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Introduction. In general topology, ome knows several
standard extension spaces defined for one class of spaces or
another and it is a natural question concerning any two such
extensions which are defined for the same space whether they
can ever be equal to each other. In the following, this problem
will be considered for the Stone-Cech compactification GE of a
completely regular non-compact Hausdorff space E [4] and
Kat&tov's maximal Hausdorff extension KE of E[(5]. It will be
shown that BE # KE always holds or, what amounts to the same,
that KE can never be compact. As an application of this it will
be proved that any completely regular Hausdorff space is dense
in some non-compact space in which the Stone-Weierstrass
approximation theorem holds.

All topological concepts will be used in the sense of N.
Bourbaki [3].

1. On the Kat&tov extension. A filter ¥ on a space E which
has a basis consisting of open sets will be called an open filter.
By Zorn's lemma one readily sees that any open filter #is con-
tained in some maximal open filter #{,. Such filters AL have, in
virtue of their maximality, the following property. If X C E is
open and X¢ AU, then there exists a Ye M. suchthat X n Y = @,
the void set. This implies that any maximal open filter contains
all everywhere dense open sets of the space E.

The extension KE of a Hausdorff space E which is to be
studied here can be defined in terms of the set £ of all non-con-
vergent maximal open filters on E as follows. With any Al € &
one associates a point xy, € E such that the xy are distinct
for distinct M. Them, the set Eu { xy, |4l e £} is given a topology
by assigning to each x € E the same neighbourhoods as in E and
to each xy the neighbourhoods {xy} v M, MEM . E is then
obviously a dense subspace of this new space XE.
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PROPOSITION 1. The space KE can never be compact.

Proof. We assume that WE is compact and deduce a con-
tradiction. This will be done by constructing, for any M€ 2,
a well-ordered descending sequence of sets in M which forms a
basis for A and by then showing that the existence of such a
basis is incompatible with the maximality of A,

First, the assumed compactness of K E has the following
two consequences which will be needed later. (1) For any _open
X € M there exists an open Y& M such that ¥ € X, where Y
denotes the closure of Y in E. This follows from the regularity
of compact spaces and the fact that E is a subspace of KE.

(2) E is completely regular and BE = XE, since subspaces of
compact spaces are always completely regular and since for
any completely regular E BE is the continuous image of XE
by a mapping which induces the identity mapping on E (5].

Next, consider the neighbourhood {x&} v E of xy in KE.
By the regularity of XE, there exists an open X €Al such that
the closure of {xa} uX_ in XE is contained in {xA } o E. This
closure, however, is Xo v {XM | Xo € M’} and it follows from
X v {x/& ‘Xo e/%}CEu{xA}that x4 is the only x4’ such
that X, /% . This 1mp11es that for any X € X the closure of
X v {xj,L} in WE is just Xuw { x4} .

Now, let M be the set of all open X & X, in A and denote
by X <Y the tran51t1ve relation X € Y on /1{ From a well-known
maximum principle one can then infer that Mo contains a maximal
descending well-ordered ( < })-chain W'. The intersection W =
NX (X€W) is closed since NX = \X (XEW) in virtue of the
meaning of the relation X< Y. Suppose first that W = ., One
then has {xy} =N {xx} v X (X € W) and since the {XM_} v X
are closed neighbourhoods of xy in KE it follows from a property
of compact spaces [1] that they form a fundamental system of
neighbourhoods of xy in KE. This means that W'is a basis of M.
Next, assume W # @. Then, it follows that IW w €W, where
I W denotes the interior and € W the complement of W in E,
belongs to M because it is an everywhere dense open set in E.
IWo CWe M implies that either LW or € W is in M, where
the former is, of course, only possible if TW # @. Now, if
LW €M one can take an open Y& M such that Y< T'W; but then,
WoiYl would be a prolongation of the well-ordered descending
{(<)-chain W in A/I_o and this contradicts the maximality of W'.
Thus, it is seen that € W& M and then the collection of sets
Xn & W, X€&W, belonging to M has void intersection; it follows
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that for any X, € M with -}Zl_c__: €W one has NX X, CNUX AT W) =
(NX)A CW=0Q (XEW) and as before, this implies that the sets
X nX, form a basis of M.

In all, it is now established that M possesses a basis 8
consisting of open sets which is at least a descending well-ordered
chain with respect to set inclusion. This & will contain cofinal
subchains which are even descending well-ordered ( £ )-chains
since for any X€ 8 there exists a Y € 8 suchthat Y< X, in
virtue of the property (1) of M mentioned above and by the fact
that /L has B as a basis. Let, then, (< ® be sucha (< )-chain
and assume that & contains no subchain of smaller ordinal type
which is a basis of M, i.e., whichis cofinal with B . Let,
further, Cx, < < M, be an indexing of & by all ordinals x< 7 such
that Cx < Cg if and only if x >3. The ordinal n must be the
supremum of the limit numbers A< E otherwise , there would
be no limit number '/\<)2, i.e., m=w, or one would have a largest
limit number A< n in which case the chain C3 > Cy 4+ >...
would be cofinal with &, i.e., again n=w by the choice of ;
the equation n=uw, however, would mean tha:. XM isa Gg in
XE = p E, and this is excluded according to Cech (4].

To arrive at the desired contradiction, put Dy = Cy -
Cy +12nd L = UDy , A the limit numbers less than . The open
set L obviously meets every set of M ; however, it does not belong
to M_ , for if ¥ is the first limit number A 3 & (X< n)and X =
Cy41-Cy+2thenCy<s L would imply X=CyAnX&LnX=0Q
whereas X # @. Thus, the existence of L contradicts the maxim-
ality of M, and with this the proof is completed.

The space XE is absolutely closed (5] and would therefore
be compact if it were regular [1]. Thus follows the

COROLLARY. The space XE can never be regular.

2. On the Stone-Weierstrass approximation theorem. This

theorem is saidto holdin a space E ifthe ring C(E) of all bounded
continuous real functions on E separates the points of E (i.e.,

if x # y, then fx # fy for some f € C(E) ) and if any subring of
C(E) which contains the constant functions and separates the points
of E is dense in C(E) with respect to the topology of uniform con-
vergence on E. This is always the case when the space E is compact,
but, as proved in [2], there also exist non-compact spaces with
this property. It will now be shown by means of the result in sec-
tion 1 that there exist in fact a great number of such non-compact
spaces. :

https://doi.org/10.4153/CMB-1959-001-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1959-001-8

PROPOSITION 2. Any completely regular Hausdorff
space is dense in some non-compact space in which the Stone-
Weierstrass approximation theorem holds.

Proof. Let E be the space and @:X¥XE—-?0E the continuous
mapping onto GE which induces the identity mapping on E. Now,
for anyu @ B E - E let one point u* ¢ (p'l u be chosen and call
the subspace Eu {u* | u € BE - E}of XE E*. E is then dense
in E*. Further, E* is not compact. If it were it would be closed
in XE; but since E € E* and E is dense in K E, this would give E*=
¥ E, whereas XE cannot be compact.

It remains to be shown that the Weierstrass-Stone
theorem holds in E*. First, C(E%*) separates the points of E*,
for C( R E) separates the points of BE and ¢ induces a one-to-cne
continuous mapping of E*¥ onto BE. Next, take any bounded con-
tinuous real function f on E* and let g be its restriction to E. This
g has a unique continuous extension g to BE and since the func-
tion g¢ on E* coincides with f on E, a dense subspace, one has
the decomposition f = g¢ . Now, if a subring R € C(E%*) contains
the constant functions and separates the points of E*, then by the
correspondence f 53, R determines a similar subring S of C(EE),
for if f separates u%* and u.*2 in E* then its g separatesy; = @ vE
and y2 = Qy% Dbecause of f = g @, and by definition of E*, any
y ¢ RE istheimage of a Y* € E* under ¢. Since BE is compact
this shows that S is dense in C{ 3 E) in the sense of uniform con-
vergence on 3E. But then, again, because of the decomposition
f=g¢, Ris also dense in C(E*) with respect to uniform conver-
gence on E¥*,
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