and kℓ+1, . . . , k< : Z→ (1 be characters. Let �ℓ be

defined as in Corollary 3.8. If

E(ℎ,ℎ′) ∈�

����� 1!
∑
G∈Z

Δ
′
(ℎ8 ,ℎ

′
8
)B
8=1
�ℓ (G)4(q(ℎ, ℎ

′)G)

�����
2

≥ W (17)

for some q : � → T, then

E:∈�B (� )

����� 1!
∑
G∈Z

�ℓ,: (G)4(k(:)G)

�����
2

≥ (WW′)$B (1) ,

where

�ℓ,: (G) := EH∈[" ]Δ
′

(:
(2)
8
,:

(3)
8

)B
8=1

50(G − %ℓ (H)) · · ·Δ
′

(:
(2)
8
,:

(3)
8

)B
8=1

5ℓ−1 (G + %ℓ−1 (H) − %ℓ (H))

and

k(:) :=
∑

l∈{0,1}B

(−1) |l |q(:
(1)

1
, . . . , :

(1)
B , :

(l1+2)

1
, . . . , :

(lB+2)
B ).

For example, when B = 2, the function k(:) equals

q(:
(1)

1
, :

(1)

2
, :

(2)

1
, :

(2)

2
) − q(:

(1)

1
, :

(1)

2
, :

(2)

1
, :

(3)

2
) − q(:

(1)

1
, :

(1)

2
, :

(3)

1
, :

(2)

2
) + q(:

(1)

1
, :

(1)

2
, :

(3)

1
, :

(3)

2
).

Proof of Lemma 7.4. Define, for each H ∈ ["], the function

�ℓ,H (G) := 50(G − %ℓ (H)) · · · 5ℓ−1(G + %ℓ−1 (H) − %ℓ (H))kℓ+1(%ℓ+1 (H)) · · ·k< (%< (H)),

so that �ℓ (G) = EH∈[" ]�ℓ,H (G). We can thus write the left-hand side of (17) as

EHl0 ,Hl1∈[" ]
l∈{0,1}B

E(ℎ,ℎ′) ∈�
1

!2

∑
G,I∈Z

4(q(ℎ, ℎ′) (G − I))
∏

l∈{0,1}B

[�ℓ,Hl0
(G + ℎ · l + ℎ′ · (1 − l))·

�ℓ,Hl1
(I + ℎ · l + ℎ′ · (1 − l))] .
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Applying the Cauchy-Schwarz inequality to double the ℎ′
1

variable gives the bound

(WW′)$ (1) ≤ EHl0 ,Hl1∈[" ]
l∈{0,1}B

∑
ℎ,ℎ′∈[W′! ]2B

ℎ′′
1
∈[W′! ]

1� (ℎ, ℎ′)1� (ℎ, ℎ′′
1
, ℎ′

2
, . . . , ℎ′B)

!2B+1
·

[
1

!2

∑
G,I∈Z

∏
l∈{0,1}B

l1=0

Δℎ′′
1
−ℎ1
�ℓ,Hl0

(G + ℎ · l + ℎ′ · (1 − l))

Δℎ′′
1
−ℎ′

1
�ℓ,Hl1

(I + ℎ · l + ℎ′ · (1 − l))

4((q(ℎ, ℎ′) − q(ℎ, ℎ′′1 , ℎ
′
2, . . . , ℎ

′
B)) (G − I))

]
,

by using the fact that � ⊂ [W′!]2B and |� | ≥ W!2B . Note that nothing inside of the above average

depends on the variables Hl0, Hl1 for any l ∈ {0, 1}B with l1 = 1, so we can restrict the first average

to Hl0, Hl1 ∈ ["] with l1 = 0.

We apply the Cauchy-Schwarz inequality B total times in this manner, doubling the ℎ′8 variable for

each 8 = 1, . . . , B, to get that

EH0 ,H1∈[" ]E:∈�B (� )

1

!2

∑
G,I∈Z

Δ
′

(:
(2)
8
,:

(3)
8

)B
8=1

�ℓ,H0
(G)Δ ′

(:
(2)
8
,:

(3)
8

)B
8=1

�ℓ,H1
(I)4(k(:) (G − I)) ≥ (WW′)$B (1) ,

using the trivial upper bound |�B (�) | ≤ (W′!)3B . Finally, note that the left-hand side of the above

inequality equals

E:∈�B (� )

����� 1!
∑
G∈Z

�ℓ,: (G)4(k(:)G)

�����
2

by recalling the definition of �ℓ,H and using the fact that the Δ ′ operator distributes over the product of

functions (the characters in �ℓ,H cancel because B ≥ 1). �

The final lemma of this section is a generalisation of Lemma 6.4 of [15], and its proof is essentially

the same as the argument in [15].

Lemma 7.5. Let ! > 0 and, for each 8 = 1, . . . , B, let q8 : Z2B → T be a function not depending on the

(B + 8)Cℎ variable. If 0 < W′ ≤ 1, 5 : Z→ C is 1-bounded and supported on the interval [!] and

Eℎ,ℎ′∈[W′! ]B

����� 1!
∑
G∈Z

Δ
′
(ℎ8 ,ℎ

′
8
)B
8=1
5 (G)4

(
B∑
8=1

q8 (ℎ, ℎ
′)G

)�����
2

≥ W, (18)

then ‖ 5 ‖2

* B+1
[W′! ]

( [! ])
≫B W

$B (1) .

Proof. Expanding the square, the left-hand side of (18) can be written as

1

!2

∑
G,I∈Z

Eℎ,ℎ′∈[W′! ]BΔ
′
(ℎ8 ,ℎ

′
8
)B
8=1
5 (G)Δ ′

(ℎ8 ,ℎ
′
8
)B
8=1

5 (I)4

(
B∑
8=1

q8 (ℎ, ℎ
′) [G − I]

)
,
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so that applying Lemma 2.2 for each fixed G, I ∈ Z and ℎ ∈ [W′!]B gives

1

!2

∑
G,I∈Z

Eℎ′,ℎ′′∈[W′! ]BΔ
′
(ℎ′

8
,ℎ′′

8
)B
8=1
5 (G)Δ ′

(ℎ′
8
,ℎ′′

8
)B
8=1

5 (I) ≥ W$B (1) .

By inserting extra averaging in the G variable and using the pigeonhole principle to fix I (which we may

do because 5 is supported on [!] and W′ ≤ 1), it follows that

1

!

∑
G∈Z

Eℎ′,ℎ′′∈[W′! ]BΔ
′
(ℎ′

8
,ℎ′′

8
)B
8=1

5 (G)EF ∈[W′! ]Δ
′
(ℎ′

8
,ℎ′′

8
)B
8=1
5 (G + F) ≫B W

$B (1)

for some I ∈ Z. To conclude, we apply the Cauchy-Schwarz inequality to double the F variable, again

using that 5 is supported on [!] and W′ ≤ 1. �

8. Degree lowering

We begin by handling the base case of the inductive proof of Lemmas 3.9 and 3.10.

Lemma 8.1. Let #, " > 0, %1, . . . , %< ∈ Z[H] be polynomials such that %1 and %2 have (�, @)-

coefficients, deg %1 < · · · < deg %<, and %8 has leading coefficient 28 for 8 = 1, . . . , <, and k2, . . . , k< :

Z → (1 be characters such that k8 (G) = 4(U8G) with U8 ∈ T for 8 = 2, . . . , <. Assume further that

|21 |"
deg %1/# ≤ �. If there exist 1-bounded functions 50, 51 : Z → C supported on the interval [#]

such that ����� 1

#/2

∑
G∈Z

�2 (2G)kℓ (2G)

����� ≥ W, (19)

where �2 is as in Corollary 3.8, then there exists a positive integer C ≪�,deg %<
W−$deg %< (1) such that

‖C2deg %<2<U<‖ ≪�,deg %<

W−$deg %< (1)

("/|2 |)deg %<
,

provided that # ≫�,deg %<
(@/W)$deg %< (1) .

Note that the hypothesis 21"
deg %1/# ≤ � above actually follows from the slightly stronger condition

1/� ≤ |2 |"deg %2/# ≤ � in Lemma 3.10 and the assumptions that %1 has (�, @)-coefficients, deg %2 >

deg %1, and # ≫�,deg %<
(@/W)$ (1) . Therefore, this lemma does indeed cover the ℓ = 2 case of

Lemma 3.10.

Proof. Inserting the definition of �2, the inequality (19) reads����� 1

#/2

∑
G∈Z

EH∈[" ]60 (2G − %2(H))61(2G + %1 (H) − %2 (H))k2(2G)k3 (%3 (H)) · · ·k<(%< (H))

����� ≥ W.
We split the sum over H ∈ ["] up into progressions modulo 2 by writing H = 2I+ℎ for ℎ = 0, . . . , |2 | −1

and use the pigeonhole principle to fix an ℎ such that���� 1

#/2

∑
G∈Z

EI∈["/ |2 | ]60 (2G − %2 (2I + ℎ))61(2G + %1 (2I + ℎ) − %2 (2I + ℎ))

k2(2G)k3 (%3 (2I + ℎ)) · · ·k<(%< (2I + ℎ))

���� ≫ W,
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provided that # ≫ W−$ (1) . Note that
%2 (2I+ℎ)−%2 (ℎ)

2
∈ Z[H] has ($deg %2

(�), 2@)-coefficients because

|ℎ| ≤ |2 |. We make the change of variables G ↦→ G +
%2 (2I+ℎ)−%2 (ℎ)

2
to get that

���� 1

#/2

∑
G∈Z

EI∈["/ |2 | ]6
′
0(G)6

′
1 (G + %

′
1 (I))k2(%2 (2I + ℎ)) · · ·k<(%< (2I + ℎ))

���� ≫ W,

where 6′
0
(G) := )−%2 (ℎ) (60k2) (2G), 6

′
1
(G) := )%1 (ℎ)−%2 (ℎ)61 (2G), and %′

1
(I) :=

%1 (2I+ℎ)−%1 (ℎ)
2

, which

also has ($deg %1
(�), 2@)-coefficients. By the assumption |21 |"

deg %1/# ≤ �, we can apply Lemma 4.2

3 := deg %1 times and then the Cauchy-Schwarz inequality once to deduce from the above that

E |01 |,..., |03 |<W′"/2

��EI∈["/ |2 | ]4(&(0, I))
��2 ≫�,3 W

$3 (1)

whenever W′ ≪�,3 W
$3 (1) , where

&(0, I) :=

<∑
8=2

U8


∑

l∈{0,1}3

(−1) |l |%8 (2(I + 0 · l) − ℎ)


.

Thus,

|EI∈["/ |2 | ]4(&(0, I)) | ≫�,3 W
$3 (1) (20)

for a ≫�,3 W
$3 (1) proportion of integers |01 |, . . . , |03 | < W

′"/|2 |.

Note that the leading term of &(0, I) equals
(deg %<)!

(deg %<−3)!
2deg %<01 · · · 032<U<I

deg %<−3 . By

Lemma 7.1, there thus exists a C0 ≪�,deg %<
W−$deg %< (1) such that for each 3-tuple of integers

0 = (01, . . . , 03) with |08 | < W
′"/2 for which (20) holds, we have

‖C02
deg %<01 · · · 032<U<‖ ≪�,3 W

−$deg %< (1)/("/2)deg %<−3 .

Fixing W′ ≍�,3 W
−$3 (1) , the conclusion of the lemma follows by applying Lemma 7.2 3 times, once for

each 08 appearing in the product 2deg %<01 · · · 032<U<. �

Next, we show that Lemma 3.9 in the general ℓ ≥ 2 case follows from Lemma 3.10 in the ℓ case.

The overall strategy of the following proof is the same as the proof of Proposition 6.6 in [15], though

several small changes need to be made due to the greater generality of Lemma 3.9 and the use of

different definitions of the *B-norm in the two papers. We now briefly sketch the structure of the

argument. The proof starts by writing the*B-norm of the dual function �ℓ as an average of*2-norms of

differenced versions of �ℓ (that is, Δ ′

(ℎ8 ,ℎ
′
8
)B−2
8=1

�ℓ in the following proof and Δℎ1 ,...,ℎB−2
�ℓ in [15]). By the

inverse theorem for the *2-norm, it follows that, on average, the differenced versions of �ℓ have large

correlation with some character G ↦→ 4(q(ℎ, ℎ′)G) depending on (ℎ, ℎ′). One then uses Lemma 3.10

and the pigeonhole principle (along with Lemma 7.3) to show that the function q(ℎ, ℎ′) must be very

close to a function of the form
∑B−2
8=1 q8 (ℎ, ℎ

′) appearing in Lemma 7.5 for many differencing parameters

(ℎ, ℎ′). The conclusion of the lemma then follows from Lemma 7.5.

Proof of Lemma 3.9 for ℓ assuming Lemma 3.10 for ℓ. Note that, by splitting Z up into progressions

modulo |2 |, we have

‖�ℓ ‖
2B

* B

2 [X′"deg %ℓ ]
( [�# ]) = ED=0,..., |2 |−1Eℎ1 ,...,ℎB−2∈[X

′" deg %ℓ ]

ℎ′
1
,...,ℎ′

B−2
∈[X′" deg %ℓ ]

‖Δ ′

2 (ℎ8 ,ℎ
′
8
)B−2
8=1

()D�ℓ) (2·)‖
4

*2

[X′"deg %ℓ ]
( [�# /2 ])

.
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Thus, because "deg %ℓ ≍� #/2, Lemma 2.4 tells us that

ED=0,..., |2 |−1Eℎ1 ,...,ℎB−2∈[X
′" deg %ℓ ]

ℎ′
1
,...,ℎ′

B−2
∈[X′" deg %ℓ ]

����� 1

#/2

∑
G∈Z

Δ
′

2 (ℎ8 ,ℎ
′
8
)B−2
8=1

()D�ℓ) (2G)4(2qD (ℎ, ℎ
′)G)

�����
2

≫� (XX′)$ (1)

for some qD : [X′"deg %ℓ ]2(B−2) → T for each D = 0, . . . , |2 | − 1. By the pigeonhole principle, there

exists an � ⊂ [X′"deg %ℓ ]2(B−2) with |� | ≫� (XX′)$ (1) (X′"deg %ℓ )2(B−2) and* ⊂ {0, . . . , |2 | −1} with

|* | ≫� (XX′)$ (1) |2 | such that

����� 1

#/2

∑
G∈Z

Δ
′

2 (ℎ8 ,ℎ
′
8
)B−2
8=1

()D�ℓ) (2G)4(2qD (ℎ, ℎ
′)G)

�����
2

≫� (XX′)$ (1)

for every (ℎ, ℎ′) ∈ � and D ∈ *.

Next, we apply Lemma 7.4 with ! = #/|2 |, which, because "deg %ℓ ≫� #/|2 |, yields

E:∈�B−2 (� )

����� 1

#/2

∑
G∈Z

�ℓ,: (2G)4(2kD (:)G)

�����
2

≫�,B (XX
′)$B (1) ,

where, as in Lemma 7.4, we have

�ℓ,: (G) := EH∈[" ]Δ
′

2 (:
(2)
8
,:

(3)
8

)B−2
8=1

)D 50(G − %ℓ (H)) · · ·Δ
′

2 (:
(2)
8
,:

(3)
8

)B−2
8=1

)D 5ℓ−1(G + %ℓ−1 (H) − %ℓ (H))

and

kD (:) :=
∑

l∈{0,1}B−2

(−1) |l |qD (:
(1)

1
, . . . , :

(1)
B , :

(l1+2)

1
, . . . , :

(lB+2)
B ).

By the pigeonhole principle again, for each D ∈ * there exists a set of 3(B − 2)-tuples � ′
D ⊂ �B−2 (�)

with |� ′
D | ≫�,B (XX

′)$B (1) (X′"deg %ℓ )3(B−2) such that

����� 1

#/2

∑
G∈Z

�ℓ,: (2G)4(2kD (:)G)

�����
2

≫�,B (XX
′)$B (1)

for every : ∈ � ′
D . By applying Lemma 3.10 for ℓ with < = ℓ, for each : ∈ � ′

D there thus exist

2′D ≪� |22ℓ |
$deg %ℓ

(1) and CD ≪�,deg %ℓ ,B (XX
′)−$B,deg %ℓ

(1) such that

‖CD2
′
D2ℓkD (:)‖ ≪�,deg %ℓ ,B

(XX′)−$deg %ℓ ,B
(1)

"deg %ℓ/2′D
.

By applying Lemma 7.3 with � ≍�,deg %ℓ ,B (XX
′)−$deg %ℓ ,B

(1) , it follows that for each : ∈ � ′
D there exist

integers 0D (:) ≪�,deg %ℓ ,B (XX′)−$deg %ℓ ,B
(1) and |<D (:) | ≪�,deg %ℓ ,B (XX′)−$deg %ℓ ,B

(1) and |\D (:) | ≤ 1

such that

2ℓkD (:) =
0D (:)

CD2
′
D

+
<D (:)

(XX′)−$deg %ℓ ,B
(1)"deg %ℓ

+
\D (:)

(XX′)−$deg %ℓ ,B
(1)"deg %ℓ

.

By the pigeonhole principle yet again, for each D ∈ * there exists a subset � ′′
D ⊂ � ′

D of

size |� ′′
D | ≫�,deg %ℓ ,B (XX′)$deg %ℓ ,B

(1) |� ′
D | for which there are 0D ≪�,deg %ℓ ,B (XX′)−$deg %ℓ ,B

(1) and

|<D | ≪�,deg %ℓ ,B (XX
′)−$deg %ℓ ,B

(1) such that for any : ∈ � ′′
D , we have

2ℓkD (:) =
0D

CD2
′
D

+
<D

(XX′)−$deg %ℓ ,B
(1)"deg %ℓ

+
\D (:)

(XX′)−$deg %ℓ ,B
(1)"deg %ℓ

.
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Set

qD,1(:) := (−1)B
∑

0≠l∈{0,1}B−2

l1=0

(−1) |l |qD (:
(1)

1
, . . . , :

(1)
B , :

(l1+2)

1
, . . . , :

(lB+2)
B )

+
0D

CD2
′
D2ℓ

+
<D

(XX′)−$deg %ℓ ,B
(1)2ℓ"deg %ℓ

and, for 8 = 2, . . . , B − 2, set

qD,8 (:) := (−1)B
∑

0≠l∈{0,1}B−2

l1=· · ·=l8−1=1
l8=0

(−1) |l |qD (:
(1)

1
, . . . , :

(1)
B , :

(l1+2)

1
, . . . , :

(lB+2)
B ).

Note that qG,8 does not depend on on :
(3)
8

and

kD (:) =

B−2∑
8=1

qD,8 (:) +
\D (:)

(XX′)−$deg %ℓ ,B
(1)2ℓ"deg %ℓ

.

For any : ∈ � ′′
D , we thus have

�����2kD (:) − 2
B−2∑
8=1

qD,8 (:)

����� ≪�

1

(XX′)−$deg %ℓ ,B
(1)"deg %ℓ

,

because 2 ≍� 2ℓ
By the pigeonhole principle again, for each D ∈ * there exist ℎ′

D,1
, . . . , ℎ′

D,B−2
∈ [X′"deg %ℓ ] such

that the fibre

� ′′′
D := {(ℎ1, . . . , ℎB−2, ℎ

′′
1 , . . . , ℎ

′′
B−2) ∈ � : (ℎ, ℎ′, ℎ′′) ∈ � ′′

D }

has size ≫�,deg %ℓ ,B (XX
′)$deg %ℓ ,B

(1) (X′"deg %ℓ )2(B−2) . Fixing such ℎ′
D,1
, . . . , ℎ′

D,B−2
, it follows that

E(ℎ,ℎ′′) ∈� ′′′
D

����� 1

#/2

∑
G∈Z

Δ
′

(ℎ8 ,ℎ
′′
8
)B−2
8=1

)D�ℓ (2G)4

(
2

B−2∑
8=1

qD,8 (ℎ, ℎ
′
D
, ℎ′′)G

)�����
2

≫�,deg %ℓ ,B (XX
′)$deg %ℓ ,B

(1) ,

by the assumption #/|2 | ≪� "deg %ℓ . By positivity, for each D ∈ * we can extend the average over � ′′′
D

to an average over all of [X′"deg %ℓ ]2(B−2) using our lower bound on |� ′′′
D | to get that

Eℎ,ℎ′′∈[X′" deg %ℓ ]B−2

����� 1

#/2

∑
G∈Z

Δ
′

(ℎ8 ,ℎ
′′
8
)B−2
8=1

)D�ℓ (2G)4

(
2

B−2∑
8=1

qD,8 (ℎ, ℎ
′
D
, ℎ′′)G

)�����
2

is ≫�,deg %ℓ ,B (XX′)$deg %ℓ ,B
(1) . Applying Lemma 7.5 for each D ∈ * and using positivity again, we

deduce that

ED=0,...,2−1‖)D�ℓ (2·)‖
2B−1

* B−1

[X′"deg %ℓ ]
( [�# /2 ])

≫�,deg %ℓ ,B (XX
′)$deg %ℓ ,B

(1) ,

from which we conclude the lemma by expanding the definition of the Gowers box norm. �

Now we show that Lemma 3.10 in the general ℓ ≥ 3 case follows from Lemmas 3.9 and 3.10 in the

ℓ − 1 case.
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Proof of Lemma 3.10 for ℓ assuming Lemmas 3.9 and 3.10 for ℓ − 1. As in the proof of the base case,

we insert the definition of �ℓ and split the sum over H ∈ ["] up into progressions modulo |2 | by writing

H = 2I + ℎ for ℎ = 0, . . . , |2 | − 1, and use the pigeonhole principle to fix an ℎ such that

���� 1

#/2

∑
G∈Z

EI∈["/ |2 | ] 50(2G − %ℓ (2I + ℎ)) · · · 5ℓ−1(2G + %ℓ−1 (2I + ℎ) − %ℓ (2I + ℎ))

kℓ (2G)kℓ+1 (%ℓ+1 (2I + ℎ)) · · ·k<(%< (2I + ℎ))

���� ≫ X

and then make the change of variables G ↦→ G +
%ℓ (2I+ℎ)−%ℓ (ℎ)

2
to deduce that

���Λ# /2,"/2

%′
1
,...,%′

<
( 5 ′0 , . . . , 5

′
ℓ−1;kℓ , . . . , k<)

��� ≫ X, (21)

where

5 ′8 (G) :=

{
)−%ℓ (ℎ) ( 50kℓ) (2G) 8 = 0

)%8 (ℎ)−%ℓ (ℎ) 58 (2G) 8 = 1, . . . , <

and

%′
8 (I) :=

{
%8 (2I+ℎ)−%8 (ℎ)

2
8 = 1, . . . , ℓ − 1

%8 (2I + ℎ) − %8 (ℎ) 8 = ℓ, . . . , <
.

Note, because it will be relevant later, that the leading coefficient 2′8 of %′
8 equals 2deg %8−128 when

8 = 1, . . . , ℓ − 1 and equals 2deg %828 when 8 = ℓ, . . . , <, and the polynomials %′
1
, . . . , %′

ℓ−1
∈ Z[I] all

have ($deg %ℓ−1
(�), @2)-coefficients.

Set " ′ := "/|2 | and # ′ := (" ′)deg %ℓ−1 (@ |2 |)deg %ℓ−1−1. With a view towards applying Corollary 3.8,

we rewrite the left-hand side of (21) as����E0≤F< (# / |2 |)/�′# ′

G∈[�′# ′ ]

EI∈[" ′ ])�′# ′F 5
′
0 (G))�′# ′F 5

′
1 (G + %

′
1 (I)) · · ·)�′# ′F 5

′
ℓ−1 (G + %

′
ℓ−1 (I))

kℓ (%
′
ℓ (I)) · · ·k<(%

′
< (I))

����
for � ′ ≍�,deg %ℓ−1

1 and use the fact that maxI∈[" ′ ] |%
′
8 (I) | ≪�,deg %ℓ−1

# ′ for each 8 = 1, . . . , ℓ − 1

(which is a consequence of each %′
8 having ($deg %ℓ−1

(�), 2@)-coefficients) and the pigeonhole principle

to deduce, for suitable � ′, that���Λ�′# ′," ′

%′
1
,...,%′

<
( 5 ′′0 , . . . , 5

′′
ℓ−1;kℓ , . . . , k<)

��� ≥ X,
where 5 ′′8 := )�′# ′F 5

′
8 · 1[�′# ′ ] for some integer 0 ≤ F < (#/|2 |)/� ′# ′.

Now, because (@ |2 |)deg %ℓ−1−1 (" ′)deg %ℓ−1 = # ′ and %′
1
, . . . , %′

ℓ−1
∈ Z[I] have ($deg %ℓ−1

(�), @2)-

coefficients, we may apply Corollary 3.8 to get that

‖� ′
ℓ−1‖* B

(deg %ℓ−1 ) !2
′
ℓ−1

[X′ ("′)deg %ℓ−1 ]
( [$�,deg %ℓ−1

(1)# ′ ]) ≫�,deg %ℓ−1
X$deg %ℓ−1

(1)

for any X′ ≪�,deg %ℓ−1
X$deg %ℓ−1

(1) , where B ≪deg %ℓ−1
1 and

� ′
ℓ−1 (G) := EI∈[" ′ ] 5

′′
0 (G − %′

ℓ−1 (I)) · · · 5
′′
ℓ−2 (G + %

′
ℓ−2 (I) − %

′
ℓ−1 (I))kℓ (%

′
ℓ (I)) · · ·k< (%

′
< (I)).
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Fixing X′ ≍�,deg %ℓ−1
X$deg %ℓ−1

(1) , it thus follows from repeated applications of Lemma 3.9 in the ℓ − 1

case that

‖� ′
ℓ−1‖*2

(deg %ℓ−1 ) !2
′
ℓ−1

[X′ ("′)deg %ℓ−1 ]
( [$�,deg %ℓ−1

(1)# ′ ]) ≫�,deg %ℓ−1
X$deg %ℓ−1

(1) .

Set 2′ := (deg %ℓ−1)!2
′
ℓ−1

. By applying Lemma 2.4 in the same manner as in the previous proof and

using the pigeonhole principle, we deduce that there exists a D ∈ [2′] such that����� 1

# ′/2′

∑
G∈Z

)D�
′
ℓ−1 (2

′G)kℓ−1 (2
′G)

����� ≫�,deg %ℓ−1
X$deg %ℓ−1

(1)

for some character kℓ−1 : Z → (′. We now apply Lemma 3.10 for ℓ − 1 to deduce that there exists a

2′′ ≪� |2′2ℓ2< |
$deg %< (1) ≪� |22< |

$deg %< (1) and C ≪�,deg %<
X−$deg %< (1) such that

‖C2′′2deg %<2<U<‖ ≪�,deg %<

X−$deg %< (1)

("/2)deg %</2′′
,

because the leading coefficient of %′
< is 2deg %<2<. This gives the conclusion of the lemma. �

Because we have shown that Lemma 3.10 holds in the ℓ = 2 case, Lemma 3.10 in the ℓ case implies

Lemma 3.9 in the ℓ case and Lemmas 3.9 and 3.10 in the ℓ − 1 case together imply Lemma 3.10 in the

ℓ case, it now follows by induction that Lemmas 3.9 and 3.10 hold in general.

9. Local [1-control

As mentioned in Section 3, Theorem 3.3 will be proved using a combination of Corollary 3.8, Lemma 3.9,

and Lemma 2.4. For the sake of convenience, before proving Theorem 3.3 we first prove Lemma 3.11,

which gives the result of applying Corollary 3.8 once, Lemma 3.9 as many times as necessary, and then

Lemma 2.4 once.

Proof of Lemma 3.11. We first apply Corollary 3.8, which tells us that

‖�ℓ ‖* B

2′ [X′"deg %ℓ ]
( [$deg %ℓ

(�# ) ]) ≫�,deg %ℓ X
$deg %ℓ

(1)

for some B ≪deg %ℓ 1 whenever X′ ≪�,deg %ℓ X$deg %ℓ
(1) and # ≫deg %ℓ (@/XX′)$deg %ℓ

(1) . Fix-

ing X′ ≍�,deg %ℓ X$deg %ℓ
(1) and then applying Lemma 3.9 repeatedly (which we can do because

(deg %ℓ)!/� ≤ |2′ |"deg %ℓ/# ≤ (deg %ℓ)!�
2) thus yields

‖�ℓ ‖*2

2′ [X′"deg %ℓ ]
( [$deg %ℓ

(�# ) ]) ≫�,deg %ℓ X
$deg %ℓ

(1) .

We now expand the definition of the Gowers box norm and split the sum over Z up into progressions

modulo |2′ | as in the proof of Lemmas 3.9 and 3.10 to write the above as

ED=0,..., |2′ |−1‖)−D�ℓ (2
′·)‖*2

[X′"deg %ℓ ]
( [$deg %ℓ

(�# / |2′ |) ]) ≫�,deg %ℓ X
$deg %ℓ

(1) ,

so that, by Lemma 2.4 and the inequality (deg %ℓ)!/� ≤ |2′ |"deg %ℓ/# ≤ (deg %ℓ)!�
2 again, we have

that

ED=0,..., |2′ |−1

����� 1

#/2′

∑
G∈Z

)−D�ℓ (2
′G)kℓ,D (2

′G)

����� ≫�,deg %ℓ X
$deg %ℓ

(1)
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for some characters kℓ,D : Z→ (1. Expanding the definition of �ℓ , the above inequality says that

ED=0,..., |2′ |−1

���� 1

#/2′

∑
G∈Z

EH∈[" ])−D 50(2
′G − %ℓ (H)) · · ·)−D 5ℓ−1(2

′G + %ℓ−1 (H) − %ℓ (H))

kℓ,D (2
′G)kℓ+1 (%ℓ+1 (H)) · · ·k<(%< (H))

����
is ≫�,deg %ℓ X

$deg %ℓ
(1) .

Next, as in the proofs of Lemmas 8.1 and 3.10, we split the average over H ∈ ["] above up into

congruence classes modulo |2′ | by setting H = 2′I + ℎ for ℎ = 0, . . . , |2′ | − 1 and make the change of

variables G ↦→ G +
%ℓ (2

′I+ℎ)−%ℓ (ℎ)
2′

to get, assuming # ≫�,deg %ℓ (@/X)$deg %ℓ
(1) , that

ED,ℎ=0,..., |2′ |−1

����Λ# / |2′ |," ′

%ℎ
1
,...,%ℎ

<

( 5 D,ℎ
0

, . . . , 5
D,ℎ

ℓ−1
;kℓ,D , kℓ+1, . . . , k<)

���� ≫�,deg %ℓ X
$deg %ℓ

(1) ,

where

5
D,ℎ
8

(G) :=

{
)−%ℓ (ℎ))−D ( 50kℓ,D) (2

′G) 8 = 0

)%8 (ℎ)−%ℓ (ℎ))−D 58 (2
′G) 8 = 1, . . . , ℓ − 1

.

To conclude, we argue as in the proof of Lemma 3.10, using the fact that maxI∈[" ′ ] |%
ℎ
8
(I) | ≤ � ′# ′/2

for all |ℎ| ≤ |2′ | and 8 ∈ [ℓ − 1] whenever # ≫�,deg %ℓ (@/X)$deg %ℓ
(1) to split the sum over G in

Λ
# / |2′ |," ′

%ℎ
1
,...,%ℎ

<

( 5 D,ℎ
0

, . . . , 5
D,ℎ

ℓ−1
;kℓ,D , kℓ+1, . . . , k<) up into intervals of length � ′# ′ and then applying the

triangle inequality, we get

E D,ℎ=0,..., |2′ |−1
0≤F< (# / |2′ |)/�′# ′

����Λ�′# ′," ′

%ℎ
1
,...,%ℎ

<

( 5 D,ℎ,F
0

, . . . , 5
D,ℎ,F

ℓ−1
;kℓ,D , kℓ+1, . . . , k<)

���� ≫�,deg %ℓ X
$deg %ℓ

(1) .

�

Now we can prove Theorem 3.3.

Proof of Theorem 3.3. We apply Lemma 3.11 < − 1 times to get that

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

����Λ�2#2 ,"2

%
ℎ

1
,...,%

ℎ
<

( 5
D,ℎ,F

0
, 5
D,ℎ,F

1
;k

D,ℎ,F

2
, . . . , k

D,ℎ,F
< )

���� ≫�,deg %<
X$deg %< (1) ,

(22)

where �<+1 = 1, #<+1 = # , 28 = 2̃8@
18 for 2̃8 ≍�,deg %<

1 and 18 ≪deg %<
1, "8 := "/

∏<
9=8 |28 |,

�8 ≍�,deg %<
1, and #8 := "

deg %8−1

8
(@ |28 · · · 2< |)

deg %8−1−1 for each 8 = 2, . . . , <, 5
D,ℎ,F

0
is 1-bounded

and 5
D,ℎ,F

1
(G) equals 1[�2#2 ] (G) times

)∑<
8=2 (28+1 · · ·2<) [F828�8#8−D8+[%

ℎ<,...,ℎ8+1
1

(ℎ8)−%
ℎ<,...,ℎ8+1
8

(ℎ8) ] ]
51(22 · · · 2<G)

for each D, ℎ ∈
∏<
8=2{0, . . . , |28 | − 1} and F ∈

∏<
8=2([0, (�8+1#8+1/|28 |)/�8#8) ∩ Z), where %ℎ< ,...,ℎ8+1

denotes the polynomial ((%ℎ< )ℎ<−1 ) . . . )ℎ8+1 using the notation from Lemma 3.11, each %
ℎ

8
is a poly-

nomial of degree deg %8 whose coefficients have magnitude ≪�,deg %<
@$deg %< (1) and whose leading

coefficient is independent of ℎ and %
ℎ

1
has leading coefficient of the form � ′(@22 · · · 2<)

deg %1−1 for

some � ′ ≪� 1 and satisfies maxH∈["2 ] |%
ℎ

1
(H) | ≪�,deg %<

#2.

For each character k
D,ℎ,F

8
, let V

D,ℎ,F

8
∈ T be such that k

D,ℎ,F

8
(G) = 4(V

D,ℎ,F

8
G). Next, we argue as

in the proof of Lemma 8.1 and apply Lemma 4.2 3 := deg %1 times and the Cauchy-Schwarz inequality
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once to get that

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

E |01 |,..., |03 |<X′"2

��EH∈["2 ]4(&
D,ℎ,F (0, H))

��2 ≫�,deg %<
X$deg %< (1)

whenever X′ ≪�,deg %<
X$deg %< (1) , where

&D,ℎ,F (0, H) :=

<∑
8=2

V
D,ℎ,F

8


∑

l∈{0,1}3

(−1) |l |%
ℎ

8
(H + 0 · l)


.

As in the proof of Lemma 8.1, we have that
��EH∈["2 ]4(&

D,ℎ,F (0, H))
�� ≫�,deg %<

X$deg %< (1) for a

≫�,deg %<
X$deg %< (1) proportion of tuples D, ℎ and F and integers |01 |, . . . , |03 | < X

′"2.

Now set 3 ′ := deg %< − deg %1 and write

&D,ℎ,F (0, H) = �
D,ℎ,F

3′
(0)H3

′

+ · · · + �
D,ℎ,F

1
(0)H + �

D,ℎ,F

0
(0),

so that by Lemma 7.1 there exists a C ≪�,deg %<
X−$deg %< (1) such that for a ≫�,deg %<

X$deg %< (1)

proportion of 0, D, ℎ and F, we have ‖C�
D,ℎ,F

8
(0)‖ ≪�,deg %<

X−$deg %< (1)/" 8
2

for 8 = 1, . . . , 3 ′.

By expanding each �
D,ℎ,F

8
(0) in terms of 01, . . . , 03 , it then follows from repeated applications of

Lemma 7.2 and the triangle inequality that, if X′ ≍�,deg %<
X$deg %< (1) is fixed suitably small, there must

exist C ′ ≪�,deg %<
X−$deg %< (1) and 18 ≪deg %<

1 such that ‖C ′@18 V
D,ℎ,F

8
‖ ≪�,deg %<

X−$deg %< (1)/"
deg %8
2

for all 8 = 2, . . . , <.

Thus, by splitting H ∈ ["2] up into progressions of length " ′
2
≍�,deg %<

(X/@)$deg %< (1)"2 modulo

C ′@B for some B ≪deg %<
1, it follows from (22) that

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<
:D,ℎ,F ∈["2/"

′
2
]

:′
D,ℎ,F

∈[C′@B ]

����� 1

�2#2

∑
G

EI∈[" ′
2
] 5
D,ℎ,F

0
(G) 5

D,ℎ,F

1
(G + %

ℎ

1
(C ′@B (I − " ′

2:
′
D,ℎ,F ) − :D,ℎ,F ))

�����

is ≫�,deg %<
X$deg %< (1) . Applying Lemma 4.2 3 more times, we get from the above that

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

1

�2#2

∑
G

E |08 |<X′′" ′
2

8=1,...,3

5
D,ℎ,F

1
(G) 5

D,ℎ,F

1
(G + � ′3!(C ′@B)3 (@22 · · · 2<)01 · · · 03)

is ≫�,deg %<
X$deg %< (1) whenever X′′ ≪�,deg %<

X$deg %< (1) . Note that this can be written as

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

1

�2#

∑
G

∑
|H | ≤(X′′" ′

2
)3

5
D,ℎ,F

1
(G) 5

D,ℎ,F

1
(G + � ′3!(C ′@B)3 (@22 · · · 2<)H)� (H),

where � (H) := E |01 |,..., |03 |<X′′"
′
2
1H=01 · · ·03 . Inserting the

∫ 1

0
�̂ (b)4(bH)3b for � (H) above, bounding

the contribution of minor arcs using Lemma 7.1, pigeonholing in the major arcs and fixing X′′ ≪�,deg %<

X$deg %< (1) sufficiantly small, we get that there exists a C ′′ ≪ (XX′′)−$3 (1) and 0 < 0 ≤ C ′′ relatively

prime to C ′′ such that

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

����� 1

�2#

∑
G

EH< (X′′" ′
2
)3 5

D,ℎ,F

1
(G) 5

D,ℎ,F

1
(G + � ′3!(C ′@B)3 (@22 · · · 2<)H)4

( 0H
C ′′

)�����
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is ≫�,deg %<
X$deg %< (1) . We now split the sum over H < (X′" ′

2
)3 into arithmetic progressions modulo

C ′′ of length " ′′
2

:= ⌊(X′′" ′
2
)3/C ′′⌋ and apply Lemma 4.2 once more and use that 5

D,ℎ,F

1
is 1-bounded

to deduce that

E D8 ,ℎ8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

����� 1

�2#

∑
G

EI∈[" ′′
2
] 5
D,ℎ,F

1
(G +&(I))

����� ≫�,deg %<
X$deg %< (1) ,

where &(I) := � ′3!(C ′@B)3C ′′(@22 · · · 2<)I.

To complete the proof of the theorem, it remains to unravel the definition of 5
D,ℎ,F

1
. First, we apply

the pigeonhole principle to fix an ℎ ∈
∏<
8=2{0, . . . , |28 | − 1} such that

E D8=0,..., |28 |−1
0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

EG∈[�2#2 ]

���EI∈[" ′′
2
] 5
D,ℎ,F

1
(G +&(I))

��� ≫�,deg %<
X$deg %< (1) .

For some Aℎ ≪�,deg %<
@$deg %< (1) , the left-hand side of the above can thus be written as

E G∈[�2#2 ]
D8=0,..., |28 |−1

0≤F8< (�8+1#8+1/ |28 |)/�8#8

8=2,...,<

���EI∈[" ′′
2
])Aℎ+

∑<
8=2 (28+1 · · ·2<) [F8�8#8−D8 ] 51(22 · · · 2< (G +&(I)))

��� .

Because, as G, D8 and F8 for each 8 = 2, . . . , < range over [�2#2], {0, . . . , |28 | − 1} and

[0, (�8+1#8+1/|28 |)/�8#8) ∩ Z, respectively, the quantity

22 · · · 2<G +

<∑
8=2

(28+1 · · · 2<) [F828�8#8 − D8]

ranges over ≪ # distinct integers lying within the interval [1, # + $<(|22 · · · 2< |�<#<)], and

#< ≪�,deg %<
@#1−Y for some 0 < Y < 1 satisfying Y ≫deg %<

1, we have that

1

#

∑
G∈Z

���EI∈[" ′′
2
] 51(G + 22 · · · 2<&(I) + Aℎ)

��� ≫deg %< ,� X
$deg %< (1) ,

provided that # ≫�,deg %<
(@/X)$deg %< (1) . We conclude by making the change of variables G ↦→ G − Aℎ

and noting that any progression of the form G−0[!] with 0 > 0 can be written as G−0(!+1) +0[!]. �

10. Density increment

In this section, we prove Theorem 3.2, which we then use to finally prove Theorem 1.1.

Proof of Theorem 3.2. Set 5� := 1� − U1[# ] and " := (#/@deg %<−1)1/deg %< . Note that

Λ
# ,"
%1 ,...,%<

(1�) = 0 because � contains only trivial progressions. By the multilinearity of Λ
# ,"
%1 ,...,%<

and the identity 1� = 5� + U1[# ] , we have that Λ
# ,"
%1 ,...,%<

(1�) also equals

Λ
# ,"
%1 ,...,%<

(1�, 5�, 1�, . . . , 1�) + UΛ
# ,"
%1 ,...,%<

(1�, 1[# ] , 5�, 1�, . . . , 1�) + · · · + U<+1
Λ
# ,"
%1 ,...,%<

(1[# ]).

Because Λ
# ,"
%1 ,...,%<

(1[# ]) ≫�,deg %<
1, we must have that

���Λ# ,"%8 ,...,%<
(1�, 5�, 1�, . . . , 1�)

��� ≫�,deg %<
U$< (1)
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for some 8 = 1, . . . , <. Theorem 3.3 then tells us that there exists a @′ ≪�,deg %<
U−$deg %< (1) , 1 ≪deg %<

1 and an # ′ satisfying " ≥ # ′ ≫�,deg %<
" (U/@)$deg %< (1) such that

1

#

∑
G∈Z

��EH∈[# ′ ] 5�(G + @
′@1H)

�� ≫�,deg %<
U$deg %< (1) ,

provided that # ≫�,deg %<
(@/U)$deg %< (1) .

Note that 5� has mean zero, so 1
#

∑
G∈Z EH∈[# ′ ] 5�(G + @

′@1H) = 0, which we can add to both sides

of the above to get that

1

#

∑
G∈Z

max
(
0,EH∈[# ′ ] 5�(G + @

′@1H)
)
≫�,deg %<

U$deg %< (1) .

The total contribution to the above coming from G ∈ Z such that G + @′@1 [# ′] ⊄ [#] is

≪ @′@$deg %< (1)#−1+1/deg %< , so that as long as # ≫�,deg %<
(@/U)$deg %< (1) , there exists an 0 ∈ [#]

such that 0 + @′@1 [# ′] ⊂ [#] and

EH∈[# ′ ]1�(0 + @
′@1H) ≥ U +Ω�,deg %<

(U$deg %< (1) ),

which means that we have the desired density increment. �

Proof of Theorem 1.1. Suppose that � ⊂ [#] has density U and contains no nontrivial progressions of

the form G, G+%1 (H), . . . , G+%< (H). Set �0 = �, #0 = # , U0 = U and @0 = 1. By applying Theorem 3.2

repeatedly, we get a sequence of �8s, #8s, U8s and @8s such that

1. �8 ⊂ [#8] with U8 = |�8 |/#8 and U8 ≥ U8−1 +Ω%1 ,...,%<
(U
$%1 ,...,%< (1)

8−1
),

2. #8 ≫%1 ,...,%<
(U8−1/(@0 · · · @8−1))

$%1 ,...,%< (1)#
1/deg %<

8−1
,

3. @8 ≪%1 ,...,%<
(@0 · · · @8−1/U8−1)

$%1 ,...,%< (1) and

4. �8 contains no nontrivial progressions of the form

G, G + %
(@0 · · ·@8)

1
(H), . . . , G + %

(@0 · · ·@8)
< (H),

provided that #8−1 ≫%1 ,...,%<
(@0 · · · @8−1/U)

$%1 ,...,%< (1) .

Because no set can have density greater than 1, #8 ≫%1 ,...,%<
(@0 · · · @8/U)

$%1 ,...,%< (1) must fail to

hold for some 8 ≪%1 ,...,%<
U−$%1 ,...,%< (1) . Thus,

#8 ≪%1 ,...,%<

( @0 · · · @8

U

)$%1 ,...,%< (1)

≪%1 ,...,%<
U−$%1 ,...,%< (f8

1
)

for some 0 < f1 ≪%1 ,...,%<
1 by the upper bound on the @8s. On the other hand, we also have

that #8 ≫%1 ,...,%<
U$%1 ,...,%< (f8

2
)#1/(deg %<)8 for some 0 < f2 ≪%1 ,...,%<

1, again by the up-

per bound on the @8s. Comparing the upper and lower bounds for #8 thus gives # ≪%1 ,...,%<

U−$%1 ,...,%< (f8) for some f ≪%1 ,...,%<
1. Because 8 ≪%1 ,...,%<

U−$%1 ,...,%< (1) , we get that # ≪%1 ,...,%<

U−$%1 ,...,%< (f
$%1 ,...,%<

(U
−$%1 ,...,%<

(1)
)
) , from which the conclusion of the theorem follows. �

Acknowledgements. The author thanks Sean Prendiville and Kannan Soundararajan for helpful comments on earlier versions of

this article and the anonymous referees for many useful suggestions that improved the presentation in this article, including one

that simplified the proof of Corollary 3.8. The author was partially supported by the NSF Graduate Research Fellowship Program

under Grant No. DGE-114747 and by the Stanford University Mayfield Graduate Fellowship.

Conflict of Interest: None.

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.11


Forum of Mathematics, Pi 55

References

[1] A. Balog, J. Pelikán, J. Pintz and E. Szemerédi, ‘Difference sets without ^th powers’, Acta Math. Hungar. 65(2) (1994),

165–187.

[2] V. Bergelson and A. Leibman, ‘Polynomial extensions of van der Waerden’s and Szemerédi’s theorems’, J. Amer. Math. Soc.

9(3) (1996), 725–753.

[3] T. F. Bloom, ‘A quantitative improvement for Roth’s theorem on arithmetic progressions’, J. Lond. Math. Soc. (2) 93(3)

(2016), 643–663.

[4] J. Bourgain and M.-C. Chang, ‘Nonlinear Roth type theorems in finite fields’, Israel J. Math., 221 (2017), 853–867.

[5] D. Dong, X. Li and W. Sawin, ‘Improved estimates for polynomial Roth type theorems in finite fields’, Preprint, 2017,

arXiv:1709.00080.

[6] W. T. Gowers, ‘A new proof of Szemerédi’s theorem for arithmetic progressions of length four’, Geom. Funct. Anal. 8(3)

(1998), 529–551.

[7] W. T. Gowers, ‘A new proof of Szemerédi’s theorem’, Geom. Funct. Anal. 11(3) (2001), 465–588.

[8] W. T. Gowers, ‘Arithmetic progressions in sparse sets’, in Current Developments in Mathematics, 2000, pp. 149–196

(International Press, Somerville, MA, 2001).

[9] B. Green and T. Tao, ‘Linear equations in primes’, Ann. of Math. (2), 171(3) (2010), 1753–1850.

[10] B. Green and T. Tao, ‘New bounds for Szemerédi’s theorem, III: a polylogarithmic bound for A4 (# )’, Mathematika 63(3)

(2017), 944–1040.

[11] J. Lucier, ‘Intersective sets given by a polynomial’, Acta Arith. 123(1) (2006), 57–95.

[12] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Vol. 84 of

CBMS Regional Conference Series in Mathematics (American Mathematical Society, Providence, RI, 1994).

[13] S. Peluse, ‘Three-term polynomial progressions in subsets of finite fields’, Israel J. Math. 228(1) (2018), 379–405.

[14] S. Peluse, ‘On the polynomial Szemerédi theorem in finite fields’, Duke Math. J. 168(5) (2019), 749–774.

[15] S. Peluse and S. Prendiville, ‘Quantitative bounds in the non-linear Roth theorem’, Preprint, 2019, arXiv:1903.02592.

[16] S. Prendiville, ‘Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case’, Discrete Anal. 5 (2017),

34 pages.

[17] A. Rice, ‘A maximal extension of the best-known bounds for the Furstenberg-Sárközy theorem’, Acta Arith. 187(1) (2019),

1–41.

[18] A. Sárközy, ‘On difference sets of sequences of integers. I’, Acta Math. Acad. Sci. Hungar. 31(1–2) (1978), 125–149.

[19] A. Sárközy, ‘On difference sets of sequences of integers. III’, Acta Math. Acad. Sci. Hungar. 31 (1978), 355–386.

[20] S. Slijepčević, ‘A polynomial Sárközy-Furstenberg theorem with upper bounds’, Acta Math. Hungar. 98(1–2) (2003),

111–128.

[21] E. Szemerédi, ‘On sets of integers containing no :elements in arithmetic progression’, Acta Arith. 27 (1975), 199–245.

Collection of articles in memory of Juriı̆ Vladimirovič Linnik.

[22] T. Tao, Higher Order Fourier Analysis, Vol. 142 of Graduate Studies in Mathematics (American Mathematical Society,

Providence, RI, 2012).

[23] T. Tao and T. Ziegler, ‘The primes contain arbitrarily long polynomial progressions’, Acta Math. 201(2) (2008), 213–305.

[24] T. Tao and T. Ziegler, ‘Concatenation theorems for anti-Gowers-uniform functions and Host-Kra characteristic factors’,

Discrete Anal. 60 (2016), 61 pages.

[25] T. Tao and T. Ziegler, ‘Polynomial patterns in the primes’, Forum Math. Pi 6 (2018), e1, 60 pages.

https://doi.org/10.1017/fmp.2020.11 Published online by Cambridge University Press

http://arxiv.org/abs/1709.00080
http://arxiv.org/abs/1903.02592
https://doi.org/10.1017/fmp.2020.11

	1 Introduction
	2 Notation and preliminaries
	3 Outline of the proof of Theorem 1.1
	4 Control by an average of Gowers box norms
	5 Concatenation
	6 Control by uniformity norms
	6.1 Control for general polynomial progressions

	7 Lemmas for degree lowering
	8 Degree lowering
	9 Local U1-control
	10 Density increment

