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What Drives the Commonality between Credit
Default Swap Spread Changes?

Mike Anderson*

Abstract
This paper documents an increase in the comovement between credit default swap (CDS)
spread changes during the 2007–2009 crisis and investigates the source of that increase.
One possible explanation is that comovement increased because fundamental values be-
came more correlated. However, I find that changes in fundamentals account for only 23%
of the increase in covariance. The remaining increase is attributed to changes in liquidity
and the market price of default risk. In contrast, counterparty risk played an insignificant
role. Although both contributed, the increase in covariance was driven more by variation
in exposures than factor variance–covariance.

I. Introduction
Diversification of risk in financial markets is limited by the level of com-

monality between asset price movements. Over the past decade, explosive growth
in the use of credit default swap (CDS) contracts led many investors, particularly
large financial institutions, to bear exposure to the CDS market.1 As a result, the
comovement between CDS spread changes is fundamental to evaluating the risk
that an active CDS market poses to the financial system.

Despite its importance, surprisingly little is known about what drives co-
movement, especially in times of economic turmoil. Research efforts have fo-
cused more on the information content of CDS spreads (see Blanco, Brennan, and
Marsh (2005), Longstaff (2010), Bongaerts, de Jong, and Driessen (2011), and
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1According to the Office of the Comptroller of the Currency, the 20 largest commercial banks were
also the most active in trading CDS protection in 2007.
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Arora, Gandhi, and Longstaff (2012)) than on comovement, which has mainly
been studied under normal economic conditions (see Jorion and Zhang (2007),
(2009), Acharya, Schaefer, and Zhang (2015), and Ericsson, Jacobs, and Oviedo
(2009)). Therefore, how and why comovement changes under economic distress
remains an open question. This paper addresses that gap by documenting an in-
crease in the commonality between corporate single-name CDS spread changes
during the 2007–2009 crisis and investigates whether that increase was driven by
fundamental credit risk or noncredit factors, including liquidity, counterparty risk,
and the default risk premium.

An increase in the comovement between CDS spread changes is important
because it robs investors of their ability to diversify when diversification is most
needed. In the CDS market, this can directly impact the financial sector’s ability
to function. Major players in the CDS market are often systemically important
financial institutions that operate with low capital buffers. As a result, increased
commonality can lead to forced deleveraging as institutions adjust their balance
sheets to tolerate a higher level of risk. Therefore, the escalation in comovement
documented later in the paper likely increased the probability that investors with
exposure to the CDS market would need to raise capital or shed risk under adverse
economic conditions.

At the same time, growing institutional holdings of AAA tranches of col-
lateralized debt obligations (CDOs) introduced an additional layer of risk. These
assets decrease in value with correlation and are often priced using models that
rely on the historical correlations between single-name CDS spreads. As a result,
an increase in commonality may lead to write-downs that can further inhibit the
financial sector’s ability to bear risk. A natural question, in light of this discus-
sion, is whether the increase in comovement and resulting instability was driven
by a joint deterioration in credit quality or by noncredit factors that can arise in
the CDS market.

To address this question, I obtain daily spreads for 159 liquid investment-
grade corporate single-name CDS contracts from Dec. 23, 2005, to Mar. 9, 2009.2

As a first step, I document an increase in the comovement between firm-level
CDS spread changes in the crisis (after July 30, 2007) using simple measures of
association.

Next, I decompose covariance into fundamental and excess components to
better understand why comovement increased. For this analysis, I aggregate to
quintile portfolios based on Moody’s KMV expected default frequency (EDF)
measure, which allows for a more precise decomposition. Relying on prior re-
search, I separate fundamental and excess covariance using a linear factor model
with covariates implied by Merton (1974) (see Collin-Dufresne, Goldstein, and
Martin (2001), Ericsson et al. (2009)). Within the reduced dimension of the port-
folio analysis, the model is estimated in a system of seemingly unrelated regres-
sions (SURs).

2These contracts are included in the CDS North American Investment Grade Index (CDX.NA.IG)
rolls 8–12. The CDS market rebounded on Mar. 9, 2009. Dec. 23, 2005, was chosen to yield balanced
panels.
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I find that the covariance between portfolio CDS spread changes increased
70-fold over its precrisis level on average, resulting in a $2.5M increase in value-
at-risk (VaR) for a portfolio of 60 CDS contracts. However, only 23% of the
increase in covariance relates to fundamentals. The remainder can largely be at-
tributed to changes in liquidity and the default risk premium, which account for
an additional 10% and 18% of the increase, respectively. In contrast, I find no
evidence that counterparty risk increased comovement.3

Finally, I investigate the importance of time-varying parameters. This anal-
ysis evaluates the relative performance, based on covariance mean-squared error,
of each variable specification with constant, quarterly, and monthly betas (see
Bekaert, Hodrick, and Zhang (2009)). Not surprisingly, I find that controlling for
changes in fundamentals, liquidity, and the default risk premium with monthly
time-varying betas best characterizes the sample covariance structure under eco-
nomic distress.4 With time-varying parameters, the model captures 66% of the
increase in covariance compared to 45% with constant parameters. Additionally,
it explains $40,000 of the $47,500 sample VaR in the crisis per $10M notional.
Further analysis shows that the increase in covariance is related more to the time
variation in betas than factor variance–covariance.

Ultimately, 34% of the increase in covariance is left unexplained. However,
Figure 2 shows that this is directly related to the Lehman Brothers’ failure and
resolves within 6 months of the event.

Overall, these results enhance our understanding of the CDS market. They
are important for future regulation, portfolio allocation, and pricing of credit
derivatives. For instance, Basel III introduced specific capital charges for cor-
relation trading portfolios and “stressed” VaR. Therefore, a better understanding
of the sources that increase commonality may help implement and refine these
new standards. Moreover, the dynamic nature of covariance illustrated herein and
contributions from noncredit-related factors are important considerations for in-
formed portfolio allocation decisions.

This paper contributes to a small but growing string of literature on the
commonality in CDS spreads. Early work focused on dependence under normal
economic conditions. Researchers identified mechanisms that link CDS spreads
through the expected future cash flows of reference firms and showed that co-
movement was largely related to observed economic variables (see Jorion and
Zhang (2007), (2009), Ericsson et al. (2009), Acharya et al. (2015), Berndt et al.
(2008), Kim, Loretan, and Remolona (2010), and Azizpour, Giesecke, and Kim
(2011)), whereas others argued that a significant fraction of correlations could be
attributed to contagion (see Pu and Zhao (2012)). More recently, Christoffersen,
Jacobs, Jin, and Langlois (2016) use a dynamic copula approach to illustrate a

3Tests for liquidity employ several proxies to capture systematic liquidity, transaction costs,
bond liquidity, and funding liquidity. I follow the panel regression methodology outlined by Berndt,
Douglas, Duffie, Ferguson, and Schranz (2008) to obtain a time-varying measure of the default risk
premium. Counterparty risk proxies include various measures of dealers’ credit quality. This analysis
holds exposures and factor variance–covariance constant over the precrisis and crisis subperiods.

4Covariance mean-squared error compares the model-implied to sample covariance each month.
This allows for monthly variation in factor variance–covariance. The constant-beta model allows for a
one-time change in betas at the onset of the crisis.
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loss in diversification benefit after 2008. However, they provide little insight into
the economic mechanism. To my knowledge, this is the first study to document an
increase in the comovement between CDS spread changes in response to a change
in economic conditions and investigate the factors that drive that change.

The paper proceeds as follows: Section II describes the data. Section III
shows that comovement increased and explores the contribution from fundamen-
tals. In Sections IV, V, and VI, respectively, I investigate the impact of liquid-
ity, counterparty risk, and the default risk premium on the change in covariance.
Section VII introduces time-varying parameters and discusses their impact on
covariance. Section VIII concludes the paper.

II. Data and Sample Characteristics
I obtain daily end-of-day dealer-aggregate mid-quotes on 5-year contracts

that trade under the North American convention from Credit Market Analysis
(CMA). The 5-year maturity is widely considered the most liquid and is standard
in the academic literature. Contracts that trade under the North American conven-
tion are standardized, which ensures that premiums reference the same contract
specification (see Casey and Price (2009)). Finally, I use daily data to better cap-
ture the high frequency of events that transpired over the crisis. This has the added
benefit of making the results more applicable to VaR models commonly used to
determine capital requirements at financial institutions.

The sample includes daily spreads for constituents of the CDX.NA.IG index
rolls 8–12 from Dec. 23, 2005, to Mar. 9, 2009. This index is constructed every
6 months to include 125 investment-grade contracts identified by dealer surveys
as the most liquid on the market. My final sample consists of 125,752 firm-day
observations and covers 159 reference entities. I then split the data into balanced
precrisis and crisis subperiods on July 31, 2007.

The first four rows of Panel A in Table 1 illustrate a stark shift in the CDS
market beginning in 2007. On average, CDS spreads increased from 37 basis
points (bps) to a high of 367 bps in 2008. The mean and volatility of CDS
spread changes increased as well, most likely in response to heightened economic
uncertainty.

The remainder of Panel A of Table 1 reports average market-to-book ratio,
cash holdings, profitability, total assets, book leverage, and size, which Campbell,
Hilscher, and Szilagyi (2008) show are important determinates of credit quality.
To better understand how this sample relates to other commonly studied firms,
I compare the average firm in my sample to that of the Center for Research in
Security Prices (CRSP)/Compustat Universe. Results suggest that, on average,
these firms are not remarkably levered or profitable, nor do they have extraordi-
nary growth prospects when compared with firms in the CRSP/Compustat uni-
verse. In contrast, sample firms are relatively large cash-rich entities with high
total asset values.

Panels B and C of Table 1, respectively, show the distribution of Moody’s
KMV EDF and Standard & Poor’s (S&P) long-term issuer credit ratings by year.
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TABLE 1
Descriptive Statistics

In Panel A of Table 1, rows 1–4 present the mean and volatility of CDS spread levels and changes over all contracts in
the sample by year. Rows 1–6 present the average firm characteristics in each year. Accounting data are taken from
Compustat on Dec. 31 or the nearest date not exceeding 6 months pre/post. I calculate firm characteristics as follows
using Compustat notation: BOOK_LEVERAGE= (AT− (AT−LT−PSTLK+TXDITC+DCVT))/AT, MARKET_TO_BOOK=
(CSHO×PRCC_F+AT− (AT−LT−PSTLK+TXDITC+DCVT))/AT (see Baker and Wurgler (2002)), PROFITABILITY=
NI/AT, CASH=CH, TOTAL_ASSETS=AT, and MARKET_CAPITALIZATION=CSHO×PRCC_F. CASH, TOTAL_ASSETS,
and MARKET_CAPITALIZATION are reported in $billions. Sample means that differ significantly at the 1% level from the
average CRSP/Compustat merged firm are reported in bold. Panel B reports the distribution of EDF, in percentages, over
sample firms in each year. Panel C reports the distribution of annual (first monthly observation) S&P long-term issuer
credit ratings when available.

2006 2007 2008 2009

Panel A. Sample Firm Characteristics

CDS 37.72 58.38 367.39 337.64
σCDS 25.04 111.61 2451.75 584.09
1CDS –0.04 0.32 3.14 –1.02
σ1CDS 1.69 19.16 288.86 53.63
BOOK_LEVERAGE 0.59 0.60 0.66 0.64
PROFITABILITY 0.06 0.04 0.00 0.02
MARKET_TO_BOOK 1.57 1.47 1.23 1.33
CASH 1.83 2.01 3.02 3.36
TOTAL_ASSETS 66.93 71.00 71.45 72.32
MARKET_CAP 35.06 33.60 21.25 24.83

Panel B. EDF Distributions (%)

99th 0.74 1.18 12.32 22.23
75th 0.14 0.12 0.45 2.29
50th 0.08 0.07 0.18 0.89
25th 0.04 0.04 0.09 0.35
1st 0.01 0.01 0.02 0.06

Panel C. S&P Long-Term Issuer Credit Ratings

AAA 3 3 2 2
AA+ 0 0 1 0
AA 4 4 2 2
AA− 1 0 2 1
A+ 9 10 11 10
A 25 23 20 18
A− 20 20 20 19
BBB+ 31 32 30 29
BBB 33 36 27 25
BBB− 16 15 21 20
<BBB− 3 1 6 16

Total 145 144 142 142

The rating distributions are centered between BBB and BBB+, with a slight shift
toward speculative grade in 2009.5

III. Comovement
In this section, I document an increase in the comovement between CDS

spread changes during the crisis and investigate its relationship to fundamental
credit risk. The discussion is split into four subsections: The first tests for an
increase in comovement. The second decomposes covariance using a linear factor
model. The third describes the fundamental variable specification. Finally, the
fourth subsection reviews the results.

5Long-term issuer credit ratings can drop below investment grade. This is because the CDX.NA.IG
index is constructed using a single investment-grade bond from each issuer. In contrast, S&P issuer
ratings evaluate the credit quality of the company.
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A. Measuring Comovement
To establish that the comovement between daily firm-level CDS spread

changes increased in the crisis, I sort firms into quintiles based on their EDF on
July 31, 2007, and evaluate the change in: i) intraclass correlation, ii) the average
Spearman’s correlation, and iii) the average fraction of firms with CDS spreads
that moved in the same direction each week (FRAC) (see Morck, Yeung, and Yu
(2000)).

These results, reported in Table 2, show that comovement increased within
the full sample and within each EDF-sorted subsample.6 Panels A and B, respec-
tively, record a significant increase, at the 1% level, in both intraclass correlation
and average Spearman’s correlation during the crisis. Moreover, FRAC increased
from approximately 65% to 75%, which was a significant increase at the 1% level
across all subsamples.

Finally, additional evidence of a shift in comovement is provided in Figure 1,
which graphs the cross-sectional densities of pairwise correlations over the pre-
crisis and crisis subperiods.

TABLE 2
Changes in Comovement

Intraclass correlation, average Pearson’s correlation, and the average fraction of firms with CDS spreads that moved in
the same direction each week (FRAC) are reported in Panels A, B, and C of Table 2, respectively. Columns 2 and 3 show
the precrisis and crisis levels, respectively (pre/post July 31, 2007). Columns 4 and 5 report the change and associated
p-values, respectively. I test the change in intraclass correlation using the modified Fisher Z -test described by Donner
and Zou (2002). The test is sensitive to changes in variance, so I standardized CDS spread changes in the precrisis
and crisis subperiods. The significance of the change in average Spearman’s correlations is evaluated using Kendall’s
concordance coefficient (W ), a simple transformation of the average Spearman’s correlation (see Schucany and Frawley
(1973)). I calculate FRAC over each week of the sample period. Assuming independent weekly observations, I use the
asymptotic distribution developed by Morck et al. (2000) to test the change. Note that FRAC is bound between 0.5 and 1
and will naturally produce higher values. Tests of intraclass correlation and average Spearman’s correlation are sensitive
to missing values, so I require contracts to have at least 1 year of data on either side of the crisis, which slightly reduces the
number of contracts. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. p-values
from a nonparametric bootstrap test are provided in parentheses.

No. of Firms Precrisis Crisis Difference p-Value

Panel A. Intraclass Correlation

All 153 0.17 0.61 0.44*** 0.00 (0.00)
1 (Low EDF) 32 0.19 0.41 0.22*** 0.00 (0.00)
2 33 0.16 0.71 0.55*** 0.00 (0.00)
3 25 0.17 0.41 0.24*** 0.00 (0.00)
4 32 0.22 0.34 0.12*** 0.00 (0.00)
5 (High EDF) 31 0.26 0.34 0.08*** 0.01 (0.01)

Panel B. Average Spearman’s Correlation

All 153 0.19 0.46 0.27*** 0.00 (0.00)
1 (Low EDF) 32 0.16 0.50 0.34*** 0.00 (0.00)
2 33 0.19 0.48 0.29*** 0.00 (0.00)
3 25 0.22 0.46 0.24*** 0.00 (0.00)
4 32 0.19 0.43 0.24*** 0.00 (0.00)
5 (High EDF) 31 0.25 0.43 0.18*** 0.00 (0.00)

Panel C. Comovement Fraction

All 159 0.66 0.75 0.09*** 0.00 (0.00)
1 (Low EDF) 32 0.64 0.77 0.13*** 0.00 (0.00)
2 34 0.66 0.76 0.10*** 0.00 (0.00)
3 30 0.69 0.75 0.06*** 0.00 (0.00)
4 32 0.67 0.76 0.09*** 0.00 (0.00)
5 (High EDF) 31 0.69 0.76 0.07*** 0.00 (0.00)

6Intraclass correlation is subject to distributional assumptions that are relaxed in the nonparametric
tests for average Spearman’s correlation and FRAC.
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FIGURE 1
Distributions of Pairwise Correlation Coefficients

Pairwise correlations for all possible firm pairs are calculated prior to and during the crisis. In gray (right) is the cross-
sectional density of pairwise correlation during the crisis, and in black (left) is the cross-sectional density of pairwise
correlation prior to the crisis. A Kolmogorov–Smirnov test confirms that the distributions differ significantly at the 1%
level.
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B. Decomposing Comovement
I begin the decomposition by aggregating to quintile portfolios, which re-

duces some of the noise in firm-level data. These portfolios are rebalanced on the
last day of each month according to the prevailing EDF. The portfolio spread, on
each day of the subsequent month, is simply the equal-weighted average spread
over contracts in the quintile.7

Following Bekaert, Harvey, and Ng (2005), I employ a linear factor model
to characterize the comovement between CDS spread changes. In this setting,
the sample covariance can be decomposed into model-implied (fundamental) and
excess covariance, as follows:

Eτ

[
1CDS 1CDS′

]
= Eτ

[(
βτF′+ ε

)(
βτF′+ ε

)′]
= βτEτ

[
F′F
]
β ′
τ
+Eτ

[
εε ′
]
,(1)

where 1CDS is an M × 1 vector of portfolio CDS spread changes, βτ is an
M × K matrix of factor exposures, F is a 1 × K vector of factors, and ε is a M ×
1 vector of residuals. The subscript τ={precrisis,crisis} in the baseline analysis.
I refer to Eτ

[
F′F
]

as 6τ for the remainder of the paper.

7I use the median industry EDF (Fama and French 5 and financials) to classify firms when firm-
level EDF is unavailable. Additionally, I drop outliers (2 times the interquartile range) from the average
on each day to reduce idiosyncratic effects.
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Equation (1) implies that, all else equal, comovement can increase for three
reasons: i) an increase in exposure(s) to a common factor, ii) an increase in 6τ ,
and iii) an increase in covariance between unexplained CDS spread changes.

To operationalize the decomposition, I estimate the factor model in a system
of SURs over each time period using the feasible generalized least squares (FGLS)
approach (see Kallberg and Pasquariello (2008)). This analysis employs a coarse
definition of τ , which is useful for investigating the relative impact that different
economic factors have on the change in covariance. However, it may be overly
restrictive. Therefore, I refine τ in Section VII to explore the effect of time-varying
parameters.

Using the current framework, I test for a change in beta using cross-equation
constraints. This lends insight into whether covariance increased due to risk (beta)
or 6τ . Importantly, rolling the estimation over the precrisis and crisis subperiods
implicitly controls for changes in factor variance–covariance as well as changes
in residual covariance.

For a more comprehensive analysis on the joint effect of changes in beta
and 6τ on the change in covariance, I calculate the percentage of the change
in covariance captured by the model: (COVR) = (1β̂i ,τ 6̂τ β̂ j ,τ )/1ĉov(i , j)τ . In
this case, significance is evaluated using a simple nonparametric bootstrap with
replacement and percentile confidence intervals to account for asymmetry in the
empirical distribution.

C. Factor Model Specification
My baseline (fundamental) specification follows the work of Collin-

Dufresne et al. (2001), who investigate the determinants of credit spread changes
implied by Merton (1974).8 In addition, I include systematic proxies that may pro-
vide useful information about default probabilities and expected losses in default
(see Allen and Saunders (2003)). The final specification is as follows:

1CDS = α+β1,τ (1RF3M)+β2,τ (1SLOPE)+β3,τ (1SPVOL)(2)
+β4,τ (SP500)+β5,τ (HB)+β6,τ (1DEF)+β7,τ (SMB)
+β8,τ (HML)+β9,τ (PORTRET)+β10,τ (1PORTVOL)+ ε,

where RF3M is the 3-month risk-free rate, SLOPE measures the slope of the
yield curve, SPVOL is the generalized autoregressive conditional heteroskedas-
ticity (GARCH) volatility of the S&P 500 index return, SP500 is the S&P 500
index return, and HB is the return for an index of U.S. home builders. DEF is the
yield difference between Moody’s Baa and Aaa seasoned bond indices. SMB and
HML are the small cap and value premiums, respectively. PORTRET is the equal-
weighted equity return for the EDF-sorted quintile portfolio. Finally, PORTVOL
is the GARCH volatility of PORTRET. Consistent with Collin-Dufresne et al.
(2001), 1 in equation (1) denotes the daily change. Further details on the con-
struction and interpretation of each variable are provided in the Appendix.

8Collin-Dufresne et al. (2001) argue that the model does not fully capture the common component
in bond yield spreads. However, Ericsson et al. (2009) show that the residual common component from
a similar model is greatly reduced when using CDS spreads. Moreover, evidence suggests that the
underperformance of structural form models is largely due to noncredit-related factors (see Schaefer
and Strebulaev (2008), Bao and Pan (2013)).
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D. Factor Model Results
Results of the precrisis factor model estimation are reported in the upper half

of Panel A in Table 3. Not surprisingly, SP500, 1RF3M, 1SLOPE, and 1DEF
are significant with the appropriate sign across most CDS portfolios. Consistent
with a state variable interpretation, CDS spread changes across all portfolios are
negatively related to the value premium. In contrast, portfolio equity returns and
changes in equity volatility are not. However, 1PORTVOL becomes positive and
significant across most portfolios once 1SPVOL is omitted, which is consistent
with Campbell and Taksler (2003).

Several interesting results arise from the tests for a change in beta reported
in the lower half of Panel A in Table 3. First, exposures to SP500, 1RF3M, and
HB increased monotonically across EDF-sorted portfolios. This suggests that in-
creased credit risk specifically linked to changes in macroeconomic conditions,
the risk-neutral drift, and housing market conditions increased the covariance be-
tween all portfolio pairs in the crisis. Moreover, the magnitude of the increase was
more pronounced for portfolios with higher credit risk.

Second, exposure to HML became insignificant across all portfolios during
the crisis, which may represent a decoupling of the CDS and equity market over
this time period. Third, the change in exposure to1DEF is insignificant across all
portfolios. This supports the view that DEF is a coarse measure of credit market
conditions rather than a precise proxy for the default risk premium (see Gilchrist
and Zakrajsek (2012)).9 Finally, R2 values suggest that the model captures ap-
proximately 25% of the variation in daily change in CDS.

These results indicate that an increase in exposures to systematic credit risk
factors contributed to the increase in sample covariance. However, the change
in 6τ also played an important role. Panel B of Table 3 shows that under the
current model specification, a joint one-time shift in βτ and 6τ captures 23% of
the increase in sample covariance. This compares with 10% (unreported) when
6τ is held constant over the full sample period.10

Next, I explore the economic impact of the change in covariance. For each
equal-weighted pairwise combination of EDF-sorted portfolios, I compare the
99% VaR in the crisis to its counterfactual, which holds the covariance struc-
ture constant at its precrisis level.11 These results show that the change in sample

9If DEF precisely measured the default risk premium, this result would imply that default proba-
bilities did not change significantly in the crisis.

10The average covariance between residual CDS spread changes prior to and during the crisis
is 0.20 and 14.56, respectively. Box M tests show that covariance is significant at the 1% level in all
cases, which is consistent with prior work. Further analysis shows that 23% and 42% of the time-series
variation in firm-level residuals is captured by the first principal component prior to and during the
crisis, respectively. These numbers increase to approximately 80% and 90%, respectively, for credit-
based portfolios. Again, this confirms the existing result that commonality in firm-level residuals is
relatively modest but increases with the level of portfolio diversification (see Collin-Dufresne et al.
(2001), Ericsson et al. (2009), and Duffie, Eckner, Horel, and Saita (2009)).

11To calculate VaR, I sum the present value of cash flows generated by selling a $10M contract
on day t and buying it back on day t+1. This yields 5 years of quarterly payments (1CDS/4 ×
$10M) that I discount at the risk-free rate. Next, I use the mean and variance from the time series
of summed discounted cash flows to calculate VaR. Finally, I compare the crisis VaR to the counter-
factual: µcrisis+2.33σcrisis− (µcrisis+2.33σprecrisis). This method assumes that the physical probability of
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TABLE 3
Fundamental Regressions

In Panel A of Table 3, ‘‘Precrisis’’ reports the SUR regression coefficients for equation 2 estimated over the precrisis subpe-
riod (Dec. 23, 2005–July 30, 2007). The dependent variable is the change in the CDS spread of the EDF-sorted portfolio.
‘‘Marginal Crisis Effects’’ is the difference between crisis coefficients (unreported) and precrisis coefficients reported pre-
viously. Crisis coefficients are obtained by reestimating equation 2 over the crisis subperiod (July 31, 2007–Mar. 9, 2009). I
use a simpleWald test of the cross-equation restriction to evaluate the equality of coefficients across subperiods. p-values
for the Wald test are reported in square brackets, and Z -statistics for the SUR coefficients are reported in parentheses.
Panel B reports the percentage of the increase in covariance explained by the model (1ĉov(i , j )model/1ĉov(i , j )sample),
where ĉov(i , j )τ ,model= β̂τ ,i 6̂τ β̂

′

τ ,j , and 1 represents the difference between crisis and precrisis covariance. I use a simple
nonparametric bootstrap with replacement (1,000 repetitions) and percentile confidence intervals to determine whether
the ratio is significantly different from 0. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel A. Fundamental Regressions

1 (Low EDF) 2 3 4 5 (High EDF)

Precrisis
SP500 −0.0013*** −0.0023*** −0.0023*** −0.0033*** −0.0054***

(−5.72) (−7.04) (−6.39) (−7.06) (−7.71)

1SPVOl 0.0048 −0.0050 0.0040 0.0002 −0.0107
(1.27) (−1.07) (0.73) (0.03) (−1.42)

1RF3M −0.0085 −0.0187** −0.0105 −0.0268*** −0.0426***
(−1.48) (−2.27) (−1.15) (−2.35) (−2.60)

1SLOPE −0.0043 −0.0115*** −0.0114** −0.0201*** −0.0381***
(−1.27) (−2.34) (−2.10) (−2.96) (−3.91)

HB 0.0000 0.0000 −0.0001 0.0000 −0.0005
(0.07) (−0.08) (−0.81) (−0.24) (−1.60)

1DEF 0.0557*** 0.0858*** 0.0891*** 0.1522*** 0.1987***
(5.31) (5.72) (5.35) (7.30) (6.66)

SMB −0.0001 0.0000 −0.0002 0.0002 0.0004
(−0.31) (0.07) (−0.33) (0.27) (0.39)

HML −0.0020*** −0.0028*** −0.0031*** −0.0044*** −0.0060***
(−3.20) (−3.11) (−3.03) (−3.47) (−3.31)

PORTRET −0.0001 −0.0002 −0.0003 −0.0007** −0.0001
(−0.26) (−0.54) (−0.96) (−2.09) (−0.21)

1PORTVOL −0.0017 0.0014 −0.0020 −0.0041 0.0005
(−0.55) (0.45) (−0.55) (−1.23) (0.34)

Marginal Crisis Effects
SP500 −0.0016*** −0.0028*** −0.0041*** −0.0064*** −0.0101***

[0.01] [0.00] [0.00] [0.00] [0.00]

1SPVOl −0.0013 0.0078 0.014 0.001 0.0191
[0.89] [0.55] [0.38] [0.96] [0.55]

1RF3M −0.0362*** −0.025 −0.0564** −0.0702** −0.1421***
[0.00] [0.17] [0.02] [0.03] [0.01]

1SLOPE −0.0248** −0.0121 −0.0266 −0.0449 −0.103**
[0.03] [0.48] [0.24] [0.15] [0.05]

HB −0.0011*** −0.0013** −0.0016** −0.0022** −0.0039**
[0.00] [0.02] [0.03] [0.03] [0.03]

1DEF −0.0075 −0.0066 0.0386 −0.0206 0.0496
[0.79] [0.87] [0.48] [0.79] [0.69]

SMB 0.0018 0.0016 0.0007 0.0004 0.0082
[0.19] [0.40] [0.79] [0.91] [0.18]

HML 0.0035*** 0.005*** 0.0047* 0.0043 0.01*
[0.01] [0.01] [0.06] [0.21] [0.09]

PORTRET 0.0014* −0.001 −0.0006 0.0005 −0.005***
[0.09] [0.35] [0.53] [0.62] [0.00]

1PORTVOL 0.009 −0.0077 −0.017** 0.0111 −0.0008
[0.27] [0.40] [0.03] [0.25] [0.85]

R 2 Pre 0.1994 0.2518 0.2220 0.2942 0.3303
R 2 Post 0.2198 0.2210 0.2198 0.2424 0.2689

(continued on next page)

default is negligible; thus, VaR should be interpreted as an upper bound. In the case of default, notional
payments will offset.
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TABLE 3 (continued)
Fundamental Regressions

Panel B. Percentage of the Increase in Covariance Explained by the Model

1 (Low EDF) 2 3 4 5 (High EDF)

1 (Low EDF)
2 0.22***
3 0.22*** 0.22***
4 0.24*** 0.23*** 0.22***
5 (High EDF) 0.26*** 0.25*** 0.24*** 0.25***

covariance is economically meaningful. In the crisis, average sample VaR rose
from 4,205 to $47,499 per $10M of notional value, constituting a 770% increase
over the counterfactual VaR of $5,450.

However, only a fraction of the increase in VaR relates to fundamentals.
Using fitted values, I find that average model-implied VaR increased by $23,178
in the crisis, which accounts for approximately half of the $43,293 increase in
average sample VaR. Nevertheless, this is substantially larger than the $1,052
increase in average counterfactual VaR.12

IV. Liquidity
In general, protection sellers are compensated for liquidity risk, resulting in

wider spreads, when protection buyers are wealthier and more risk averse (see
Bongaerts et al. (2011)). A priori, one would expect wealthier and more risk-
averse investors to purchase protection, especially in times of crisis, which sug-
gests a positive association between illiquidity and CDS spread changes. This
subsection investigates how the link between CDS spreads and liquidity, in the
form of transaction costs, bond liquidity, systematic liquidity, and funding liquid-
ity, affects the increase in covariance observed in the crisis.

Transaction costs in the CDS market compensate dealers for exposure to
asymmetric information risk and inventory cost (see Tang and Yan (2008)).
Inventory costs arise from margins, collateral requirements, payments on open
positions, and the cost of offsetting contracts. Margin surveys from the Interna-
tional Swaps and Derivatives Association (ISDA) show that margins and collateral
requirements grew throughout the crisis. Moreover, rising CDS spreads made it
more costly to offset protection sold, on average, relative to the precrisis period.
Therefore, transaction costs provide a plausible link between CDS spread changes
that may have facilitated the increase in covariance.

Following Bongaerts et al. (2011), I measure transaction costs as the equal-
weighted average bid–ask spread over all contracts in a portfolio (PORTBA) or
over all contracts in the sample (BIDASK).

12Combine portfolios hold approximately $60M of notional value each. Rescaling the $47,499
reported earlier yields an average portfolio VaR of $2.9M in the crisis. Although it was potentially
modest in level, the unexpected increase in VaR and associated capital requirements likely further
stressed banks’ balance sheets in the midst of capital shortfalls. Moreover, even small changes in the
perceived predictability of asset returns can have large ramifications for asset allocation (see Kandel
and Stambaugh (1996)).
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In addition, CDS and bond liquidity are likely linked through the trading of
credit risk. For example, Acharya et al. (2015) show that CDS dealers restricted
their market-making services in response to bond order imbalances around the
2005 downgrade of Ford and GM. Further, Pu (2009) documents commonal-
ity between CDS and bond liquidity proxies. Therefore, I construct the average
Amihud (AMIHUD), principal traded (VOLUME), and number of trades
(NTRADE) each day, from TRACE, to capture aggregate price impact and trad-
ing intensity in the bond market, respectively. Additional details about these and
all other variables are provided in the Appendix.

Next, CDS market participants may require compensation for exposure to
systematic liquidity risk (see Pástor and Stambaugh (2003), Chen, Lesmond, and
Wei (2007)). As a result, one would expect covariance to increase in states of
heightened liquidity risk. I employ the on-the-run Treasury spread (ONOFF),
the repurchase (repo) spread (ONREPO), and the liquidity component of the
TED spread (OISTB) to capture systematic liquidity (see Eichengreen, Mody,
Nedeljkovic, and Sarno (2012), Fleming (2003), and Liu, Longstaff, and Mandell
(2006)).

Finally, liquidity may have suffered from the loss of investors’ ability to fund
their trading activity (see Brunnermeier and Pedersen (2009)). Although CDS
contracts are unfunded, counterparties usually post the initial amount at incep-
tion; additional collateral payments, which are contingent on the credit quality of
both the reference entity and counterparty, are required for the duration of open
positions. These collateral requirements can represent a significant cost to market
participants. In 2009, the ISDA reported that hedge funds posted collateral equal
to 140% of their net derivatives exposure, on average.13

To measure funding liquidity, I construct i) the volume ratio of high- to low-
volatility stocks (VRATIO) in the CRSP data, which may contain useful infor-
mation about hedge fund deleveraging activity (see Ben-David, Franzoni, and
Moussawi (2012)); ii) the betting-against-beta strategy (BAB) return proposed
by Frazzini and Pedersen (2013); and iii) dealer leverage-mimicking portfolio re-
turns (LMP), a measure that Adrian, Etula, and Muir (2013) argue captures dealer
funding constraints.

Results reported in Panel A of Table 4 show that changes in transaction costs
were clearly the main source of liquidity risk for investment-grade CDS contracts
prior to the crisis. The positive sign is consistent with prior work and suggests
that protection buyers were wealthier and more risk averse than sellers. Funding
liquidity also played an important role, especially with respect to dealer leverage,
which was positive and significantly related to CDS spread changes for 4 out of
the 5 portfolios.

Next, I turn to the change in beta; a number of these results reported in the
lower half of Panel A of Table 4 provide insight into the increase in covariance.
First, the change in exposures to systematic liquidity was insignificant across
most proxies in the crisis. Therefore, it did not affect the increase in covariance.
Although exposures to 1OISTB increased significantly in absolute value, the

13It is important to note that funding liquidity likely had a larger effect on bond prices than CDS
spreads because they are funded assets (see Mitchell and Pulvino (2012)).
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coefficient itself became negative. This negative relationship is inconsistent with
a liquidity risk interpretation.14 Ultimately, the impact of the change in sign on
covariance will depend on the change in 6τ .

Second, the change in exposures to 1VOL suggests that bond trading inten-
sity had a stronger impact on CDS spread changes in the crisis. This may suggest
that hedging demand increased as bonds became more difficult to trade, which is
supported by the decrease in average trading volume (VOL) over this period.

Third, funding liquidity played a significantly more important role in deter-
mining CDS spread changes during the crisis. Clearly, the increase in exposures to
BAB and LMP across all portfolios supports this view. The change in LMP shows
that a 1% increase in dealer leverage is associated with a 0.30 bps increase in daily
CDS spreads prior to the crisis compared to 1.68 bps during the crisis. Similarly,
the negative change in BAB exposures implies that CDS spreads increased due to
speculators’ impaired access to funding.15 Moreover, the precrisis analysis shows
that BAB was insignificant when funding was readily available, which supports
its interpretation as a measure of funding constraints.

Finally, precrisis (crisis) R2 increased from approximately 26% (23%) to
31% (34%) after controlling for liquidity.

Next, I explore the joint effect of the change in betas and 6τ by evaluat-
ing the percentage of the increase in covariance captured by the model (COVR).
These results are reported below the diagonal in Panel B of Table 4. They show
that controlling for the change in both exposures and the variance–covariance of
fundamentals and liquidity captures, on average, 33.4% of the increase in sample
covariance.

To isolate the impact of liquidity, I compute the marginal increase in COVR
by subtracting the matrix in Panel B of Table 4 below the diagonal from that re-
ported in Panel B of Table 3. These results are reported above the diagonal and
show that liquidity accounts for 10% of the total increase in covariance, on av-
erage, across portfolio pairs. This number decreases to approximately 5% (unre-
ported) when 6τ is held constant over the full sample period.

Finally, I investigate the economic magnitude. These findings show that con-
trolling for liquidity increased the average model-implied VaR from $25,926 to
$30,430 in the crisis per $10M of notional value. This is notably higher than the
$4,016 counterfactual VaR obtained by holding the covariance structure constant
at its average precrisis level. However, it still falls short of explaining the full
increase in sample VaR.

In conclusion, increased exposure to bond and funding liquidity along with
changes in 6τ played both an economically and statistically significant role in

14OISTB increases with illiquidity; however, it decreased in the crisis, which may have resulted
from government liquidity infusions into the banking sector. This likely decreased the federal funds
and overnight indexed swap (OIS) rate relative to RF3M. Therefore, the negative coefficient implies
a marginal increase in average portfolio CDS spreads during the crisis, which may reflect a negative
market reaction to government intervention.

15The spread between high- and low-beta asset returns widens as funding liquidity becomes im-
paired. However, it is inverted after rescaling returns to obtain unit beta. Therefore, constrained fund-
ing liquidity is captured by larger negative BAB.
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TABLE 4
Liquidity Regressions

In Panel A of Table 4, ‘‘Precrisis’’ reports SUR regression coefficients for liquidity variables over the precrisis subperiod
(Dec. 23, 2005–July 30, 2007). The dependent variable is the change in the CDS spread of the EDF-sorted portfolio. Fun-
damental variables are included but not reported. All variables are in basis points. ‘‘Marginal Crisis Effects’’ shows the
change in regression coefficients over the crisis subperiod (July 31, 2007–Mar. 9, 2009) obtained by reestimating the SUR
regressions over the crisis subperiod and subtracting crisis and precrisis coefficients. The p-value for the Wald test of
each cross-equation restriction is reported in square brackets. Z -statistics for SUR coefficients are reported in parenthe-
ses. Panel B reports the percentage of the increase in covariance explained by the model (1ĉov(i , j )model/1ĉov(i , j )sample),
where ĉov(i , j )τ ,model= β̂τ ,i 6̂τ β̂

′

τ ,j , and 1 represents the difference between crisis and precrisis covariance below the di-
agonal. Above the diagonal, I report the marginal contribution from liquidity. I use a simple nonparametric bootstrap with
replacement and percentile confidence intervals (1,000 repetitions) to determine whether the ratio is significantly different
from 0. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A. Liquidity Regressions

1 (Low EDF) 2 3 4 5 (High EDF)

Precrisis
1OISTB 0.0036 0.0116 −0.0045 −0.0045 0.0021

(0.27) (0.59) (−0.21) (−0.17) (0.05)

1ONOFF 0.0303 0.0309 −0.0081 −0.0188 0.0031
(0.75) (0.52) (−0.13) (−0.24) (0.03)

1ONREPO 0.0029 0.0055 0.0022 0.0119 0.0190
(0.34) (0.43) (0.16) (0.70) (0.75)

1AMIHUD 0.0294 0.0210 0.0229 0.0309 0.0629
(0.47) (0.23) (0.23) (0.25) (0.34)

1VOL −0.0158 −0.0324 −0.0148 −0.0270 −0.0076
(−0.70) (−0.98) (−0.41) (−0.61) (−0.11)

1NTRADE −0.0183 −0.0196 −0.0614 −0.0619 −0.0612
(−0.68) (−0.49) (−1.43) (−1.16) (−0.77)

1BIDASK 14.3027*** 22.6313*** 21.0862*** 50.5143*** 41.0853**
(2.58) (2.78) (2.38) (2.60) (2.23)

1VRATIO −0.0102 −0.0326** −0.0286* −0.0306 −0.0567**
(−1.04) (−2.27) (−1.84) (−1.59) (−1.97)

BAB −0.0001 −0.0004 −0.0006 −0.0010 −0.0014
(−0.41) (−0.87) (−1.11) (−1.62) (−1.53)

LMP 0.0012*** 0.0021*** 0.0010 0.0030*** 0.0041***
(2.33) (2.72) (1.16) (2.92) (2.68)

1PORTBA 4.8927 −3.6983 1.5864 2.3265 −9.6089
(1.63) (−0.92) (0.45) (0.48) (−1.35)

Marginal Crisis Effects
1OISTB −0.0462* −0.0776** −0.0836* −0.0963 −0.077

[0.06] [0.02] [0.07] [0.12] [0.46]

1ONOFF 0.017 −0.046 −0.0139 0.0009 −0.0424
[0.86] [0.73] [0.94] [1.00] [0.92]

1ONREPO −0.0067 −0.0086 −0.0016 −0.0205 −0.0403
[0.54] [0.58] [0.93] [0.41] [0.31]

1AMIHUD −0.076 −0.4414 −0.4173 −0.7137 −0.7289
[0.81] [0.32] [0.51] [0.41] [0.63]

1VOL −0.3044** −0.4514** −0.5376* −0.6347 −1.1286*
[0.03] [0.02] [0.06] [0.10] [0.09]

1NTRADE −0.048 −0.0642 −0.0568 −0.3326 −0.1265
[0.62] [0.64] [0.77] [0.21] [0.78]

1BIDASK 17.3756 19.4478 2.9993 42.6496 112.8882**
[0.14] [0.24] [0.90] [0.22] [0.03]

1VRATIO 0.0157 0.033* 0.0358 0.036 0.1068**
[0.25] [0.09] [0.16] [0.28] [0.05]

BAB −0.0014** −0.0017** −0.0029*** −0.0023* −0.0042*
[0.01] [0.03] [0.01] [0.10] [0.07]

LMP 0.0049*** 0.0077*** 0.0128*** 0.0138*** 0.0246***
[0.00] [0.00] [0.00] [0.00] [0.00]

1PORTBA 4.7391 24.1028** −1.2264 −2.2623 13.7088
[0.74] [0.01] [0.76] [0.64] [0.12]

R2 Pre 0.2622 0.3060 0.2755 0.3751 0.3799
R2 Post 0.3301 0.3641 0.3163 0.3480 0.3517

(continued on next page)
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TABLE 4 (continued)
Liquidity Regressions

Panel B. Percentage of the Increase in Covariance Explained by the Model

1 (Low EDF) 2 3 4 5 (High EDF)

1 (Low EDF) 0.11*** 0.09*** 0.10*** 0.10***
2 0.33*** 0.10*** 0.11*** 0.11***
3 0.31*** 0.32*** 0.09*** 0.09***
4 0.34*** 0.34*** 0.31*** 0.09***
5 (High EDF) 0.36*** 0.36*** 0.33*** 0.34***

increasing covariance during the crisis. Moreover, the joint effect appears to be
evenly distributed between changes in exposures and factor variance–covariance.

V. Counterparty Risk
The risk that counterparties fail to deliver on their contractual obligations

may have increased covariance for at least three reasons. First, a joint deterioration
in the credit quality of protection sellers may have reduced the value of their
insurance guarantees (see Arora et al. (2012)). In this case, CDS spread changes
would likely have become more negatively associated with bank-sector credit risk,
thereby increasing commonality.

Second, increased counterparty risk could have induced “gridlock.” In grid-
lock, dealers’ reluctance to trade with each other leads to higher CDS spreads that
compensate for expected losses from dealer defaults (see Brunnermeier (2009)).
This mechanism implies a stronger positive link between CDS spread changes
and bank-sector credit risk, which would have increased covariance.

Finally, an increase in the cross-sectional variation of dealers’ credit quality
may have caused demand for credit protection to shift toward a smaller group
of high-quality dealers. This is because investors may have sought to purchase
contracts from high-quality dealers in an effort to minimize expected losses. As a
result, covariance would likely have increased to reflect the higher concentration
in market-making services.

To test the first two mechanisms, I construct the overnight index swap spread
(OIS), the 3-month asset-backed commercial paper spread (ABCP), and a value-
weighted index of dealer equity returns (16 licensed dealers for the CDX index)
to proxy for bank-sector credit risk (see Eichengreen et al. (2012)). A positive
relationship between CDS spread changes and bank-sector credit risk supports
the first mechanism, and a negative relationship supports the second. For the last
mechanism, I use the log difference between the maximum and median daily stock
return of the 16 licensed CDX dealers (CPDIF) to capture dealer risk dispersion.
A positive change in the coefficient is consistent with an increase in concentration.

Estimated regression coefficients for counterparty risk variables, which are
added to the fundamental model, are reported in Panel A of Table 5. They show
that counterparty risk was not a significant determinant of CDS spread changes
prior to the crisis. Moreover, the change in exposures is insignificant across most
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proxies and portfolios. These results suggest that the increase in sample covari-
ance was not driven by increased exposure to counterparty risk.16

Next, I consider the percentage increase in covariance captured by the model
and the marginal contribution from counterparty risk variables. These results are
reported in Panel B of Table 5. Consistent with Arora et al. (2012), I find no
evidence that counterparty risk contributed to the observed increase in covariance.

As a result, it had little impact on VaR. Controlling for counterparty risk
increased model-implied VaR from $25,926 to $26,614 in the crisis, which is
drastically below the sample VaR observed in the data.

TABLE 5
Counterparty Risk Regressions

In Panel A of Table 5, ‘‘Precrisis’’ reports SUR regression coefficients for counterparty risk variables over the precrisis sub-
period (Dec. 23, 2005–July 30, 2007). The dependent variable is the change in the CDS spread of the EDF-sorted portfolio.
Fundamental variables are included but not reported. All variables are in basis points. ‘‘Marginal Crisis Effects’’ shows the
change in regression coefficients over the crisis subperiod (July 31, 2007–Mar. 9, 2009) obtained by reestimating the SUR
regressions over the crisis subperiod and subtracting crisis and precrisis coefficients. The p-value for the Wald test of
each cross-equation restriction is reported in square brackets. Z -statistics for SUR coefficients are reported in parenthe-
ses. Panel B reports the percentage of the increase in covariance explained by the model (1ĉov(i , j )model/1ĉov(i , j )sample),
where ĉov(i , j )τ ,model= β̂τ ,i 6̂τ β̂

′

τ ,j , and1 represents the difference between crisis and precrisis covariance below the diag-
onal. Above the diagonal, I report marginal contribution from counterparty risk. I use a simple nonparametric bootstrap
with replacement and percentile confidence intervals (1,000 repetitions) to determine whether the ratio is significantly
different from 0. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A. Counterparty Risk Regressions

1 (Low EDF) 2 3 4 5 (High EDF)

Precrisis
1OIS −0.0048 −0.0092 0.0050 −0.0016 −0.0117

(−0.41) (−0.54) (0.27) (−0.07) (−0.35)

1ABCP 0.0092 0.0021 −0.0041 −0.0005 0.0133
(0.55) (0.09) (−0.16) (−0.01) (0.29)

CPDIF −0.0312 −0.0253 −0.0526 0.0201 0.0164
(−1.10) (−0.63) (−1.18) (0.36) (0.21)

VWRET −0.0004 −0.0006 −0.0011* −0.0013* −0.0035***
(−1.18) (−1.11) (−1.95) (−1.81) (−3.59)

Marginal Crisis Effects
1OIS 0.0314* 0.0299 0.0437 0.083* 0.115*

[0.08] [0.24] [0.17] [0.05] [0.10]

1ABCP −0.0119 −0.003 0.0006 −0.0129 −0.0307
[0.50] [0.91] [0.98] [0.73] [0.57]

CPDIF −0.2896** −0.3128* −0.3872 −0.5345 −0.1271
[0.02] [0.08] [0.12] [0.12] [0.82]

VWRET −0.0009 −0.0009 −0.001 −0.0014 0.0002
[0.13] [0.31] [0.38] [0.37] [0.94]

R 2 Pre 0.2021 0.2589 0.2348 0.3016 0.3565
R 2 Post 0.2576 0.2403 0.2429 0.2653 0.2757

Panel B. Ratio of Change in Covariance

1 (Low EDF) 2 3 4 5 (High EDF)

1 (Low EDF) 0.03* 0.03** 0.03* 0.01
2 0.25*** 0.02 0.02 0.00
3 0.25*** 0.24*** 0.02 0.01
4 0.27*** 0.25*** 0.25*** 0.01
5 (High EDF) 0.28*** 0.26** 0.25** 0.26**

16When estimated in conjunction with liquidity proxies, counterparty risk coefficients and their
changes are all insignificant.
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VI. Risk Premiums
By definition, the default risk premium links CDS spreads through investor

preference and, therefore, can affect commonality. In general, this premium com-
pensates investors for exposure to three sources of risk: systematic risk, event risk,
and recovery risk (see Elton, Gruber, Agrawal, and Mann (2001), Jarrow, Lando,
and Yu (2005), Driessen (2005), and Berndt et al. (2008)). Because these risks
are likely related, I focus on the broad effect of investor preference rather than
identifying the relative importance of each component.

Intuitively, the default risk premium varies with the financial sector’s capac-
ity to bear the level of risk in the corporate debt market. Therefore, one would have
expected the premium to rise in response to losses in bank capital and increased
volatility in bond returns during the crisis. In the absence of external intervention,
the higher premium would likely have persisted for several months as new cap-
ital flowed into the market (see Duffie (2008), Mitchell, Pedersen, and Pulvino
(2007)).

However, government intervention recapitalized financial institutions, likely
causing a downward jump in the default risk premium followed by continued
downside pressure at each instance (see He and Krishnamurthy (2012)). This ebb
and flow of uncertainty and losses against government intervention outlines a
plausible mechanism by which changes in the default risk premium may have
affected comovement.

It is important to note that the default risk premium differs from the default
spread (DEF) used in the fundamental analysis. Gilchrist and Zakrajsek (2012)
show that DEF is a poor predictor of real economic activity, especially when
compared with the default risk premium, which suggests that the two measures
capture different information.

Following Berndt et al. (2008), I estimate the daily default risk premium in
the following panel regression using nonfinancial firms:17

(3) ln(CDSi ) = α+βln(EDFi )+
∑

j

γ j D j + zi ,

where ln(CDSi ) and ln(EDFi ) represent the natural log of the 5-year CDS spread
and 5-year KMV EDF, respectively; αi is the intercept; β controls for the nonlin-
ear relationship between the CDS and EDF; D j is a time fixed effect that equals 1
on day j ; and zi is the regression error term.

This yields estimates of γ̂ j for each day j ; the inverse log of γ̂ j (eγ j ) is the es-
timated proportional default risk premium (RP). Intuitively, RP is the average ratio
of CDS spread (risk-neutral default probability) to Moody’s KMV EDF (physical
default probability) on each day over a subset of nonfinancial firms.

Daily EDF data become available on Mar. 1, 2006. Therefore, I eliminate 42
observations from the beginning and end of the sample to maintain a balanced

17The EDF is a conditional default probability. It is fitted, nonparametrically, from historical default
frequencies of firms with the same distance-to-default values; see Crosbie and Bohn (2003), Kealhofer
(2003), and Berndt et al. (2008) for additional details. I drop financials to increase the precision of
default risk premium estimates. The increased volatility of default probabilities for financials likely
made them difficult to predict using historical distance-to-default values.
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panel. Unreported analysis confirms that results from Section III, Section IV, and
Section V hold on the adjusted sample.

Overall, the model fits the data relatively well; R2 is 0.72, and the intercept
is insignificant at the 10% level. The beta estimate of 0.40 suggests a slightly
stronger nonlinearity than the 0.76 reported by Berndt et al. (2008). Importantly,
point estimates of the default risk premium range from 0.72 to 3.83 and average
1.64 over the sample period, which is in line with estimates reported by Berndt
et al. (2008) and Driessen (2005).

Finally, I project the change in 1RP onto Lehman Brothers bond index re-
turns to avoid regressing CDS spreads on themselves in the regression analysis.
This yields the final change in estimated default risk premium (1RP), which is
added to the fundamental model to achieve the desired control.18

A. Risk Premium Results
Regression results are reported in Panel A of Table 6. Rows 1 and 3, labeled

1RP, show the precrisis level and change in beta, respectively, for each portfo-
lio. These coefficients are closely related to default probabilities (in basis points).
Therefore, it is not surprising that coefficients are positive, significant, and mono-
tonically increasing with EDF prior to the crisis.

Interestingly, the change in beta varies drastically across portfolios. Whereas
beta for the portfolio with low credit risk increased by only 2 bps, an insignificant
change, beta for the portfolio with high credit risk more than doubled. This sug-
gests that investors diversifying across the credit-risk space suffered the largest
loss in diversification benefit from exposure to low-credit-quality firms, which is
further illustrated by the analysis of COVR.

The results below the diagonal in Panel B of Table 6 show that, on average,
40% of the increase in covariance can be attributed to fundamentals and1RP. This
is a significant improvement of approximately 16% over the fundamental model
alone, as reported above the diagonal in Panel B. Interestingly, 1RP explains the
largest percentage of the increase in covariance for high-credit-quality portfolios
even though the change in exposures was small. Hence, the higher percentages
likely illustrate the importance of an increase in factor variance–covariance, which
is confirmed by holding 6τ constant over the full sample period. In this case,
the change in betas alone accounts for only 15% rather than 40% of the average
increase in covariance across portfolio pairs.

Finally, I reestimate the fundamental model with controls for both liquidity
and 1RP. Using predicted values from the regressions, I calculate the percentage
of the increase in covariance explained by the model. These results are reported
in Panel C of Table 6 and show that controlling for liquidity and 1RP captures
22% more of the increase in sample covariance than the fundamental model alone.
However, under the current specification, fundamentals, liquidity, and the default
risk premium explain only 50% of the increase in covariance in the crisis, at best.

18Projecting onto bond index returns also addresses the concern that 1RP captures a CDS market
or index specific effect. Similarly, albeit weaker, results hold when RP is estimated using TRACE
bond yield spreads instead of CDS spreads. Additional details are provided in the Appendix.
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TABLE 6
Risk Premium Regressions

In Panel A of Table 6, ‘‘Precrisis’’ reports SUR regression coefficients for the default risk premium over the precrisis sub-
period (Mar. 1, 2006–July 30, 2007). The dependent variable is the change in the CDS spread of the EDF-sorted portfolio.
Fundamental variables are included but not reported. All variables are in basis points. ‘‘Marginal Crisis Effects’’ shows the
change in regression coefficients over the crisis subperiod (July 31, 2007–Mar. 9, 2009) obtained by reestimating the SUR
regressions over the crisis subperiod and subtracting crisis and precrisis coefficients. The p-value for the Wald test of
each cross-equation restriction is reported in square brackets. Z -statistics for SUR coefficients are reported in parenthe-
ses. Panel B reports the percentage of the increase in covariance explained by the model (1ĉov(i , j )model/1ĉov(i , j )sample),
where ĉov(i , j )τ ,model= β̂τ ,i 6̂τ β̂

′

τ ,j , and 1 represents the difference between crisis and precrisis covariance below the di-
agonal. Above the diagonal, I report marginal contribution from 1RP. I use a simple nonparametric bootstrap with re-
placement and percentile confidence intervals (1,000 repetitions) to determine whether the ratio is significantly different
from 0. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A. Risk Premium Regressions

1 (Low EDF) 2 3 4 5 (High EDF)

Precrisis
1RP 8.7970*** 12.8467*** 13.9045*** 18.4663*** 24.1259***

(12.91) (13.30) (12.83) (14.17) (12.29)

Marginal Crisis Effects
1RP 1.9716 3.5545* 8.3386*** 13.2969*** 24.5266***

[0.14] [0.05] [0.00] [0.00] [0.00]

R 2 Pre 0.4562 0.5052 0.4743 0.5578 0.5370
R 2 Post 0.3956 0.4081 0.4243 0.4416 0.4250

Panel B. Ratio of Change in Covariance

1 (Low EDF) 2 3 4 5 (High EDF)

1 (Low EDF) 0.18*** 0.19*** 0.17*** 0.17***
2 0.41*** 0.18*** 0.16*** 0.15***
3 0.41*** 0.40*** 0.16*** 0.15***
4 0.41*** 0.39*** 0.38*** 0.12***
5 (High EDF) 0.43*** 0.40*** 0.39*** 0.37***

Panel C. Ratio of Change in Covariance with Risk Premium and Liquidity Controls

1 (Low EDF) 2 3 4 5 (High EDF)

1 (Low EDF) 0.25*** 0.24*** 0.24*** 0.24***
2 0.47*** 0.22*** 0.22*** 0.21***
3 0.46*** 0.44*** 0.20*** 0.19***
4 0.48*** 0.46*** 0.43*** 0.18***
5 (High EDF) 0.50*** 0.47*** 0.43*** 0.43***

Turning once again to VaR, I find that controlling for the default risk pre-
mium yields an increase in average model-implied VaR of $25,764 compared
with $1,053 if the covariance structure had remained constant at its precrisis level.
Combining liquidity and the default risk premium pushes the increase in average
model-implied VaR to $28,245 per $10M of notional value, which is still well
short of the $43,293 increase in average sample VaR.

B. Robustness
One may argue that RP captures a component of liquidity risk that is under-

stated by the conventional proxies employed in the previous analysis. To address
this concern, I obtain weekly (Wednesday) observations on the size of the asset-
backed commercial paper market (SAB), net dealer funding (NDF), and failures
to deliver collateral on repo agreements (FAIL) reported to the New York Federal
Reserve by registered primary dealers. These data likely contain useful informa-
tion about dealer funding constraints (SAB and NDF) and market liquidity (FAIL)
(see Adrian et al. (2013), Longstaff (2010), and Adrian and Fleming (2005)).
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In addition, I relate1RP to changes in risk aversion and losses at financial in-
stitutions, which likely determine the market price of default risk (see Berndt et al.
(2008)). I employ the weekly (median daily) VIX index level from the Chicago
Mercantile Exchange to proxy for the risk appetite of market participants. Weekly
prices for the on-the-run AAA ABX.HE index, from Markit (ABX), proxy for
financial intermediary wealth. The ABX index was widely used as a benchmark
for mark-to-market valuation of subprime mortgage portfolios and securitizations
(see Stanton and Wallace (2011)). Specifically, I focus on the AAA tranche be-
cause it was likely the most widely held by financial institutions because of its
high yield, regulatory benefit, and availability. A positive (negative) relationship
between 1RP and VIX (ABX) supports the risk premium interpretation.

Results from ordinary least squares (OLS) regressions of the weekly change
in RP on the weekly change/return in liquidity, risk aversion, and loss variables
are reported in Table 7. The coefficients on VIX and ABX are significant at the 1%
level and are consistent with the default risk premium interpretation. In contrast,
there is no evidence that changes in the default risk premium are significantly
related to changes in measures of funding or market liquidity.

Next, I consider alternative variable specifications; these findings show that
the results in Sections III–VI are robust to the definition of fundamentals. The
analysis is unreported for brevity but shows that substituting the fundamental
model with the Acharya and Johnson (2007) or Schaefer and Strebulaev (2008)
specification, augmenting the model with lagged fundamental variables (up to
5 periods), and including squared/cubed risk-free rates yield similar results.
Additionally, I repeat the tests after removing stale prices and find no notable
change in the results.

These findings support the existing results. However, it is important to
acknowledge that unexplored changes in distribution parameters may have

TABLE 7
Risk Premium Robustness

Table 7 reports the results for OLS regressions of the weekly change in the estimated default risk premium (1RP) on
weekly changes in measures of liquidity, risk aversion, and losses at financial institutions. Liquidity proxies include the
size of the asset-backed commercial paper market (SAB), failures to deliver on corporate fixed-income repo agreements
(FAIL), and net dealer funding (NDF) from the New York Federal Reserve. The VIX index (VIX) and ABX index return (ABX)
measure risk aversion and large losses at financial institutions, respectively. The ABX index return is the percentage of
change in the upfront spread for the AAA index. t -statistics, calculated using Huber–White robust standard errors, are
reported in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

1 2 3 4 5 6

Constant 0.01 0.01 0.01 0.01 0.00 0.00
(1.05) (1.12) (1.12) (0.88) (0.02) (−0.02)

1SAB 0.00 0.00
(−1.33) (−1.53)

1FAIL 0.00 0.00
(−0.32) (0.29)

1NDF 0.00 0.00
(−0.63) (−0.89)

1VIX 0.01*** 0.01**
(2.84) (2.26)

ABX −0.91*** −0.67***
(−3.18) (−2.43)

Adj. R 2 0.0020 −0.0058 −0.0018 0.1963 0.1928 0.2898
N 156 156 156 156 156 156
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influenced the estimated change in correlation/covariance in the crisis (see Aitkin
(1964)). In the following section, I investigate the effect of time-varying parame-
ters, which may help address this concern.

VII. Time-Varying Exposures
This section extends the methodology to consider time-varying parameters.

To operationalize the analysis, I compare each of the previously described vari-
able specifications with exposures estimated over the monthly, quarterly, and pre-
crisis/crisis horizons. Following Bekaert et al. (2009), I employ the covariance
mean squared error (CMSE) to evaluate the relative performance of each model
in capturing the covariance structure of the data.19

A subset of these results is reported in Table 8. Panel A investigates the
importance of time-varying betas for the same variable specification. For instance,
row 1 compares the relative performance of constant, quarterly, and monthly beta
estimates for the fundamental model specification. The 0.30 reported in column 1
suggests that quarterly beta estimates offer a stronger fit to the sample covariance
structure than monthly beta estimates prior to the crisis.

In general, these results show that time-varying exposures, beyond a single
shift, significantly contribute to the changes in covariance over the sample pe-
riod. Columns 1 and 2 (4 and 5) show that quarterly and monthly time-varying
betas significantly improve the fit of model-implied covariance relative to the
constant beta model, respectively, prior to (during) the crisis across all variable
specifications. Columns 7 and 8 confirm that this result holds for the change in
covariance structure as well.

In addition, column 3 of Table 8 shows that quarterly variation in betas out-
performed monthly variation. This suggests that under normal economic con-
ditions, the loss in parameter stability outweighs the benefit of high-frequency
beta estimates. Not surprisingly, this result reverses under economic stress.
Column 6 reports an improvement in the fit of model-implied covariance with
higher-frequency (monthly) variation in beta. Consequently, the monthly beta
model also better captures the increase in covariance across all models, as demon-
strated in column 9.

Panel B of Table 8 reports the difference in CMSE for different variable spec-
ifications while holding the beta estimation horizon constant. These results largely
mirror those for the constant-beta model presented in Section VI. First, the funda-
mental model underperforms all other specifications in explaining precrisis/crisis
covariance levels as well as the change (rows 1–4). Second, with the exception
of fundamentals, the counterparty risk model tends to underperform other speci-
fications in explaining the levels and change in covariance (rows 2, 5, 8, and 9).

19Quarterly exposures are obtained by rolling the SUR estimation over nonoverlapping quarterly
windows. The monthly exposure for portfolio i to factor j in month t is β̂t ,i , j = ρ̂τ (σ̂t ,1CDSi /σ̂t ,F j ), where
ρ̂τ is the semipartial correlation between factor j and 1CDSi in quarter τ and σ̂t is the volatility in
month t . Precrisis/Crisis exposures are obtained from SUR estimations over each subperiod.
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TABLE 8
Time Varying β Mean Squared Error

Columns 1–6 of Table 8 report the difference in covariance mean squared error (CMSEmk −CMSEml ) between different
model specifications (mk andml ) over the precrisis (columns 1–3) and crisis periods (columns 4–6). To obtain CMSEmk , I
calculate CMSE over the 10 portfolio combinations each month and average over monthly observations as shown herein.
For brevity, I denote cov(1CDSi ,1CDSj ) as cov(i , j ):

CMSEt ,mk =
1
10

5∑
i=1

5∑
j=i+1

[ĉov(i , j )t ,sample − ĉov(i , j )t ,mk ]
2,

CMSEmk =
1
n

n∑
t=1

CMSEt ,mk .

I calculate CMSEmk over each subperiod. Therefore, n equals the number of monthly observations in the precrisis sub-
period in columns 1–3 and the number of monthly observations in the crisis subperiod in columns 4–6. ĉov(i , j )t ,mk =
β̂i ,τ ,mk 6̂t ,mk β̂

′

j ,τ ,mk is the model-implied covariance between portfolios i and j in month t for model mk , where τ indicates
the relevant subperiod, quarter, or month on which beta is estimated and the index t denotes the month. Note that
for monthly time-varying betas, τ= t . Columns 7–9 report the difference-in-difference between the CMSEs of the model
specifications over the crisis break: 1CMSEmk −1CMSEml , where 1CMSEmk =CMSEcrisis,mk −CMSEprecrisis,mk . Panel A
compares the performance of constant (C), quarterly (Q), and monthly (M) time-varying βs for a fixed-variable specifi-
cation. The constant-beta model allows for a one-time change in the crisis but holds β̂ constant over the precrisis and
crisis subperiods. Column headers list the model comparison. For example, (C − Q) shows the difference in (1)CMSE
between constant and quarterly time-varying beta specifications; a positive value implies that the quarterly beta specifi-
cation outperforms the constant-beta specification over the indicated subperiod. Panel B compares the (1)CMSE values
of different variable specifications with fixed time-varying beta frequencies. Column headers indicate the horizon of beta
estimates: constant (C), quarterly (Q), and monthly (M). Row headers show the variable specification comparison. For ex-
ample, column 2 of row 2 compares the CMSE of the fundamental versus the counterparty risk variable specification with
quarterly time-varying betas prior to the crisis. Variable specifications are abbreviated as follows: Fund= fundamentals,
Liq= fundamentals+ liquidity variables, CP= fundamentals+counterparty risk variables, RP= fundamentals+1RP,
(Liq & RP)= fundamentals+1RP+ liquidity variables, and (Liq & RP)*= fundamental+1RP+ liquidity variables with
1-period-lagged β̂ (β̂t−1). In all cases, I use a simple nonparametric bootstrap with replacement and percentile confi-
dence intervals (1,000 repetitions) to determine significance. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% levels, respectively.

Panel A. Comparison of CMSE between Time-Varying Beta Models with Fixed Variable Specification

Precrisis Difference Crisis Difference Difference-in-Difference

(C − Q) (C − M) (Q − M) (C − Q) (C − M) (Q − M) (C − Q) (C − M) (Q − M)

Fund 0.30*** 0.05*** −0.25*** 109.38*** 181.84*** 72.46*** 109.08*** 181.79*** 72.71***
Liq 0.29*** 0.01*** −0.28*** 359.55*** 467.77*** 108.22*** 359.26*** 467.76*** 108.50***
CP 0.27*** 0.18*** −0.09*** 232.81*** 304.14*** 71.33*** 232.54*** 303.96*** 71.42***
RP 0.15*** 0.14*** −0.01*** 118.98*** 279.06*** 160.09*** 118.83*** 278.93*** 160.10***
Liq & RP 0.13*** 0.12*** −0.01*** 193.06*** 300.52*** 107.46*** 192.93*** 300.40*** 107.47***

Panel B. Comparison of CMSE between Variable Specifications with Fixed Time-Varying Beta Horizons

Precrisis Difference Crisis Difference Difference-in-Difference

C Q M C Q M C Q M

Fund − Liq 0.04*** 0.03*** 0.00 68.60*** 318.77*** 354.53*** 68.56*** 318.74*** 354.53***
Fund − CP 0.003*** −0.03*** 0.13*** 30.65*** 154.08*** 152.95*** 30.65*** 154.11*** 152.82***
Fund − RP 0.22*** 0.04*** 0.30*** 221.89*** 231.49*** 319.11*** 221.67*** 231.45*** 318.81***
Fund − (Liq & RP) 0.25*** 0.04*** 0.32*** 292.83*** 376.51*** 411.50*** 292.58*** 376.47*** 411.18***
Liq − CP −0.04*** −0.06*** 0.13*** −37.95*** −164.69*** −201.58*** −37.91*** −164.63*** −201.71***
Liq − RP 0.18*** 0.00*** 0.30*** 153.29*** −87.28*** −35.41*** 153.12*** −87.29*** −35.71***
Liq − (Liq & RP) 0.20*** 0.00 0.32*** 224.23*** 57.74*** 56.98*** 224.02*** 57.74*** 56.66***
CP − RP 0.22*** 0.07*** 0.16*** 191.25*** 77.41*** 166.17*** 191.03*** 77.34*** 166.01***
CP − (Liq & RP) 0.25*** 0.07*** 0.17*** 262.18*** 222.43*** 258.56*** 261.93*** 222.36*** 258.39***
RP − (Liq & RP) 0.03*** 0.00 0.00 70.93*** 145.02*** 92.39*** 70.91*** 145.02*** 92.39***
(Liq & RP) − (Liq & RP)* −0.49*** −0.59*** −60.78*** −426.66*** −60.29*** −426.07***

Third, the default risk premium model tends to outperform the liquidity-
adjusted model prior to and during the crisis with constant exposures. However,
columns 5 and 6 of row 6 in Table 8 show that the relative importance of liquidity
is likely understated in the constant-beta model. With the addition of time-varying
betas (quarterly or monthly), the liquidity-adjusted model outperforms the risk
premium specification during the crisis.
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Finally, the combination of fundamentals, liquidity, and the default risk pre-
mium (denoted “(Liq & RP)”) with monthly betas provides the best characteriza-
tion of both the level and change in covariance structure observed in the data.20

Interestingly, Figure 2 shows that during the crisis, sample covariance spiked
around extreme events and recovered over the ensuing months. This implies that
long-horizon investors may benefit from holding allocations rather than rebal-
ancing to offset short-term jumps in covariance. In contrast, months of increased
covariance may result in large losses for short-horizon portfolios such as bank
trading books.

Additionally, model-implied covariance closely tracks sample covariance up
to the Lehman Brothers’ failure. This confirms that fundamentals, liquidity risk,
and the default risk premium along with time-varying betas provide a strong rep-
resentation of the covariance structure between portfolio CDS spread changes.
The notable exception is under extreme economic distress, which is related to the
Lehman Brothers’ event in this case.21

Finally, accounting for time-varying exposures increased the change in
model-implied VaR to $36,036 compared with $1,909 for the counterfactual VaR.

FIGURE 2
Average Monthly Covariance

Figure 2 shows the evolution of average model-implied covariance and average sample covariance each month over
the sample period. To obtain the average model-implied covariance, I calculate β̂i ,t 6̂t β̂

′

j ,t each month and average over
the 10 portfolio (i , j ) combinations. Similarly, the average sample covariance is the average covariance between portfolio
CDS spread changes over the 10 portfolio combinations each month. The right axis shows the ratio of average model-
implied to average sample covariance each month. Note that the units for covariance, graphed on the y -axis, are basis
points squared.
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20One may object to the use of contemporaneous exposures. Therefore, I replace β̂t with β̂t−1 in
the final model (denoted “(Liq & RP)”) and compare their performance. These results, reported in the
last row of Panel B in Table 8, show that lagged betas significantly underperformed contemporaneous
betas, especially during the crisis. However, the underperformance is almost exclusively related to
extreme unexpected events such as the hedge fund crisis and Lehman Brothers’ failure.

21A simple t-test for equality between model and sample covariance prior to Sept. 2008 fails to
reject the null.
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This is a substantial improvement over the constant-beta model but still $7,257
short of explaining the full change in sample VaR.

From this analysis, it is apparent that time variation in factor exposures as
well as factor variances played an important role in amplifying covariance during
the crisis.

Next, I investigate the contribution from time-varying β versus 6 to the in-
crease in covariance. Given the previous results, I focus on the monthly time-
varying beta model with controls for fundamentals, liquidity, and 1RP.

To implement the analysis, I calculate the monthly sample and model-
implied covariance for each portfolio combination. Next, I average monthly
observations to obtain estimates of the conditional model-implied and sample co-
variance for each portfolio combination over the precrisis and crisis subperiods.
For example, I estimate the crisis conditional covariance between the CDS spread
changes of portfolios i and j as follows: ĉov(i , j)crisis,k=1/n6n

t=1ĉov(i , j)t ,k , where
n equals the number of monthly covariance observations over the crisis subperiod,
and k={model, sample}. The percentage of the increase in covariance captured by
the model is as follows:

(4) Ri , j =
1ĉov(i , j)model

1ĉov(i , j)sample
,

where 1ĉov(i , j)k is the increase in conditional covariance: ĉov(i , j)crisis,k−

ĉov(i , j)precrisis,k .
Next, in the spirit of Ferson and Harvey (1991), I investigate how much of

the increase in covariance is driven by time-varying exposures compared with
time-varying factor variance–covariance. To disentangle the two effects, I hold
6̂t constant at its unconditional mean (E[6̂]=1/N 6N

t=16̂t ) and recalculate the
time series of model-implied covariance (β̂i ,t E[6̂] β̂ ′j ,t ). This time series yields
insight into the relative importance of time-varying betas. Similarly, repeating the
calculation using unconditional betas (E[β̂i ]=1/N 6N

t=1β̂i ,t ) yields a time series
of model-implied covariance (E[β̂i ] 6̂t E[β̂ j ]

′) that provides useful information
on the relative importance of time-varying 6̂t , where N equals the total number
of monthly observations in the sample.

Finally, I calculate Ri , j , described previously, for the time series of model-
implied covariance calculated using unconditional betas and again using uncondi-
tional factor variance–covariance. These results are reported in Table 9. Column
1 shows that with the addition of time-varying β̂t and 6̂t , the model captures 66%
of the increase in covariance in the crisis, which is a marked improvement over
the more static model presented in Panel C of Table 6.

Moreover, columns 2 and 3 of Table 9 suggest that time variation in both β̂t

and 6̂t contributed significantly to the increase in covariance. However, the mag-
nitude of the contribution from variation in β̂t far outweighed that of 6̂t . Holding
6̂t constant at its unconditional mean (column 2), time variation in β̂t captures,
on average, 50% of the increase in sample covariance. In contrast, the model only
explains 24%, on average, of the increase in sample covariance when β̂t is held
constant at its unconditional mean (column 3).
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TABLE 9
Time-Varying β versus 6

Table 9 tabulates the percentage of the change in sample covariance captured by the model. This table presents results
for the model with controls for changes in fundamentals, liquidity, and the default risk premium with monthly time-varying
beta. Ratios are listed in column headers; 1ĉov(i , j )=1/nc

∑nc
t=1 ĉov(i , j )t −1/np

∑np
t=1 ĉov(i , j )t , where ĉov(i , j )t is the

sample/model-implied covariance between portfolios i and j CDS spread changes in month t ; and np and nc are the
number of months in the precrisis and crisis subperiods, respectively. In column 1, I report the fraction calculated using
model-implied covariance with monthly time-varying β̂t and 6̂t . Column 2 reports the fraction with model-implied covari-
ance calculated using monthly β̂t and unconditional factor variance–covariance (E[6̂]=1/N

∑N
t=1 6̂t ), where N equals

the total number of months in the sample. Column 3 reports the fraction with model-implied covariance calculated using
monthly time-varying 6̂t and unconditional exposures (E[β̂i ]=1/N

∑N
t=1 β̂i ,t ). In all cases, I use a simple nonparametric

bootstrap with replacement and percentile confidence intervals (1,000 repetitions) to determine significance. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

1ĉov(i , j )model

1ĉov(i , j )sample

1E
[
β̂i ,tE[6̂]β̂′j ,t

]
1ĉov(i , j )sample

1E
[
E[β̂i ]6̂tE[β̂j ]′

]
1ĉov(i , j )sample

R1,2 0.66*** 0.51*** 0.25***
R1,3 0.72*** 0.66*** 0.26***
R1,4 0.67*** 0.51*** 0.25***
R1,5 0.68*** 0.57*** 0.28***
R2,3 0.67*** 0.52*** 0.25***
R2,4 0.64*** 0.40*** 0.24***
R2,5 0.64*** 0.48*** 0.25***
R3,4 0.68*** 0.47*** 0.24***
R3,5 0.69*** 0.57*** 0.24***
R4,5 0.64*** 0.47*** 0.23***

RPooled 0.66*** 0.50*** 0.24***

VIII. Conclusion
Using a set of 159 liquid CDS contracts, I document an increase in the com-

monality between CDS spread changes over the 2007–2009 financial crisis. To
better understand why commonality increased, I aggregate to EDF-sorted quin-
tile portfolios and decompose the increase in covariance between portfolio CDS
spread changes into fundamental and excess components.22 I find that only 23%
of the increase in covariance was driven by changes in the fundamental determi-
nates of credit risk. The remainder can largely be attributed to changes in liquidity
and the default risk premium. In contrast, counterparty risk had no impact on the
change in covariance.

Further analysis shows that covariance varied substantially during the crisis.
In general, this variation can be attributed to changes in fundamentals, liquidity,
and the default risk premium with monthly time-varying exposures. However, in
the 6 months following the failure of Lehman Brothers, covariance spiked beyond
what could be explained by the model. These results have important implications
for regulation, pricing, and portfolio allocation.

Recent reform of banking regulations has highlighted the importance of
changes in commonality, especially in times of crisis. For example, Basel III in-
troduced specific capital charges for “stressed” VaR and correlation trading port-
folios, calling for 12 months of historical data in the VaR calculation. The results
presented herein suggest that the estimation window may be an important con-
sideration in adequately capitalizing credit derivative trading books under eco-
nomic distress. Moreover, capital held against stressed VaR for CDS contracts

22I decompose the increase in covariance by estimating a linear factor model in a system of SURs
with covariates commonly used to characterize credit risk (see Collin-Dufresne et al. (2001)).
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and for correlation trading portfolios will likely combine charges for both credit-
and noncredit-related covariance.

At the same time, even small unexpected changes in covariance can have
large ramifications for portfolio allocation (see Kandel and Stambaugh (1996)).
The increase in covariance illustrated herein suggests that reallocating to accom-
modate a higher base level of covariance may be beneficial for prolonged periods
of economic uncertainty. However, large changes in covariance linked to extreme
events are likely short-lived. Therefore, investors may incur unnecessary costs
by reallocating to offset large short-term changes in covariance. In either case,
it is prudent to consider the sources of increased covariance in the reallocation
decision.

In summary, this paper provides an important first look at changes in the
commonality between CDS spreads under economic distress. The results reported
within have broad implications for the future trading and regulation of CDS
contracts.

Appendix. Variable Definitions

1. Fundamental Variables

RF3M The 3-month constant-maturity Treasury rate (CMTR) from the Federal
Reserve H.15 release (daily). This variable captures the risk-neutral drift in the
Merton model. In this context, an increase in RF3M reduces the cost of the put option
purchased by bondholders, which increases the value of debt and decreases the yield
spread. Therefore, I expect changes in RF3M to be negatively related to CDS spread
changes.

SLOPE The slope of the yield curve, calculated as the difference between the 5-year and
3-month (5-year CMTR − RF3M) constant-maturity Treasury rate from the Federal
Reserve H.15 release. Larger SLOPE implies an expected increase in the future risk-
free rate. Applying the same logic from RF3M, I would expect the change in SLOPE
to be negatively related to CDS spread changes.

SP500 The daily holding period return for the S&P 500 index from CRSP. This variable
is a general measure of economic conditions. In a strong economy, one would expect
the S&P 500 index to yield higher returns. At the same time, corporate bond yield
spreads would likely be lower due to lower default probabilities and higher expected
recovery. Therefore, I expect S&P 500 returns to be negatively related to CDS spread
changes.

SPVOL GARCH volatility for the S&P 500 return from CRSP. The daily conditional
standard deviation of S&P 500 equity returns obtained from a generalized autoregres-
sive conditional heteroskedastic (ARMA–GARCH) model specification: ARMA(1,1)
GARCH(1,1). S&P 500 volatility measures market-wide uncertainty. As a result, I
would expect changes in SPVOL to be positively related to CDS spread changes.

HB A value-weighted index of equity returns for major U.S. home builders (Standard
Industrial Classification (SIC) code 1521) obtained from CRSP. The index is used to
capture housing market conditions at a high frequency. Poor housing market condi-
tions, especially between 2007 and 2009, are likely associated with higher corporate
bond yields. Hence, I expect a negative relationship between CDS spread changes
and HB. This index is highly correlated with the S&P 500 return; therefore, I orthog-
onalize with respect to SP500 and focus on its relative effect.
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DEF The default spread, which is the difference in yield between Moody’s Aaa and Baa
indices from the Federal Reserve Board H.15 release. The default spread measures
general credit market conditions (see Fama and French (1993), Gilchrist and Zakra-
jsek (2012)). Larger spreads can reflect a preference for quality or a general deteriora-
tion in the creditworthiness of Baa relative to Aaa issuers. Because the default spread
is measured in yield, I would expect changes to be positively associated with changes
in CDS spreads.

SMB The small cap equity factor as described by Fama and French (1993) obtained
from Kenneth French’s Web site (http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data library.html). This variable has been used in several papers as a
state variable. Additionally, authors have argued that it may proxy for credit risk
(see Vassalou and Xing (2004)). In either case, I expect a negative relationship
between SMB and CDS spread changes.

HML The high-minus-low (value) equity factor as described by Fama and French
(1993) obtained from Kenneth French’s Web site (http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data library.html). Justification is the same as that for SMB.
Again, I expect HML to be negatively related to CDS spread changes.

PORTRET The equal-weighted equity return for EDF-sorted portfolios from CRSP.
These returns are constructed in the same manner as portfolio CDS spread changes.
On the last day of each month, firms are sorted into quintile portfolios based on their
EDF values. For each day of the subsequent month, I average holding period returns
over firms in each quintile. Portfolio returns are highly correlated with the S&P 500
return. Therefore, I orthogonalize portfolio equity returns with respect to the S&P
500 return and focus on their marginal contributions. Portfolio equity returns provide
a high-frequency measure of average leverage (negative equity returns increase lever-
age). Therefore, equity returns should be negatively related to CDS spread changes.

PORTVOL The daily conditional standard deviation of PORTRET obtained from an
ARMA–GARCH model. The Merton model theoretically links equity volatility to
default risk. Therefore, the change in portfolio return volatility may contain useful
information for explaining CDS spread changes. Because equity volatility measures
risk, I expect changes in PORTVOL to be positively related to CDS spread changes.
Mostly, an ARMA(1,1)–GARCH(1,1) specification sufficiently fits returns.

2. Liquidity Variables

OISTB The difference between the overnight index swap rate (OISR) obtained from
Datastream and RF3M, which captures the liquidity component of the TED spread.
The TED spread equals 3-month London Interbank Offered Rate (LIBOR) less RF3M
and increases with the level of counterparty risk and liquidity risk in the banking sys-
tem. Eichengreen et al. (2012) argue that the OISR can be used to disentangle these
effects.

OISTB is positively related to illiquidity. This is because overnight index swaps
do not require the exchange of principal. Therefore, OISR should be invariant to
counterparty risk. However, OISR will vary with liquidity risk because it is based on
the federal funds rate, which increases when banks become liquidity constrained.

ONOFF The yield difference between the on-the-run and most recent off-the-run 5-year
Treasury note obtained from Datastream. The on-the-run Treasury note is the most
liquid. Therefore, the yield gap between this bond and the closest maturity-matched
Treasury note measures market liquidity. Larger values of ONOFF relate to higher
liquidity premiums.
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ONREPO The spread between RF3M and the 3-month general collateral U.S. govern-
ment repo rate obtained from Bloomberg. Liu et al. (2006) argue that the general
collateral referenced in these contracts is less liquid than the on-the-run securities
used to calculate the constant-maturity Treasury rates. Moreover, repurchase agree-
ments are contracts and likely less subject to specialness effects. Similar to ONOFF,
ONREPO increases with market illiquidity.

VOLUME The average daily principal traded each day over representative (average)
bonds issued by each firm in the sample obtained from TRACE. To construct
the measure, I sum the principal (in millions) traded on each day for each bond
issued by a firm in the sample. Next, I average up to the firm level. Finally, I aver-
age across firms to obtain the final VOLUME index. I drop convertibles, floating-
rate notes, bonds denominated in foreign currency, sinking funds, asset-backed
securities, mortgage-backed securities, preferred securities, unit deals, warrants, and
bonds with more than 7 years or less than 3 years to maturity to calculate all bond
liquidity measures. Weighted average liquidity measures that account for the number
of bonds issued by each firm yield similar results.

NTRADE The average number of reported trades for each firm’s representative bonds
each day in TRACE. Again, I sum the total number of trades on each day for each
bond issued by a firm in the sample and average up to the firm level. Next, I average
across firms to obtain the final NTRADE index. I employ the same filters used in
VOLUME for NTRADE.

AMIHUD Average bond Amihud measure from TRACE. The average Amihud mea-
sures price impact over all firms’ representative bonds in the sample. Daily Amihud(
1/Nt

∑Nt

t=1 |(Pt− Pt−1)/Pt−1|/Q t

)
is calculated for each bond issued by a company

in the sample, where Pt is the clean price, Q t is volume in millions, and Nt is the
number of return observations per day (a bond must trade at least two times in a day
to calculate Amihud). These series are averaged up to the firm level and then across
firms to obtain the daily Amihud index.

BIDASK Average CDS bid–ask spread from CMA; the average difference between bid
and ask CDS spread quotes. CMA provides daily bid and ask quotes for each contract.
Taking the difference between these quotes yields a bid–ask spread for each firm-day
in the sample. To obtain the average change in bid–ask spread, I winsorize changes on
each day at the 95% level and average bid–ask spread changes over all 159 contracts.
This yields the final series 1BIDASK.

PORTBA The equal-weighted average portfolio bid–ask spread from CMA. As with
portfolio CDS spreads, firms are sorted into quintiles based on their end-of-month
EDF values. On each day of the subsequent month, I winsorize bid–ask spread
changes at the 95% level and average over contracts in each quintile to obtain the
series 1PORTBA. Portfolio bid–ask spreads are highly correlated with BIDASK.
Therefore, I orthogonalize each series with respect to the average bid–ask spread and
investigate their relative effects.

VRATIO The ratio of daily volume traded in high-volatility to low-volatility stocks from
CRSP. Each month, I sort stocks in the CRSP universe into deciles according to the
volatility of daily returns in the preceding month. Next, I calculate the ratio of stock
volume traded on each day for the average firm in the 10th decile to the average firm
in the 1st decile. When funding constraints bind, investors are more likely to sell high-
volatility (high-margin) assets (see Ben-David et al. (2012)). Therefore, the ratio will
increase as funding constraints bind.
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BAB The betting-against-beta stock return from CRSP. The BAB factor takes leveraged
long positions in low-beta securities and short positions in high-beta securities (see
Frazzini and Pedersen (2013)). I estimate market betas for each stock in CRSP on
June of each year using 60 months of trailing returns (24 months minimum) as out-
lined by Fama and French (1992). Following Adrian et al. (2013), I then sort stocks
into deciles based on beta, compute equal-weighted daily excess returns, and rescale
portfolios to have a beta of 1. The BAB spread is the difference between excess re-
turns for the 1st and 10th decile portfolio (10th − 1st). According to Frazzini and
Pedersen (2013), constrained investors prefer high-beta assets to leveraging low-beta
assets, which produces a spread that increases with funding constraints.

LMP Daily returns for a portfolio constructed to mimic aggregate dealer leverage.
Adrian et al. (2013) argue that dealer leverage is priced in the cross section
of stock returns because it relates to funding constraints. Following their proce-
dure, I use daily returns for the Fama and French (1993) 6-factor portfolios from
Kenneth French’s Web site (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data library.html) and the exposures reported in their paper to obtain LMP. Leverage-
mimicking returns are positively related to dealer funding constraints.

3. Counterparty Risk Variables

OIS The difference between 3-month LIBOR, from the British Bankers Association, and
the 3-month overnight index swap rate. Interbank lending at LIBOR requires a com-
mitment of principal. Consequently, LIBOR will increase with the likelihood that
banks fail to repay their loans. In contrast, overnight index swaps do not require the
exchange of principal. Therefore, the overnight index swap spread measures the gen-
eral confidence that bank-to-bank loans will be repaid. It increases with counterparty
risk.

ABCP The difference between the yield on 90-day asset-backed commercial paper, from
Bloomberg, and RF3M. It measures the ability of financial institutions to roll over
day-to-day obligations in the asset-backed commercial paper market. ABCP increases
with counterparty risk.

CPSTOCK The daily value-weighted stock return for a portfolio of major CDS dealers.
I define major dealers as the 16 banks licensed by Markit, the index administrator, to
make a market for the CDX.NA.IG index. Dealer stock returns provide information
on their general health as well as market confidence in the dealer sector.

CPDIF The log difference between the maximum and median daily stock return, from
CRSP, for the 16 licensed market-makers described previously. CDS protection buy-
ers may incur losses if their counterparty defaults. Therefore, an increase in credit risk
dispersion across dealers may lead to an increase in the protection demanded from a
small group of high-quality dealers; as a result, these dealers become price-setters.
The spread between the maximum and median return provides a coarse measure of
credit risk dispersion among dealers. One would expect CDS spreads to increase with
dealer risk dispersion.

4. Default Risk Premium Variables

RP The default risk premium. This is the ratio of risk-neutral to physical default probabil-
ities, which captures the market price of default risk. Following Berndt et al. (2008), I
compare Moody’s KMV EDF (physical probability of default) to CDS spreads (risk-
neutral probability of default) for nonfinancials using the following panel regression:
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(A-1) ln(CDSi ) = α+βln(EDFi )+
∑

j

γ j D j + zi ,

where CDSi is the 5-year CDS spread for company i ; β controls for the nonlinear
relationship between the yield spread and EDF; α is the intercept; and D j is a dummy
variable that equals 1 on day 1 of the sample, and 0 otherwise. Thus, the inverse log
of γ̂ j (eγ̂ j ) is an estimate of the proportional default risk premium on day j relative to
that on Mar. 1, 2006 (the reference time period). 1RP is the daily change in eγ̂ j .

Finally, I project changes in the risk premium onto Lehman Brothers (Barclays)
AAA–CCC bond index returns to avoid explaining CDS spreads with CDS spreads.
The results are robust to this last step. This yields the final measure 1RP, which is
used in the second-stage regressions.

5. Risk Premium Robustness Variables

SAB The size of the asset-backed commercial paper market from the St. Louis Federal
Reserve. This is the total principal (in billions) outstanding in the asset-backed com-
mercial paper market each week (Wednesday).

Financial institutions relied heavily on asset-backed commercial paper to fund
their daily operations, especially in the years leading up to the crisis. Therefore,
changes in the total size of the market may reflect changes in the aggregate pool
of capital available to fund financial institutions. Hence, this may be a useful measure
of funding liquidity.

FAIL The aggregate amount of corporate fixed-income collateral (in millions) that coun-
terparties failed to deliver on repurchase (repo) transactions each week obtained from
the New York Federal Reserve. These failures are costly for financial institutions be-
cause they incur penalties. Therefore, counterparties may fail to deliver when it is
difficult or costly to purchase the appropriate collateral. As a result, failures are likely
correlated with bond market liquidity.

NDF Net dealer funding from the New York Federal Reserve. This is the total amount
of securities lent less the total amount of securities borrowed (in millions) each week
by primary dealers. It gives a measure of the net funding obtained by primary deal-
ers through securities transactions. Adrian and Fleming (2005) argue that net dealer
funding proxies for dealer leverage. Adrian et al. (2013) show that dealer leverage is
priced in the cross section of stock returns because it captures dealer funding con-
straints. Therefore, NDF likely contains useful information about dealer funding liq-
uidity.

VIX The implied volatility index for the S&P 500 return from the Chicago Mercantile
Exchange. The VIX index has been used in numerous studies to measure investors’
risk aversion. I use the Wednesday level to represent weekly VIX.

ABX The weekly return on the AAA tranche of the ABX.HE index from Markit. The
ABX index was commonly used as a benchmark for mark-to-market valuation of
subprime mortgage portfolios and mortgage-backed securities in the crisis. Therefore,
it may provide information about large losses at financial institutions. I focus on the
AAA tranche because it was likely the most widely held by financial institutions.

Premiums on the ABX are quoted as an upfront spread. Therefore, I calculate
returns as a simple percentage change between weekly (Wednesday) observations.
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