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Abstract

Research in lower limb wearable robotic control has largely focused on reducing the metabolic cost of walking or
compensating for a portion of the biological joint torque, for example, by applying support proportional to estimated
biological joint torques. However, due to different musculotendon unit (MTU) contractile speed properties, less
attention has been given to the development of wearable robotic controllers that can steer MTU dynamics directly.
Therefore, closed-loop control of MTU dynamics needs to be robust across fiber phenotypes, that is ranging from
slow type I to fast type IIx in humans. The ability to perform closed-loop control the in-vivo dynamics ofMTUs could
lead to a new class ofwearable robots that can provide precise support to targetedMTUs for preventing onset of injury or
providing precision rehabilitation to selected damaged tissues. In this paper, we introduce a novel closed-loop control
framework that utilizes nonlinear model predictive control to keep the peak Achilles tendon force within predetermined
boundaries during diverse range of cyclic force production simulations in the human ankle plantarflexors. This control
framework employs a computationally efficient model comprising a modified Hill-type MTU contraction dynamics
component and amodel of the ankle joint with parallel actuation. Results indicate that the closed-formmuscle-actuation
model’s computational time is in the order of microseconds and is robust to different muscle contraction velocity
properties. Furthermore, the controller achieves tendon force control within a time frame below 18ms, aligningwith the
physiological electromechanical delay of the MTU and facilitating its potential for future real-world applications.

1. Introduction

Recent efforts in lower limb wearable exoskeleton and exosuit control have largely focused on two main
objectives: reducing metabolic energy expenditure during locomotion (Zhang et al., 2017; Witte et al.,
2020; Slade et al., 2022) and compensating for a portion of biological joint torque via, for example,
neuromusculoskeletal models, or regression techniques (Durandau et al., 2022). However, in recent
literature, there has been a growing focus on controllingAchilles tendon force through open-loopmethods
(Schmitz et al., 2022). Another approach involves leveraging Soleus contraction dynamics to provide
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assistive force, aiming to lower metabolic expenditure (Nuckols et al., 2021). Notably, the required
processing time for this study was considerably shorter than the fastest human-in-the-loop (HIL)
optimization used for minimising metabolic expenditure of walking (Slade et al., 2022). However, the
skeletal musculotendon unit (MTU) undergoes remarkable adaptations in response to mechanical stimuli
(Wisdom et al., 2015), which is neglected in the considerations of current controllers.

Human skeletal muscle consists of three primary types ofmuscle fibers classified into slow (type I) and
fast (types II-a, and II-x) according to their specific myosin heavy chain isoforms (Staron, 1997). Slow-
twitch fibers are fatigue-resistant, producing force slowly but steadily, ideal for endurance activities; fast-
twitch fibers generate force rapidly but fatigue quickly, suited for explosive movements. Slow-twitch
fibers have slower contraction velocity and are recruited first during low-intensity tasks, while fast-twitch
fibers contract more rapidly and are activated for high-force demands. These differences in force–velocity
(F–V) relation, response to activation changes, and contractile properties underscore the distinct roles and
adaptations of muscle fiber types in various physiological and performance contexts (Bottinelli and
Reggiani, 2000). In addition, muscle fibers have the ability to adapt to varying demands by altering their
size or composition. This adaptability forms the physiological foundation for many physical therapy
techniques aimed at enhancing a patient’s muscle force generation or endurance (Scott et al., 2001).
Moreover, variations in fiber type compositionmay contribute to some of the impairments and disabilities
observed in patients Pette (Pette and Staron, 1997).

Existing control schemes provide assistive torques to biological joints with no knowledge on the effect
on joint’s constituentMTU force. The development of wearable robots capable of achieving direct closed-
loop control over the mechanical loads applied to individual MTUs, while being robust to changes in
muscle fiber type, has not yet been fully addressed. Such advancements would enable wearable robots to
offer bio-protective support, reducing the risk of musculoskeletal injuries or tissue maladaptation
associatedwith repetitive intense loads. This protectionwould be particularly beneficial during transitions
in muscle fiber composition caused by injury, recovery, aging, or disease, helping to prevent tissue
catabolic function in these critical phases. Similarly, this new class of wearable robots could deliver
precise mechanical stress and strain to injured tissues to facilitate stress- and strain-induced tissue
regeneration following injury, opening to precision robot-aided rehabilitation.

Here, we present an initial step toward addressing this gap by creating a predictivemodel-based control
framework for closed-loop control of peak MTU load during cyclic motions such as hopping. To
accomplish this goal, we implement nonlinear model predictive control (NMPC) in the control architec-
ture due to its intrinsic robustness and predictive capabilities. NMPC predicts future states of the system,
proactively preventing the MTU load from surpassing the threshold. Our objective is to regulate the peak
Achilles tendon force by integrating a simulated exoskeleton in parallel with the ankle plantarflexors.
Furthermore, we will assess the robustness of this controller to variations in muscle fiber phenotypes.

For the model-based predictive control framework, we need a combined MTU-exoskeleton model in
ordinary differential equation (ODE) form. We opt for a conventional Hill-type muscle model (Caillet
et al., 2022) with parallel damping primarily due to their efficiency and simplicity in parameterization, as
opposed to alternatives such as Huxley’s models of muscle contraction (Huxley and Hanson, 1954;
Huxley and Niedergerke, 1954). In a prior preliminary study, we employed univariate linear regression to
develop a closed-form solution for the damped Hill-type muscle model (Nabipour et al., 2023; Nabipour
and Sartori, 2023). Nevertheless, the resulting model did not exhibit generalizability across various
locomotion speeds and different muscles. Consequently, we propose a computationally efficient simpli-
fied closed-form solution for the damped Hill-type model to be integrated into the predictive control
framework. In the existing literature, implicit modeling (De Groote et al., 2016) for the conventional
model and numerical solutions (Millard et al., 2013) for the damped Hill-type models are available.

In this paper, we begin by introducing a straightforward closed-form ODE model for the combined
human lower limb and exoskeleton system. Next, we modify the force-velocity equation to account for
variations in muscle fiber phenotypes. We then apply the predictive control framework to keep the
Achilles tendon force within limits. Our analysis also explores different control horizons for the NMPC
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and varying levels of support within the control framework. In addition, we assess the controller’s
robustness in controlling peak tendon force across muscles with distinct twitch characteristics.

2. Methods

Below, we explain in detail the process of deriving the closed-form set of ODEs for the combined MTU-
exoskeleton system, focusing on hopping motion as a representative cyclic locomotion-like movement.
Subsequently, an analysis of the control structure and the methodology employed for assessing the
robustness and sensitivity of the control framework will be presented.

2.1. Modeling combined MTU-exoskeleton system

The simulation of hopping motion involves simplifying the combinedMTU-exoskeleton system into two
main components: a lumped plantarflexor muscle (representing the whole triceps surae) and a parallel
exoskeleton actuator capable of providing assistance parallel to the plantarflexors (Figure 1). This
simplification assumes the presence of a single lumped MTU instead of individual plantarflexing MTUs
(Robertson et al., 2014; Robertson and Sawicki, 2014).

2.1.1. Modeling lumped triceps surae
We utilize a Hill-type model incorporating a pennation angle to simulate MTU dynamics (Thelen, 2003;
Caillet et al., 2022). This model conventionally comprises the contractile element of the muscle arranged
in both series and parallel configurations with elastic elements. We opt for a modified version of this
model, where an additional damping element is added parallel to the muscle’s contractile and parallel
elastic element (see Figure 1). As a result, the tendon force is derived as:
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Figure 1. (a) The human-exoskeleton system illustrating the combined human-exoskeleton model during
hopping, (b) the simplified pulley-mass model utilized for modeling a parallel exoskeleton integrated with
the triceps surae during hopping, (c) the F–V relation of the MTU contractile element acquired through
CEINMS, incorporating the nonlinear equation from Anderson (2007), and the linear approximation
in equation 3, (d) alterations in the F–V relation transitioning from slow (in blue) to fast (in red) twitch

muscle fibers.
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where FT , FM
O and a, and α represent the tendon force, maximum isometric force, muscle activation, and

pennation angle, respectively. Also, ~F
PE
, ~F

D
, ~F

M
L , and ~F

M
V denote the normalized force of the parallel

passive element, parallel damping, and contractile element’s active force–length (F–L) and force–velocity

(F–V) relation. ~F
M
L and ~F

M
PE are derived from Anderson (2007). The equation governing damping is

expressed as ~F
D ¼ b _~L

M
, where the coefficient b represents the damping coefficient, and _~L

M
denotes the

normalized muscle fiber velocity. To enable future predictions with a closed-form equation, it is often
advantageous to model the system ODEs:

_F
T ¼ kT _L

MT � _L
M
cos αð ÞþLM _αsinα

� �
(2)

where kT and LM are the tendon stiffness and muscle fiber length, respectively. The stiffness can either be
derived from De Groote et al. (2016) or by ploynomial fit to stiffness or tendon force-strain data points
used in our previously developed Calibrated EMG-Informed Neuromusculoskeletal Modelling

(CEINMS) toolbox (Pizzolato et al., 2015). _L
MT

in equation (2)) is directly derived from the

kinematics of the movement and represents the rate of change of MTU length. The _L
M

is often
obtained via regression in the cases where damping is not incorporated in the Hill-type model. When
damping is considered, no closed-form solutions were derived and researchers often use numerical
solutions (Millard et al., 2013). The normalized muscle fiber velocity does not cross the range of

�0:5 < _~L
M
< 0:5 during walking and running with various speeds, as noted by Arnold et al. (2013).

Therefore, we simplify the F–V relation assuming muscle fiber contraction velocity remains within
the linear range, as depicted in Figure 1:

~F
M
V ¼ k1þk2

_~L
M

� �
(3)

The optimal values for k1 ¼ 2:2 and k2 ¼ 1 have been identified to fit the F–V curve accurately within
the CEINMS toolbox. By combining equations (1) and (2), we can obtain:
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where Vmax represents the maximum fiber velocity which ranges from
2LMO
s to,

10LMO
s depending on

whether the muscle’s constituent fiber phenotype is slow or fast-twitch (Zajac, 1989). By replacing
4 in 2, the MTU contraction dynamics in ODE form will be obtained.

Gaining direct control over individual MTU dynamics is, however, complex. MTUs display a large
repertoire of dynamic behaviors, which is in part determined by the constituent muscle fiber phenotype
(Wisdom et al., 2015). Skeletal muscle fibers’ sarcomeres can express a range of myosin heavy chain
isoforms, from slow (i.e., type I) to fast (i.e., type IIa and IIx). This impacts themuscle’s ability to generate
force per unit time. Fast-twitchmuscle fibers are characterized by their ability to produce a high amount of
force in a short period but are also more prone to fatigue. In contrast, slow-twitch fibers produce less force
over a longer period but are highly resistant to fatigue. These characteristics, aside from fatigue, are
reflected in the muscle’s F–V relationship (Figure 1d).
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2.1.2. Simplified model for hopping
The MTU contraction dynamics model should be combined with a motion-related equation to obtain the
combined MTU-exoskeleton system. We use the same model used by Robertson et al. (2014) and
Robertson and Sawicki (2014) and add a parallel damping to the MTU contractile element. In addition,
we incorporate a parallel actuator force into the system to simulate the exoskeleton.

€L
MT ¼� g

W
lin
lout

� �2

FT þFac�W
lout
lin

� �
(5)

In this equation, the ratio lout
lin

represents the mechanical advantage of the pulley-mass system shown in
Figure 1. The combinedMTU-exoskeleton model [equations (2) and (5)] are used as the main model (the
control plant) within the control framework.

2.2. Tendon force control using NMPC

To effectively maintain musculotendon or joint loads below a predefined threshold while ensuring user
comfort, predictive controllers are essential. These controllers can predict future trends inMTU loads and
activate actuators preemptively to prevent the load from exceeding the threshold. To address this need, we
integrate an NMPC algorithm within our framework. Unlike other model-based controllers, MPC
algorithms offer the advantage of setting explicit limits on both the system states and controller outputs.
The primary objective in our optimization problem is to minimize the following cost function while
ensuring that the tendon force remains within the specified limits.

J¼
XN
k¼1

w1 Facð Þ2þw2 ΔFacð Þ2þw3 FT
k �FT

des

� �2
(6)

Here, N represents the control horizon, while the weights wi determine the influence of tendon force,
actuator force (Fac), and its increment (ΔFac) on the overall cost function. Specifically, w1 penalizes high
actuator force, thereby reducing power consumption. w2 penalizes large fluctuations in actuator force,
promoting smoother, more gradual changes in actuation. Finally, w3 penalizes the deviation between the
actual and desired Achilles tendon force during hopping. We use a decreasing horizon and the smallest
permissible horizon in our simulation is considered to be equal to 100ms (Nabipour et al., 2023). In all our
simulations, we operate under the assumption that we have foreknowledge of the future MTU activation.
This assumption remains valid particularly in cyclic tasks like hopping, where muscle synergies enable us
to infer the activation throughout the entire cycle.

2.3. Robustness of the control framework

2.3.1. Different horizons and levels of support
The initial prediction control horizon determines the duration over which the control framework predicts
future MTU force profiles to decide whether to activate the NMPC. In addition, as previously discussed,
predicted future MTU force also serves as the starting point for the decreasing control horizon of the
NMPC algorithm. Therefore, an excessively large initial control horizon can lead to significant time
consumption, while overly small values may impair the controller’s ability to maintain the MTU load
below a predetermined threshold. To analyze the sensitivity of the NMPC to this control parameter, we
will simulate various initial horizons ranging from 100 to 175ms.

Having a controller robust to changes in levels of support ensures the adaptability of the exoskeleton to
different environments and enhances the user’s comfort and safety.We will simulate variations in support
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levels by maintaining a fixed initial horizon and changing the threshold of the NMPC algorithm. On the
controller side, this essentially involves altering the FT

des value. Adjusting the threshold prompts the
controller to target matching the maximum MTU load to the specified threshold value. Consequently,
modifying the threshold is equivalent to adjusting the desired force.

2.3.2. Controller robustness to various muscle phenotypes
The investigation into the robustness of the control framework to changes in muscle fiber phenotypes is
conducted in two ways: (a) when the controller is informed of the phenotype change and (b) when the
controller is unaware of the change. In all scenarios, a constant tendon force threshold of 2500N is
maintained. When the controller is aware of the phenotype change the Vmax in the hopping model and the
controller have the same value. It should be noted that the tendon force profile changes due to change in
the phenotype of the muscle fiber.

Therefore, we simulate various fast and slow-twitch muscle phenotypes by tuning the parameter pi in
the equation Vmax ¼ piL

M
O =s within the MTU model. In our simulations, we adjust this parameter across

values of 2 or 4 (representing slow-twitch muscle fiber), 7, and 10 (representing fast-twitch muscle fiber)
(Zajac, 1989). The controller’s ability to handle various phenotypes will be examined by simulating its
behavior during hopping at a frequency of 2:5Hz, both when the controller is aware and unaware of the
change in muscle fiber phenotype. In the cases that the controller is aware of the change, the Vmax in the
hopping model (Figure 2e) and the framework (the future predictor and the NMPC inner model,
(Figure 2b and 2d) are the same.
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Figure 2. The NMPC control framework: The closed-form dynamics of the combined MTU and motion-
related ODE [equations (2) and (5)] leverage the predetermined activation (a) to compute the MTU force
in the tendon force predictor (b) over a horizon. In addition, the current muscle activation is fed into the
human lumped triceps surae muscle model to determine the present MTU length and tendon force (e). The
estimated desired tendon force (c) is derived from the predicted future MTU force (b), which is then
relayed to the NMPC (d) alongside the activation over the horizon and current MTU length and force
obtained from the human (e). The controller’s output is subsequently applied to the human through the
exoskeleton. Consequently, due to this mechanical assistance, the muscle fiber phenotype could undergo

changes (e) unbeknownst to the controller.
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3. Results

3.1. Modeling

When simulatingMTUdynamics using the conventional non-dampedHill-typemusclemodel, the tendon
force solution becomes unstable whenevermuscle activation approaches zero. By introducing damping in
parallel to the contractile element and linearizing the force–velocity relation to derive a closed-form
analytical solution, the instability concern is effectively addressed. The muscle modeling technique was
validated using data from prior studies where dorsi- and plantarflexion EMGs and kinematic data were
acquired using a dynamometer. This validation process was crucial as it allowed us to confirm the
accuracy of ourmodel based on established datasets (Cop et al., 2019). Furthermore, this adjustment leads
to a notable decrease in the root mean square error (RMSE) from 10.4% to 7.9%when compared with the
non-damped model (see Figure 3).

3.2. Predictive control

3.2.1. Different horizons and levels of support
Since the horizon varies in our framework, the initial horizon is of great significance. In Figure 4, the
NMPC perfomance for different initial horizons starting from 100ms up to 175ms is depicted.

The hopping frequency maintained consistently throughout this study and did not change in response
to assistance. This frequency is fixed at 2:5Hz, an average value observed in the existing literature as a
preferred hopping frequency (Farley et al., 1991; Funase et al., 2001; Mohammadi Nejad Rashty et al.,
2024). Furthermore, the excitation and activation dynamics are based on the findings presented in
Robertson et al. (2014). The maximum tendon force during simulation of hopping at a frequency of
2:5Hz without assistance occurs when the muscle excitation amplitude is set to 1. In this scenario, the
maximum tendon force reaches 4333N. However, when assistance is introduced with a 100ms initial
horizon, the maximum tendon force is reduced to 2942N. The normalized RMSE of the maximum tendon
forces achieved in every hop is calculated to be 8.2%. The median and standard deviation (STD) of the
maximum tendon forces are 2498 and 184N, respectively. In instances where control horizons of 150 and
175mswere tested, the controller consistentlymaintained themaximum tendon force below the threshold.
However, when employing a control horizon of 150ms to modulate the assistance level from 3000 to
2000N (Figure 5), it was noted that the tendon force surpassed the threshold during the transition.
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Figure 3. Comparison of muscle force estimation methods during plantar/dorsiflexion of the Tibialis
Anterior muscle on a dynamometer: The muscle force estimated by CEINMS is represented by the red
dotted line. The gray line shows the muscle force estimation using a non-damped Hill-type muscle model.

The solid blue curve illustrates the muscle force estimated by the damped-linearized model.
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Figure 4.NMPCperformance across varying initial control horizons:Moving from top to bottom, muscle
excitation is represented by square waves with a 10% duty cycle and varying amplitudes, all maintaining
a frequency of 2:5Hz. The muscle activation dynamics are captured by a first-order differential equation.
In the center, the tendon force profiles are displayed for different initial horizons (IH), alongside the

scenarios without assistance and the constant predefined 2500N tendon force threshold. At the bottom,
the actuator forces corresponding to different IHs are displayed.

Figure 5. Performance of the control framework for various support levels: Progressing from top to
bottom, the muscle excitation and its corresponding activation are depicted. In the middle, the Achilles
tendon force is illustrated, with the unassisted scenario represented by a gray dotted line and the assisted
tendon force by a solid blue line. At the bottom, the controller output required to achieve this behavior is

displayed.
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Consequently, in subsequent simulations, the control horizon of 175ms is adopted. Nonetheless, the
maximum, median, and standard deviation values for a 150ms horizon are 2498, 2492N, and 4.3%,
respectively. For a 175ms horizon, these values are 2496, 2490N, and 4.3%, respectively.

The controller’s robustness to support different levels of assistance is also investigated, as shown in
Figure 5. To demonstrate various levels of support, the threshold of theNMPC algorithm is adjusted every
few hop, with an initial prediction horizon of 175ms. As depicted in Figure 5, the controller dynamically
adjusts the control output to ensure that the peak tendon force remains below the threshold, achieving an
RMSE of 8:4N.

3.2.2. Robustness to changes in muscle fiber phenotype
In this study, concerning the distinct muscle fiber phenotypes analyzed, the controller successfully keeps
the peak Achilles tendon force below the threshold when it is informed about the variations in the muscle
fiber phenotypes. For the type I muscle fiber (Vmax ¼ 4

LMO
s ), the average peak tendon force, STD, and

normalized RMSE are 2489, 8:5N, and 0.5%, respectively. Similarly, for type II-A, these values are close
at 2493, 4:2N, and 0.36%, and for type II-X, they stand at 2490, 4:3N, and 0.4%, respectively.
Furthermore, as observed, the non-assisted peak tendon force rises with the increase in the muscle fiber
twitch velocity. Consequently, the faster twitch muscle fibers necessitate greater exoskeleton actuation to
ensure that the assisted tendon force remains below the threshold.

The investigation into the robustness of the control framework was also conducted without informing
the controller of the changes occurring in the muscle fiber phenotype (see Figure 7). In this scenario, the
Vmax parameters in both the main model and the controller were varied with different values. It was noted
that when the Vmax parameter in the human triceps surae model surpassed that of the controller, the
controller effectively managed to produce outputs that kept the peak tendon force near the specified limit.
However, a different scenario unfolded when the controller erroneously assumed a faster muscle fiber
type than the actual case, resulting in assisted tendon forces falling below the threshold but significantly
under the expected level, potentially compromising user comfort in practical applications.

Figure 6. Predictive control performance applied to different muscle fiber types when the controller is
aware of the fiber type. Progressing from top to bottom, the muscle excitation and its corresponding

activation are illustrated. In the center, he assisted Achilles tendon forces when the controller is informed
about the muscle fiber type are displayed. At the bottom, the respective control output for each muscle

fiber type control is shown.
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For instance, as illustrated in Figure 7, in the case where Vmax ¼ 10LMO =s in the model and Vmax ¼
7LMO =s in the controller (represented by the blue lines in Figure 7), the maximum peak controlled tendon
force was 2779N. For the case where Vmax ¼ 4LMO =s and V

max ¼ 2LMO =s in the controller (represented by
red and yellow lines in Figure 7), these statistics take the value of 3098N and 3806N, respectively.

4. Discussions

In this paper, we introduced a closed-loop control framework designed to predictively control the peak
Achilles tendon force during hopping via a parallel actuator. The proposed controller demonstrated
robustness in delivering optimal assistive torques to the targetMTU across a spectrum of assistance levels
required by the user. Moreover, it exhibited the ability to adapt to the contractile speed characteristics of
different muscle fiber phenotypes ranging from slow to fast-twitch, showcasing resilience to variations in
muscle type while the controller was aware of the changes. However, this was not the case when the
controller was not aware of the changes in the muscle fiber phenotype changes.

4.1. Modeling

When damping was incorporated into the conventional Hill-type muscle model, it became feasible to
obtain a close-form solution for the tendon force in the form of ODE. As a result, the very low
computational time of each frame of the model, 3μs, allowed us to use the model for predicting the
future tendon force, knowing the muscle actuation of the future.

In the combined MTU-exoskeleton model, we made the assumption of a single lumped MTU instead
of considering individual plantarflexing MTUs (Robertson et al., 2014). Also, the influence of dorsi-
flexors during hopping was disregarded. Moreover, we assumed a constant moment arm and that the
exoskeleton actuation is applied at the same location as the Achilles tendon force. Future work will focus
on extending and refining thismodel to incorporatemore detailed representations of theMTUand varying
moment arm dynamics.

Figure 7.NMPC’s robustness to variations inmuscle fiber typewhen uninformed of changes: progressing
from top to bottom, the muscle excitation and its corresponding activation are illustrated. In the middle,
the assisted Achilles tendon force is shown while the muscle’s fiber phenotype in the model (Figure 2e)
remains constant with Vmax ¼ 10

LMO
s . The controller is unaware of this value and assumes different fiber

velocities. At the bottom, the controller’s output for various assumptions of muscle fiber phenotypes is
displayed.
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4.2. Control

The predictive framework outlined in this study exhibits certain limitations. Primarily, the internal model
of this controller is applicable solely within the range where the normalized F-V relation is linear (refer to
Figure 1c). Moreover, we made the assumption of predetermined muscle excitation/activation patterns.
To enhance the practical utility of this control framework, a crucial strategy involves incorporating a
muscle activation predictor into the algorithm. A significant first step toward this integration could
involve leveraging muscle synergies, as discussed in Gonzalez-Vargas et al. (2015); Li et al. (2024). As
the activation does not change in response to the assistance provided by the controller, the MTU force is
regulated through the manipulation of the MTU contractile mechanics, specifically adjusting the muscle
fiber length (LM ) and MTU length (LMT ) using equations (4) and (5), respectively.

4.2.1. Different prediction horizons and levels of robotic support
It was demonstrated that while small initial horizon values (≤ 100ms) in the NMPC algorithm did not
effectively constrain the peakAchilles tendon force below the threshold, they did result in a decrease from
4333 to 3227N. As the initial horizon increased, the controller began activating earlier, mitigating the risk
of surpassing the threshold and allowing for a more gradual increase in actuator activation. However,
larger initial horizons, althoughmore likely tomaintain the peak tendon force within the limits, can lead to
greater deviation from real-world applications in the presence of modeling uncertainties. Furthermore,
larger control horizons result in increased computational time required for the controller. In all future
simulations, the 175ms initial horizon was implemented. When possessing the 175ms initial horizon, the
computational time (18ms) stays within the limits of MTU’s physiological electromechanical delay.

Gradually adjusting the support level offered by the exoskeletons can provide benefits. It can aid
potential patients in regaining strength and mobility at their preferred pace, enhances the ability of elderly
users to carry out daily activities with increased ease and independence, and assists individuals or athletes
in optimizing their performance while mitigating the risk of fatigue-related injuries. Consequently, a
crucial characteristic of the controller would be its robustness in delivering diverse levels of support
without necessitating any modifications to the controller itself. By demonstrating an RMSE of 8:4N for
the peakMTU force and the threshold, the NMPC framework exhibited an acceptable performance in this
aspect, highlighting its ability to provide adaptive assistance promptly.

4.2.2. Changes in muscle fiber phenotypes
By accommodating diverse muscle phenotypes, we can extend assistance to a wider range of users with
distinct physiological characteristics. The control of different muscle phenotypes enables the exoskeleton
to enhance performance across various activities, spanning from rapid bursts of activity to sustained
exertion. Additionally, due to the dynamic nature of muscle adaptation, transitional isoforms emerge as
muscles possess the capacity to transition between these primary isoforms in long-term (Wisdom et al.,
2015). However, in short-term, a more pertinent aspect is the recruitment of different motor units that
innervate diverse fiber types, particularly evident during prolonged fatiguing exercises. Consequently,
having a controller that robustly adapts to changes in muscle fiber phenotype over time would be
advantageous.

When the controller was informed about changes in muscle fiber types, it exhibited robustness against
various muscle fiber phenotypes by effectively maintaining the peak tendon force below the threshold,
with an RMSE of the maximum tendon force of less than 10N. However, operating without knowledge of
themuscle fiber phenotype changes and employingmuscle fiber types with slower twitch responses in the
controller compared to the primary model, the controller aimed to regulate the maximum tendon force
near the threshold. In some instances, it did not entirely succeed but still managed to keep it in proximity to
the threshold.

This scenario differedwhen amuscle fiberwith a faster twitch responsewas utilized in the controller. In
such cases, if the Vmax in the controller exceeded that of the model, the controller triggered activation
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prematurely, resulting in the tendon force falling significantly below the threshold, potentially
compromising user comfort in real-world scenarios.

As a limitation of our work, it should be noted that in our simulations, the muscle activation remains
unchanged in response to the provided assistance, which differs from real-world scenarios. However, as
NMPC functions as a feedback control system, it continuously updates its state and comprehension of
activation in real time. Furthermore, different muscle fiber phenotypes exhibit variations not only in Vmax

but also in FM
O and activation dynamics. However, for the scope of this research, our emphasis was

specifically on modulating the Vmax parameter while overlooking changes related to the other mentioned
parameters. Furthermore, muscles typically encompass a mix of motor units with diverse fiber types;
however, in this study, we simplified by treating the entire muscle as a single muscle fiber type.

In future work, the existing control framework will be deployed for controlling MTU loads for both
hopping and walking scenarios (Nabipour et al., 2024), in addition to being employed for controlling
trunk exoskeletons during weight-lifting tasks (Li et al., 2024). In this setup, instead of relying on
feedback solely from the main model (hopping model in the context of this study), the lengths of the
musculotendon units (LMT ) and tendon forces will be obtained in real-time from kinematic and EMG data
collected from the user. These data will then be processed using the CEINMS real-time toolbox to derive
MTU lengths and tendon forces.

5. Conclusion

This paper presents a pioneering framework for closed-loop control of peak tendon force within a
simulated human ankle joint system equipped with parallel exoskeleton actuation. While previous
research in lower limb wearable exoskeleton and exosuit control has primarily focused on reducing
metabolic costs or compensating for biological joint torques, our work addresses the critical need for
direct control over MTU dynamics. By integrating NMPC with a computationally efficient model
encompassing Hill-type MTU contraction dynamics and ankle joint motion with parallel exoskeleton
actuation, we bridge a significant gap in wearable robotic control.

Our approach demonstrates robustness across various support levels and diverse MTU fiber pheno-
types when the controller is aware of themuscle fiber types, ranging from slow-twitch type I to fast-twitch
type IIx. However, the study highlights that this framework is not entirely resilient to changes in muscle
fiber phenotypes when the controller lacks awareness of these variations. By effectively managing peak
Achilles tendon force under diverse simulated conditions, such as cyclic force production in ankle
plantarflexors, our framework sets the stage for future wearable robots capable of delivering precise
support tailored to specific MTUs. The computational efficiency of our model, with microsecond-level
computation times and resilience to different muscle contraction velocities, underscores its promise for
real-world applications.
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