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1. Introduction

We consider the non-autonomous Navier–Stokes–Brinkman–Forchheimer equations
of the form {

∂tu + (u,∇x)u + ∇xp + f(u) = Δxu + g(t),
div u = 0, u

∣∣
∂Ω

= 0, u
∣∣
t=0

= u0

(1.1)

in a bounded smooth domain Ω ⊂ R
3 endowed with Dirichlet boundary conditions.

Here u = (u1, u2, u3) and p are an unknown velocity field and pressure respectively,
Δx is the Laplacian with respect to the variable x, g(t) is a given external force
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which satisfies

g ∈ L2
loc(R, L2(Ω)), (1.2)

and f(u) is a Forchheimer nonlinearity which satisfies the following assumptions:

1. f ∈ C1(R3, R3), 2. κ|u|r−1 − L � f ′(u) � C(1 + |u|r−1) (1.3)

for some positive constants C, L and κ and the growth exponent r > 1. Here
and below f ′(u) stands for the Jacobi matrix (Frechet derivative) of the map
f : R

3 → R
3 and the second condition of (1.3) means that

(κ|u|r−1 − L)|ξ|2 � f ′(u)ξ.ξ � C(1 + |u|r−1)|ξ|2, ∀ ξ, u ∈ R
3.

Equations of form (1.1) describe the fluid flows in porous media (see [1, 6, 32,
33, 36] and references therein) and can also appear under the study of tidal dynam-
ics (usually without the inertial term, see [12, 14, 19, 26, 27, 31] and references
therein). The typical example of f is

f(u) = αu|u|r−1 + β̃u|u| − γu, (1.4)

where α, β̃, γ ∈ R and α > 0. Keeping in mind this example, in most part of our
results, we will also require that the nonlinearity f has a gradient structure

f(u) = ∇uF (u) (1.5)

for some F ∈ C2(R3, R).
Equations of form (1.1) under various assumptions on the nonlinearity and exter-

nal forces are of a great current interest and many important and interesting results
related with well-posedness of this problem, regularity and dissipativity of solutions,
existence of attractors and determining functionals, etc. are obtained, see [13, 16,
17, 20, 28, 30, 38, 39] and references therein. In particular, the global existence
of a weak solution of this problem can be proved exactly as in the case of usual
Navier–Stokes problem (e.g. using the Galerkin approximations), see [16, 37]. More
interesting is that the adding the extra Forchheimer term f(u) provides the regu-
larization of the problem and leads to the uniqueness of a weak solution if r > 3, see
[13, 16] and also [10]. Recall that for the classical Navier–Stokes problem the global
well-posedness of weak solutions is one of the Millennium problems (according to
the Clay institute of mathematics). The case of equation (1.1) with r < 3 is similar
to the original Navier–Stokes equation and looks out of reach of the modern theory.
The intermediate case r = 3 may be easier to treat and some particular results in
this direction are obtained, see e.g. [13], however, to the best of our knowledge, the
global well-posedness of weak solutions for r = 3 is also not known yet. For this
reason, we restrict our analysis to the case r > 3 only.

The analysis of the further regularity of weak solutions of (1.1) strongly depends
on the type of boundary conditions. The situation is relatively simple in the whole
space or in the case of periodic boundary conditions. Indeed, in this case we may
multiply equation (1.1) by Δxu and get an extremely important control of the
higher energy norm of the solution u (thanks to the conditions on f ′(u) and the
cancellation of the pressure term), see [38, 39] and remark 3.5 below.
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Things become much more complicated in the case of Dirichlet boundary con-
ditions where the term (∇xp, Δxu) does not disappear and it is not clear how
to get the higher energy estimates. Indeed, the standard perturbation arguments
based on the initial regularity of weak solutions allow us to treat the nonlinearity
f(u) only in the case r � 7/3, but we need r > 3 as mentioned above in order to
treat properly the inertial term (u, ∇x)u. Thus, the standard approach fails to give
more information for the further regularity of weak solutions no matter what the
exponent r is.

This problem was partially resolved in [16] for the case of autonomous right-hand
side g(t) ≡ g ∈ L2(Ω), using the so-called non-linear localization technique applied
to the stationary Brinkman–Forchheimer problem:

f(u) + ∇xp − Δxu = h, div u = 0, u
∣∣
∂Ω

= 0, (1.6)

which gives us the control of the H2-norm of a solution u through the L2-norm
of h:

‖u‖H2 � Q(‖h‖L2). (1.7)

Then, the accurate analysis of the form of the function Q allowed the authors to
treat the inertial term as a perturbation and differentiation of the initial equation
(1.1) by t followed by multiplication by ∂tu gave the control of the L2-norm of
∂tu(t) point-wise in time. This scheme allowed the authors to get finally the H2-
control of the norm of u(t) point-wise in time and, since H2(Ω) ⊂ C(Ω), getting the
further regularity of solutions becomes straightforward, see also [15, 17] for other
non-trivial applications of the non-linear localization technique.

Unfortunately, this method does not work for the case of non-autonomous exter-
nal forces if we do not have enough regularity of g(t) in time to differentiate it.
Although, assuming in addition that

g ∈ H1
loc(R, L2(Ω)) (1.8)

cures the problem, this assumption looks too restrictive, in particular, it excludes
an important class of external forces which rapidly oscillate in time, e. g.

g(t, x) = g0(t/ε)g1(x), g1 ∈ L2(Ω), |ε| 	 1.

In this paper, we prefer not to use this extra assumption and try to understand
instead what extra regularity of a weak solution u(t) can be obtained if the external
force g satisfies (1.2) only. We also believe that this understanding will be helpful
for other problems related with equations of form (1.1), in particular, for the global
well-posedness of strong solutions in the intermediate case r = 3.

The central role in our study plays assumption (1.5) and the related second
energy identity:

d
dt

(
1
2
‖∇xu‖2

L2 + (F (u), 1)
)

+ ‖∂tu‖2
L2 = (g, ∂tu) − ((u,∇x)u, ∂tu). (1.9)

Here and below (u, v) stands for the standard inner product in L2(Ω). The only
nontrivial term in (1.9), which prevents us to complete the estimate, is the one
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containing the inertial term. In order to handle it, we derive the Strichartz type
estimate for the L2

loc(R+, L∞(Ω))-norm of the solution u. Obtaining this estimate is
the most difficult and most technical part of the paper. We get this result applying
the nonlinear localization technique directly to the non-stationary equation (1.1)
with the inertial term. In contrast to the previous results related with the stationary
equation (1.6), we are unable to get the maximal regularity estimate for (1.1) (i.e.
to verify that every term in the equation belongs to the space L2

loc(R+, L2(Ω))), but
the obtained Strichartz type estimate mentioned above is enough for our purposes.
This allows us to establish the following key result.

Theorem 1.1. Let the assumptions (1.3), (1.5), and (1.2) hold with r > 3 and let
u0 ∈ Φ, where

cΦ := H1
0 (Ω) ∩ Lr+1(Ω) ∩ {div u0 = 0}. (1.10)

Then the unique weak solution u(t) of problem (1.1) satisfies the following estimate:

‖u(t)‖2
Φ � Q

(
‖u0‖2

Φe−βt +
∫ t

0

e−β(t−s)‖g(s)‖2
L2 ds

)
, (1.11)

for some positive constant β and a monotone function Q which are independent of
u0 and t.

In particular, if the right-hand side g(t) is bounded as t → ∞ in the sense that

‖g‖L2
b(R,L2(Ω)) := sup

t∈R

‖g‖L2(t,t+1;L2(Ω)) < ∞, (1.12)

estimate (1.11) gives us a uniform dissipative estimate

‖u(t)‖Φ � Q(‖u0‖Φ)e−βt + Q(‖g‖L2
b
) (1.13)

for some new monotone function Q and this, in turn, allows us to study the long-
time behaviour of solutions of (1.1) in terms of uniform attractors for the cocycle
generated by equation (1.1), see [3, 7, 8, 18, 42] and references therein.

Note that, in contrast to the standard situation, it looks difficult here to establish
the existence of a compact uniformly absorbing set for the corresponding cocycle
based only on the compactness of Sobolev embeddings, so we utilize the energy
method (see [4]), the central part of which is to establish the energy identity (1.9)
for any weak solution of (1.1). Surprisingly, this is also not straightforward since
the regularity of a weak solution provided by theorem 1.1 is not enough to justify
the multiplication of (1.1) by ∂tu. We overcome this difficulty using the convex-
ity argument and the fact that the energy in (1.9) is a compact perturbation of
a uniformly convex functional. As a result, we prove that, under the mild extra
assumption that the external forces g are weakly normal, see [21–24, 41] and also
definition 5.6 below, the cocycle generated by solution operators of equation (1.1)
possesses a uniform attractor in the strong topology of Φ and is generated by all
complete bounded solutions, see §5 below.

The paper is organized as follows. In §2 we consider the stationary case of equation
(1.1) and refine the results of [16] based on the non-linear localization technique.
The obtained results are crucial for the study of the non-autonomous case.
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In §3, which is the key section of our paper, we apply the non-linear localization
technique to the non-autonomous equation (1.1) in order to get the above mentioned
Strichartz type estimate and to give the proof of theorem 1.1. We also give a number
of extra regularity results which will be essentially used later.

§4 is devoted to the verification of the energy identity (1.9). In order to do this,
we utilize the convexity arguments and extend the ideas of [29] to our case.

Finally, in §5, we briefly recall the main ideas and concepts of the attractors
theory for non-autonomous dynamical systems and verify the existence of a uniform
attractor for the cocycle related with equation (1.1) in the phase space Φ.

2. The stationary case

In this section, we consider the following stationary version of the Brinkman-
Forchheimer equation:

Δxu −∇xp − f(u) = g, div u = 0, u
∣∣
∂Ω

= 0. (2.1)

Here u = (u1(x), u2(x), u3(x)) and p = p(x) are an unknown velocity vector field
and pressure respectively, Ω ⊂ R

3 is a bounded domain with a sufficiently smooth
boundary, f ∈ C1(R3, R

3) is a given nonlinearity which satisfies the following
dissipativity and growth restrictions:

κ(|u|r−1 + 1) � f ′(u) � C(1 + |u|r−1) (2.2)

for some given positive constants κ and C and the exponent r ∈ [1, ∞), and g ∈
L2(Ω) is a given external force. We also assume that the mean of pressure is equal
to zero

〈p〉 :=
1
|Ω|
∫

Ω

p(x) dx = 0.

We are mainly interested in the case r � 1, where the nonlinearity is not subordi-
nated to the linear part of the equation. Note that this problem under the similar
assumptions has been already considered in [16], however, the estimates obtained
there are not enough for our purposes, so in the present section, we refine them as
well as deduce a number of new ones.

We start with the standard energy estimate.

Proposition 2.1. Let the nonlinearity f satisfy (2.2) and g ∈ L2(Ω). Let also u be
a sufficiently smooth solution of equation (2.1). Then, the following estimate holds:

‖u‖2
H1 + ‖u‖r+1

Lr+1 + ‖u‖q
W 2,q + ‖p‖q

W 1,q + ‖f(u)‖q
Lq � C‖g‖q

Lq , (2.3)

where 1/(r + 1) + ac1/q = 1 and C is a positive constant which is independent on
u.
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Proof. Multiplying equation (2.1) by u, integrating over Ω and using the Hölder
inequality, we get the energy identity

‖∇xu‖2
L2 + (f(u), u) = (g, u) � Cκ‖g‖q

Lq +
κ

2
‖u‖r+1

Lr+1 ,

where (U, V ) stands for the standard inner product in [L2(Ω)]3. Using our
assumptions on f , we deduce from here that

‖∇xu‖2
L2 + ‖u‖r+1

Lr+1 + ‖f(u)‖q
Lq � C‖g‖q

Lq (2.4)

for some positive constant C. To complete the proof of the proposition, we write
out equation (2.1) as a linear equation

Δxu −∇xp = g̃ := g + f(u) (2.5)

and apply the maximal Lq-regularity result for solutions of the linear Stokes
equation, see e.g. [11]. Together with the already obtained estimate for the Lq-
norm of f(u), this give us the desired control of the W 2,q-norm of u as well as the
Lq-norm of pressure p. �

At the next step, we want to obtain higher energy estimates for the solutions
of (2.1). In the case of periodic boundary conditions, we get such estimates by
multiplying the equation by Δxu. However, this does not work at least in the
straightforward way for the Dirichlet BC since the term (∇xp, Δxu) becomes out of
control because of non-trivial boundary terms, which appear under the integration
by parts. Following [16], we use the nonlinear localization technique in order to
overcome the problem.

Theorem 2.2. Let u be a sufficiently smooth solution of equation (2.1). Then, the
following partial regularity estimate holds:

‖u‖2
W 1,3q � C(1 + ‖g‖2

L2), (2.6)

where the constant C is independent of u and g. Moreover, the following conditional
result holds:

‖f(u)‖q
L3q � C

(
1 + ‖g‖q

Lq + (1 + ‖g‖2
L2)2/3(f ′(u)∇xu,∇xu)1/3

)
. (2.7)

Proof. We divide the proof of this theorem on several steps.

Step 1. Interior regularity. Let ϕ(x) be a sufficiently smooth cut-off function
which vanishes near the boundary and equal to one identically outside of the
ε-neighbourhood of ∂Ω and which satisfies the inequality

|∇xϕ(x)| � Cεϕ(x)1/2, x ∈ R
3.

Since the domain Ω is smooth, such a function exists for every ε > 0.
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Let us multiply equation (2.1) by
∑

∂xi
(ϕ∂xi

u) and transform the most
complicated term containing pressure as follows:

(
∇xp,

∑
∂xi

(ϕ∂xi
u)
)

= −
⎛⎝p,

∑
i

∂xi
(
∑

j

∂xj
ϕ∂xi

uj)

⎞⎠
=
∑

i

⎛⎝∂xi
p,
∑

j

∂xj
ϕ∂xi

uj

⎞⎠
=
∑

i

⎛⎝∂xi
p, ∂xi

(
∑

j

∂xj
ϕuj)

⎞⎠−
∑
i,j

(
∂xi

p, ∂xi,xj
ϕuj

)
= − (Δxp,∇xϕ · u) −

∑
i,j

(
∂xi

p, ∂xi,xj
ϕuj

)
. (2.8)

The last term in the RHS is easy to estimate using (2.3):

|
∑
i,j

(
∂xi

p, ∂xi,xj
ϕuj

) | � ‖∇xp‖Lq‖u‖Lr+1 � C‖g‖Lq‖g‖1/r
Lq = C‖g‖q

Lq .

To estimate the first term, we take the divergence from both sides of equation (2.1)
and obtain the Poisson equation for pressure:

Δxp = −div f(u) − div g. (2.9)

Thus, integrating by parts again and using the growth restrictions on f and estimate
(2.4), we arrive at

|(Δxp,∇xϕ · u)| = |(div f(u) + div g,∇xϕ · u)|
� C(|g|, |∇xu| + |u|) + C(|f(u)|, |u|) + (|f(u)|, |∇xϕ| |∇xu|)
� C(1 + ‖g‖2

L2) + C(|u|r, |∇xu| |∇xϕ|). (2.10)

Using that |∇xϕ| � Cϕ1/2, we transform the last term as follows:

(|u|r, |∇xu| |∇xϕ|) � C
(
|u|(r−1)/2ϕ1/2|∇xu|, |u|(r+1)/2

)
� β(|u|r−1, ϕ|∇xu|2) + Cβ‖u‖r+1

Lr+1

� β(|u|r−1, ϕ|∇xu|2) + Cβ(1 + ‖g‖2
L2), (2.11)

where β > 0 is arbitrary. Combining the obtained estimates, we get

|
(
∇xp,

∑
∂xi

(ϕ∂xi
u)
)
| � β(ϕ|u|r−1, |∇xu|2) + Cβ(1 + ‖g‖2

L2). (2.12)

It is now not difficult to complete the interior estimate. Indeed, multiplying equation
(2.1) by

∑
i ∂xi

(ϕ∂xi
u) and arguing in a standard way, with the help of (2.12), we
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get

(ϕ, |Δxu|2) + (ϕf ′(u)∇xu,∇xu) � C‖g‖2
L2 + C‖∇xu‖2

L2

+ |
(
∇xp,

∑
∂xi

(ϕ∂xi
u)
)
| � Cβ(1 + ‖g‖2

L2) + β(ϕ|u|r−1, |∇xu|2). (2.13)

Finally, due to our assumptions, f ′(u) � κ(|u|r−1 + 1), so fixing β < κ/2, we arrive
at the desired estimate

(ϕ, |Δxu|2) + (ϕ|u|r−1, |∇xu|2) � C(1 + ‖g‖2
L2), (2.14)

which gives the interior H2-regularity.

Step 2. Boundary regularity: tangential directions. We now look at a small neigh-
bourhood of the boundary ∂Ω. We introduce a family of orthogonal vector fields τ1,
τ2 and n in Ω̄ which are non-degenerate near the boundary and such that τ i

∣∣
∂Ω

are
tangent vector fields and n

∣∣
∂Ω

is a normal vector field. Note that n(x) is globally
defined, but τ i are in general only locally defined, so being pedantic we need to use
the cut-off procedure in order to localize them. In order to avoid technicalities, we
however will assume that they are globally defined. Let τ = (τ1, τ2, τ3) be one of
the vectors τ1 or τ2. Then, we may define the corresponding differential operators

∂τu :=
3∑

i=1

τi∂xi
u, ∂∗

τ u = −
3∑

i=1

∂xi
(τiu).

Our idea is to multiply equation (2.1) by ∂∗
τ ∂τu and get the H1-norm of ∂τu analo-

gously to Step 1 using the fact that ∂τu
∣∣
∂Ω

= 0. As before, we start with the most
complicated term related with the pressure:

(∇xp, ∂∗
τ (∂τu)) = (∂τ∇xp, ∂τu) = (∇x(∂τp), ∂τu) + ([∂τ ,∇x]p, ∂τu).

Here and below, we denote by [D1, D2] the commutator of two differential operators
D1 and D2, i.e. [D1, D2]u := D1(D2u) − D2(D1)u. Let us first estimate the term
with the commutator using integration by parts and the fact that u is divergence
free:

([∂τ ,∇x]p, ∂τu) =
∑

j

(
∑

i

τi∂xi
∂xj

p − ∂xj
(τi∂xi

p),
∑

i

τi∂xi
uj)

=
∑

j

(
∑

i

∂xj
τi∂xi

p,
∑

i

τi∂xi
uj)

= −
∑

j

(∑
k

∂xk
(τk

∑
i

∂xj
τi∂xi

p), uj

)
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= −
⎛⎝∑

i,j,k

∂xk
τk∂xj

τi∂xi
p, uj

⎞⎠−
⎛⎝∑

i,j,k

τk∂xj ,xk
τi∂xi

p, uj

⎞⎠
−
⎛⎝∑

i,j,k

τk∂xj
τi∂xi

(τk∂xk
p), uj

⎞⎠+

⎛⎝∑
i,j,k

∂xi
τk∂xj

τi∂xi
p, uj

⎞⎠
= (A(x)∇x(∂τp), u) + (B(x)∇xp, u) (2.15)

for some smooth (and therefore bounded) matrices A and B. The remaining term
is analogous, but even simpler

(∇x(∂τp), ∂τu) = −(∂τp, [∂τ ,div]u) = (A1(x)∇x(∂τp), u) + (B1(x)∇xp, u)

Thus, we have proved the following key relation:

(∇xp, ∂∗
τ ∂τu) = (Ã(x)∇x(∂τp), u) + (B̃(x)∇xp, u) (2.16)

for some smooth matrices Ã(x) and B̃(x). We now turn to the term containing the
Laplacian:

(Δxu, ∂∗
τ ∂τu) = (∂τΔxu, ∂τu) = (Δx(∂τu), ∂τu)

+ ([∂τ ,Δx]u, ∂τu) = −‖∇x(∂τu)‖2
L2 + ([∂τ ,Δx]u, ∂τu). (2.17)

It only remains to estimate the term containing commutator. It is a sum of second
and first order differential operators, so integrating by parts again in the second
order part, we arrive at

|([∂τ ,Δx]u, ∂τu)| � β‖∇x(∂τu)‖2
L2 + Cβ‖∇xu‖2

L2 � β‖∇x(∂τu)‖2
L2 + Cβ‖g‖2

L2

and, therefore, we end up with the estimate

− (Δxu, ∂∗
τ ∂τu) � 1

2
‖∇x(∂τu)‖2

L2 − C‖g‖2
L2 . (2.18)

The non-linear term is estimated in a standard way:

(f(u), ∂∗
τ ∂τu) = (∂τf(u), ∂τu) = (f ′(u)∂τu, ∂τu) � κ(|u|r−1, |∂τu|2)

and combining the obtained estimates together, we arrive at

‖∇x(∂τu)‖2
L2 + (|u|r−1, |∂τu|2) � C(1 + ‖g‖2

L2) + C|(Ã(x)∇x(∂τp), u)|. (2.19)

In order to estimate the term with pressure in the right-hand side, we differentiate
equation (2.1) along τ and write the obtained expression in the following form:

Δx(∂τu) −∇x(∂τp) = {∂τf(u)} + {∂τg}
+ {[Δx, ∂τ ]u + {[∇x, ∂τ ]p} =: h1 + h2 + h3,

div(∂τu) = [div, ∂τ ]u := H, ∂τu
∣∣
∂Ω

= 0. (2.20)
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From estimate (2.3), we know that

‖h3‖Lq � C‖g‖Lq ,

where we have used that [∂τ , Δx] and [∂τ , div] are second and first order operators
respectively. Also ‖H‖W 1,q � C‖g‖Lq . We now decompose

∂τu = v1 + v2 + v3, ∂τp = p1 + p2 + p3,

where

Δx(vi) −∇xpi = hi, div vi = Hi, vi

∣∣
∂Ω

= 0, (2.21)

where H3 = H and H1 = H2 = 0. Then, due to the Lq and H−1 regularity estimates
for the Stokes operator, see e.g. [11], we have

‖p2‖L2 � C‖g‖L2 , ‖∇xp3‖Lq � C‖g‖Lq , ‖∇xp1‖Lq � C‖∂τf(u)‖Lq .

Inserting these estimates to (2.19), we arrive at

‖∇x(∂τu)‖2
L2 + (|u|r−1, |∂τu|2) � C(1 + ‖g‖2

L2)

+ C‖u‖Lr+1‖∂τf(u)‖Lq � C(1 + ‖g‖2
L2) + C‖∂τf(u)‖q

Lq . (2.22)

It only remains to estimate the last term via the Hölder inequality:

‖∂τf(u)‖q
Lq � (|u|q(r−1), |∂τu|q) (2.23)

=
((

|u|(r−1)/2|∂τu|
)q

, |u|q(r−1)/2
)

� (|u|r−1, |∂τu|2) q
2
(|u|r+1, 1

)1− q
2 � β(|u|r−1, |∂τu|2) + Cβ‖u‖r+1

Lr+1 , (2.24)

where we have used that 1 − q
2 = 1 − r+1

2r = r−1
2r and q(r − 1) 2r

r−1 = 2(r + 1). Insert-
ing the obtained estimate to the right-hand side of (2.22), we end up with the desired
estimate for tangential derivatives:

‖∇x(∂τu)‖2
L2 + (|u|r−1, |∂τu|2) � C(1 + ‖g‖2

L2). (2.25)

Step 3. Interpolation and regularity in normal directions. Let U := ∇xu. Then,
estimates and (2.3) and (2.25) give us

‖U‖W 1,q + ‖∂τU‖L2 � C(1 + ‖g‖L2). (2.26)

Recall that we are now doing estimates in a small neighbourhood of the bound-
ary only (inside of the domain Ω we already have better control of the H2-norm
of u from the proved interior estimate). Thus, using the partition of unity, we
may fix a small neighbourhood of containing a piece of the boundary and the
straighten it by an appropriate diffeomorphism in such a way that in new coordi-
nates y = (y1, y2, y3). The direction y1 corresponds to the normal direction �n and
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the variables y2, and y3 correspond to the tangent directions. Then, estimate (2.26)
reads

‖∂y1U‖Lq([0,1]3) + ‖∂y2U‖L2([0,1]3) + ‖∂y3U‖L2([0,1]3) � C(1 + ‖g‖L2). (2.27)

After that we may use the interpolation for anisotropic Sobolev spaces:

W 1,q((0, 1), Lq(0, 1)2) ∩ L2((0, 1),W 1,2(0, 1)2)

⊂ W θ,s((0, 1),W 1−θ,s(0, 1)2) ⊂ L3q((0, 1), L3q(0, 1)2), (2.28)

where
1
s

=
θ

q
+

1 − θ

2
,

1
3q

=
1
s
− θ

1
=

1
s
− 1 − θ

2
,

so θ = 1
3 , see e.g. [34] or [5]. Thus, reminding that U = ∇xu,we end up with the

desired partial regularity estimate

‖∇xu‖L3q � C‖u‖1/3
W 2,q‖∇x(∂τu)‖2/3

L2 � C(1 + ‖g‖L2). (2.29)

Indeed, inside of the domain Ω, we have better estimate with the exponent 6 instead
of 3q due to the proved interior regularity and estimate (2.29) in a small neigh-
bourhood of the boundary follows from the interpolation mentioned above. Thus,
estimate (2.6) is proved and we only need to check (2.7). To this end, we first note
that, due to the interior estimate (2.14), our assumptions on f and the Sobolev
embedding H1 ⊂ L6, we have

‖f(u)‖q
L3q(Ωε) � C

(
1 + ‖u‖r+1

L3(r+1)(Ωε)

)
� C1

(
1 + ‖u‖r+1

Lr+1(Ωε) + ‖∇x(u(r+1)/2)‖2
L2(Ω)

)
� C2

(
1 + ‖g‖q

Lq(Ω) + (ϕf ′(u)∇xu,∇xu)
)

� C3

(
1 + ‖g‖2

L2(Ω)

)
.

(2.30)

Thus, we only need to look at a small neighbourhood near the boundary. Using the
refined Sobolev estimate

‖v‖3
L6([0,1]3) � C‖∂y1v‖L2([0,1]3)‖∂y2v‖L2([0,1]3)‖∂y3v‖L2([0,1]3)

which holds for every v ∈ H1
0 ((0, 1)3) and taking v = |u|(r+1)/2, analogously to

(2.30), we get

‖f(u)‖q
L3q(Ω) � C

(
1 + ‖g‖q

Lq(Ω)

+ (f ′(u)∂nu, ∂nu)1/3(f ′(u)∂τ1u, ∂τ1u)1/3(f ′(u)∂τ2u, ∂τ2u)1/3
)

. (2.31)

Combining this estimate with (2.25), we end up with the desired estimate (2.7) and
finish the proof of the theorem. �
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We are now ready to complete the maximal L2-regularity estimate for the
solutions of equation (2.1).

Corollary 2.3. Let u be a sufficiently smooth solution of equation (2.1). Then the
following estimate holds:

‖u‖2
H2 + ‖∇xp‖2

L2 + ‖f(u)‖2
L2 � C(1 + ‖g‖Lq )q(1 + ‖g‖L2)s, (2.32)

where the constant C is independent of u and g and s = max{2, 4(2−q)
3q−2 }.

Proof. Using estimates (2.3), (2.7) and the interpolation inequality, we infer that

‖f(u)‖2
L2 � ‖f(u)‖

3q−2
2

Lq ‖f(u)‖
3(2−q)

2
L3q

� C(1 + ‖g‖Lq )
3q−2

2

(
1 + ‖g‖q

Lq + (1 + ‖g‖2
L2)

2
3 (f ′(u)∇xu,∇xu)

1
3

) 3(2−q)
2q

.

(2.33)

Since 1 < q < 2, using the Young inequality, we may rewrite the last inequality in
the form

‖f(u)‖2
L2 � C1(1 + ‖g‖Lq )2

+ (1 + ‖g‖Lq )
3q−2

2 (1 + ‖g‖L2)
2(2−q)

q (f ′(u)∇xu,∇xu)
2−q
2q

� C(1 + ‖g‖2
L2) + Cν(1 + ‖g‖Lq )q(1 + ‖g‖L2)

4(2−q)
3q−2 + ν(f ′(u)∇xu,∇xu),

(2.34)

where ν > 0 is arbitrary. Treating now the term f(u) in (2.1) as external forces
and applying the maximal L2-regularity estimate to the linear Stokes equation, we
arrive at

‖u‖2
H2 + ‖∇xp‖2

L2 � C‖g‖2
L2

+ Cν(1 + ‖g‖Lq )q(1 + ‖g‖L2)
4(2−q)
3q−2 + ν(f ′(u)∇xu,∇xu). (2.35)

Moreover, from the equation (2.1) we have

‖f(u)‖2
L2 � ‖u‖2

H2 + ‖∇xp‖2
L2 + ‖g‖2

L2 � C‖g‖2
L2

+ Cν(1 + ‖g‖Lq )q(1 + ‖g‖L2)
4(2−q)
3q−2 + ν(f ′(u)∇xu,∇xu). (2.36)

Finally, in order to estimate the last term in the right-hand side, we multiply
equation (2.1) by Δxu and integrate over x ∈ Ω. This gives

‖Δxu‖2
L2 + (f ′(u)∇xu,∇xu) � (‖g‖L2 + ‖∇xp‖L2)‖Δxu‖L2

� ‖g‖2
L2 + ‖Δxu‖2

L2 + ‖∇xp‖2
L2 � ‖Δxu‖2

L2

+ C‖g‖2
L2 + Cν(1 + ‖g‖Lq )q(1 + ‖g‖L2)

4(2−q)
3q−2

+ ν(f ′(u)∇xu,∇xu). (2.37)
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Fixing ν > 0 small enough, we deduce that

(f ′(u)∇xu,∇xu) � C‖g‖2
L2 + C(1 + ‖g‖Lq )q(1 + ‖g‖L2)

4(2−q)
3q−2 ,

which together with (2.35) and (2.36) finish the proof of the corollary. �

We now briefly discuss the existence and uniqueness of a solution for (2.1). We
start with weak solutions. To this end, we introduce the standard notation for the
Navier–Stokes equations theory, namely, space Dσ(Ω) of divergence free C∞-smooth
vector fields in Ω vanishing near the boundary as well as the spaces H and V which
are the closure of Dσ(Ω) in [L2(Ω)]3 and [H1(Ω)]3 respectively. The space V−1 is
defined as a dual space to V with respect to the duality generated by the standard
inner product in H. Then, for every external force g ∈ V−1 + Lq(Ω), we say that
u is a weak solution of (2.1) if u ∈ V ∩ Lr+1(Ω) and satisfies equation (2.1) in the
sense of distributions, i.e.

(∇xu,∇xϕ) + (f(u), ϕ) + (g, ϕ) = 0 (2.38)

for all test functions ϕ ∈ Dσ(Ω). As usual, see e.g. [11], the pressure p can be
restored using Lq and H−1 regularity estimates for the linear Stokes operator, so
we may also claim that p ∈ L2(Ω) + W 1,q(Ω) for any weak solution u.

The existence of a weak solution is straightforward and can be done using, for
instance, the Galerkin approximation method, see e.g. [11, 37]. The uniqueness
also straightforward due to our monotonicity assumption on f and the density of
Dσ(Ω) in V ∩ Lr+1 proved in [11] (see also [10] for an alternative proof). So, we
discuss only the further smoothness of weak solutions.

Corollary 2.4. Let g ∈ L2(Ω). Then, the unique weak solution u of problem (2.1)
belongs to H2(Ω), the corresponding pressure p ∈ H1(Ω) and all of the estimates
stated above hold.

Proof. We first note that, due to the uniqueness of weak solutions, it is enough
to construct a regular solution u ∈ H2(Ω) for any g ∈ L2(Ω) and this will auto-
matically exclude the existence of weak non-smooth solutions. Since the nonlinear
localization seems to not work on the level of Galerkin approximations (at least we
do not know how to obtain uniform estimates for higher norms), we need to use the
alternative methods. For instance, we may use the continuation by the parameter
methods based on the Leray–Schauder degree theory. Indeed, let us consider the
family of equations of the form (2.1) depending on a parameter ε ∈ [0, 1]:

Δxu −∇xp − εf(u) = g, u
∣∣
Ω

= 0. (2.39)

Using the Leray–Helmholtz projector Π and the invertibility of the Stokes operator
A := ΠΔ, we may rewrite equation (2.39) in the equivalent form

u = εA−1Πf(u) + A−1Πg. (2.40)

Let us assume that g ∈ H1 and consider equation (2.40) as an equality in H3(Ω).
Then, due to the embedding H3(Ω) ⊂ C1(Ω) and the H1 → H3 regularity of the
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solutions of the linear Stokes operator, see [11], the right-hand side of (2.40) is a
compact and continuous operator in H3(Ω), so the Leray–Schauder degree theory
works and we only need to obtain the uniform with respect to ε ∈ [0, 1] estimates
for the H3-solutions of (2.40) or, which is the same, H3-solutions of (2.39).

To get this estimate, we note that now we a priori know that the solution
u = uε is in H3 and the corresponding pressure pε ∈ H2 (by the regularity of
the Leray–Helmholtz projector). Since all the above estimates related with non-
linear localizations obviously hold for such solutions, we may apply corollary 2.3
to equation (2.39), which gives us the estimate of the H2-norm of u. Moreover, it
is not difficult to see that this estimate is unform with respect to ε, so we end up
with

‖uε‖H2 � Q(‖g‖L2),

where the function Q is independent of ε. After that, using the embedding H2(Ω) ⊂
C(Ω), we get the control of the H1-norm of f(u) and, due to the regularity of the
Stokes operator, we finally get the desired uniform a priori estimate in the H3-
norm. Thus, we have proved the existence of H3-solution of problem (2.1) under
the extra condition that g ∈ H1. Since the H2-norm estimate of u depends only on
the L2-norm of u, we may approximate a given external force g ∈ L2 by a sequence
gn ∈ H1, construct the associated solution un and pass to the limit n → ∞. This
will give us the desired H2-solution and finish the proof of the corollary. �

Let us now consider the stationary Navier–Stokes–Brinkman–Forchheimer
equation:

Δxu −∇xp − f(u) = g + (u,∇x)u, div u = 0, u
∣∣
∂Ω

= 0. (2.41)

Then, the weak solution of this problem is defined exactly as in the case of equation
(2.1). Moreover, we have the energy estimate (2.4) for such solutions due to the
cancellation ((u, ∇x)u, u) = 0. The existence of a weak solution can be obtained
after that, e.g. by the Galerkin method. The next corollary tells us when every such
solution is automatically smooth.

Corollary 2.5. Let g ∈ L2(Ω). Then any weak solution u of problem (2.41) belongs
to H2(Ω) and the pair (u, p) possesses the following estimate:

‖u‖H2 + ‖p‖H1 � Q(‖g‖L2), (2.42)

where the function Q is independent of u and g.

Proof. We first derive estimate (2.42) assuming that u is smooth enough, e.g. u ∈
H2. To this end, we interpret equation (2.41) and (2.1) with the right-hand side
g̃ := g + (u, ∇x)u and apply estimate (2.32) to it. In addition, analyzing the proof
of this estimate, we see that the term containing ‖g̃‖Lq in the right-hand side of
it comes from the corresponding estimate of ‖f(u)‖Lq and this control we already
proved for (2.41), so we may replace g̃ by g in this part of the estimate and arrive
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at

‖u‖2
H2 + ‖∇xp‖2

H1

� C(1 + ‖g‖Lq )q(1 + ‖g̃‖L2)s � Q(‖g‖L2)(1 + ‖ |u| · |∇xu| ‖L2)s. (2.43)

Using the appropriate interpolation inequality together with (2.4), we estimate

‖ |u| · |∇xu| ‖L2 � ‖u‖L∞‖u‖H1 � C‖u‖3/2
H1 ‖u‖1/2

H2 � C(1 + ‖g‖L2)3q/4)‖u‖1/2
H2

and, therefore,

‖u‖2
H2 + ‖∇xp‖2

H1 � Q(‖g‖L2)(1 + ‖u‖s/2
H2 ).

Since s = max{2, 4(2−q)
3q−2 } < 4 for 1 � q � 2, the last estimate implies (2.42). Thus,

the H2 a priori bound for a sufficiently smooth solution of (2.41) is obtained. The
existence of such a solution can be verified, e. g. using again the Leray–Schauder
degree theory, see the proof of corollary 2.4, and we only need to check that any
weak solution is actually smooth.

In contrast to corollary 2.4, we do not expect the uniqueness of a weak solution
for problem (2.41) due to the presence of the non-monotone inertial term. In order
to overcome this problem, we add an artificial term Lu with big L in both sides of
equation (2.41) and consider the auxiliary problem

Δxv −∇xp − f(v) − Lv − (v,∇xv) = g − Lu := ḡ, (2.44)

where u is a fixed weak solution of (2.41). Then, since ḡ ∈ L2 and the new nonlin-
earity f(v) + Lv satisfies all of the assumptions posed on f , this problem possesses
a smooth solution v ∈ H2. On the other hand, u is still a weak solution of this prob-
lem and we only need to check that u = v. This will be true if L is large enough to
compensate the non-monotonicity of the inertial term. Indeed, let w = u − v. Then,
this function solves

Δxw −∇xp̄ − [f(w + v) − f(v)] − [(u,∇x)w − (w,∇x)v] − Lw = 0.

Multiplying this equation by w, integrating by x ∈ Ω and using the monotonicity
of f together with the cancellation ((u, ∇x)w, w) = 0, we arrive at

‖∇xw‖2 + L‖w‖2 � |(w,∇x)v, w)| � ‖∇xv‖L2‖w‖2
L4

� C1‖v‖H1‖w‖1/2
L2 ‖w‖3/2

H1 � C2‖v‖4
H1‖w‖2

L2 + ‖∇xw‖2
L2 (2.45)

and we see that the uniqueness holds if L > C2‖v‖4
H1 . This finishes the proof of the

corollary. �
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3. The non-stationary case

In this section, we turn to study the non-stationary Brinkmann–Forchheimer–
Navier–Stokes equation of the form:

∂tu + (u,∇x)u + ∇xp + f(u) = Δxu + g,

div u = 0, u
∣∣
t=0

= u0, u
∣∣
Ω

= 0, (3.1)

where u0 ∈ V and

g ∈ L2
loc([0,∞), L2(Ω)). (3.2)

Our general plan to tackle this problem is similar to what we did in § 2. Namely, we
first obtain the basic energy estimate (by multiplying the equation by u) and after
that improve the regularity of a solution using the nonlinear localization technique.
In the case where g is regular enough in time, e.g. g ∈ C1

b (R, L2(Ω)), one can get the
control of the Cb(R+, L2(Ω))-norm of ∂tu by differentiating the equation in time
and multiplying it by ∂tu, see [16] for the details. This will reduce the problem to
the autonomous one which is considered in the previous section.

However, the regularity of (3.2) is not sufficient to proceed in such a way and we
need to apply the nonlinear localization technique to the non-stationary equation
(3.1) in direct way. As we will see below, the interior estimates as well as regular-
ity in tangential directions can be extended to the non-stationary case with some
extra technicalities related with the inertial term. In contrast to this, the obtained
regularity in time is insufficient to derive reasonable analogue of estimate (2.32)
and get the regularity in normal direction. For this reason, we failed to get full
H2-maximal regularity in the non-stationary case and do not know whether or not
it holds (even in a ‘simple’ case of periodic boundary conditions), but the obtained
results are enough to establish the well posedness of (3.1) in the phase space Φ
under the extra assumption that the nonlinearity f is gradient, i.e.

f(u) = ∇uF (u), (3.3)

for some F ∈ C2(R3). Again, we do not know whether or not the problem (3.1) is
globally well-posed without this assumption although some of our estimates remain
true without it. We also relax slightly assumption (2.2) in order to include non-
monotone nonlinearities. Namely, we assume from now on that

κ|u|r−1 − L � f ′(u) � C(1 + |u|r−1) (3.4)

for some positive constants κ, C and L.
We start with the non-stationary analogues of basic energy estimates.
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Proposition 3.1. Let the assumptions (3.4) and (3.2) hold and let u be a
sufficiently smooth solution of (3.1). Then, the following estimate holds:

‖u(t)‖2
H + ‖u(t)‖q

W 2(1−1/q),q +
∫ t

0

e−α(t−s)
(‖∇xu(s)‖2

L2 + ‖u(s)‖q
W 2,q

+‖∂tu(s)‖q
Lq + ‖u(s)‖r+1

Lr+1 + ‖f(u(s))‖q
Lq + ‖∇xp(s)‖q

Lq

)
ds

� C
(‖u0‖2

H + ‖u0‖q
W 2(1−1/q),q

)
e−αt + C

(
1 +

∫ t

0

e−α(t−s)‖g(s)‖q
Lq ds

)
, (3.5)

where the positive constants C = Cα and 0 < α < α0 can be chosen arbitrarily
(where α0 is small enough). All constants are independent of t and u.

Proof. We multiply equation (3.1) by u and integrate over x ∈ Ω to get

1
2

d
dt

‖u(t)‖2
L2 + ‖∇xu(t)‖2

L2 + (f(u(t)), u(t)) = (g(t), u(t)). (3.6)

Then, using assumption (3.4) together with the Hölder and Poincare inequalities,
we arrive at

d
dt

‖u(t)‖2
L2 + α‖u(t)‖2

L2

+ α(‖u(t)‖2
H1 + ‖u(t)‖r+1

Lr+1 + ‖f(u(t))‖q
Lq ) � C(1 + ‖g‖q

Lq ), (3.7)

where C and α are positive constants which are independent of t and u. Integrating
this inequality, we have

‖u(t)‖2
L2

+ α

∫ t

0

e−α(t−s)
(‖u(s)‖2

H1 + ‖u(s)‖r+1
Lr+1 + ‖f(u(s))‖q

Lq

)
ds

� ‖u(0)‖2
L2e−αt + C

(
α−1 +

∫ t

0

e−α(t−s)‖g(s)‖q
Lq ds

)
. (3.8)

Thus, the basic energy estimate is proved (note that the assumption r � 3 is
nowhere used here). To complete estimate (3.5), we need to rewrite equation (3.1)
in the form of a linear non-stationary Stokes equation:

∂tu − Δxu + ∇xp = g(t) − f(u(t)) − (u(t),∇x)u(t) := gu(t) (3.9)

and to apply the standard Lq-maximal regularity estimate to this equation. This
gives

‖u(t)‖q
W 2(1−1/q),q

+
∫ t

0

e−α(t−s)
(‖∂tu(s)‖q

Lq + ‖u(s)‖q
W 2,q + ‖∇xp(s)‖q

W 1,q

)
ds

� C‖u(0)‖q
W 2(1−1/q),2e

−αt + C

∫ t

0

e−α(t−s)‖gu(s)‖q
Lq ds, (3.10)

where C and α are some constants and |α| is small enough, see e.g. [35]. So, it
only remains to estimate the norm of gu(s) in the right-hand side. Moreover, the
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term containing f(u) is already estimated and we only need to estimate the inertial
term. To this end, we need the assumption r � 3 which allows us to use the Hölder
inequality in the form

‖(u,∇x)u‖q
Lq � ‖u‖q

L
2q

2−q

‖∇xu‖q
L2

� ‖∇xu‖2
L2 + ‖u‖

2q
2−q

L
2q

2−q

� C(1 + ‖∇xu‖2
L2 + ‖u‖r+1

Lr+1), (3.11)

since 2q
2−q = 2(r+1)

r−1 � r + 1 if r � 3. Thus, the inertial term is also controlled by
(3.8) and this estimate together with (3.10) give the desired estimate (3.5) and
finish the proof of the proposition. �

Analogously to the stationary case, we define a weak solution u(t) of problem
(3.1) as a function which belongs to the space

C([0,∞),Hw) ∩ L2
loc([0,∞),V) ∩ Lr+1

loc ([0,∞).Lr+1),

which satisfies (3.1) in the sense of distributions, i.e.

−〈u, ∂tϕ〉 + 〈∇xu,∇xϕ〉 + 〈f(u), ϕ〉 + 〈(u,∇x)u, ϕ〉 = 〈g, ϕ〉
for all ϕ ∈ C∞

0 (R+ × Ω) with div ϕ(t) = 0. Here and below 〈u, v〉 :=
∫

R
(u(t), v(t)) dt

and C([0, ∞), Hw) means the space of H-valued functions u(t), t ∈ R+, which are
continuous in time in the weak topology of H. We summarize the known facts about
the existence and uniqueness of such solutions in the following proposition.

Proposition 3.2. Let the nonlinearity f satisfy assumption (3.4) for some r � 1.
Then, for every u0 ∈ H and every g ∈ Lq

loc([0, ∞), Lq(Ω)), problem (3.1) possesses
at least one weak solution u which satisfies the energy estimate (3.8). If, in addition,
r > 3, then the weak solution of this problem is unique. Moreover, if r > 3 and
u0 ∈ H ∩ W 2(1−1/q),q(Ω), then estimate (3.5) holds for the weak solution of (3.1).

Proof. Indeed, the existence of a solution follows in a standard way from estimate
(3.8) using, e.g. Galerkin approximations. The uniqueness of a solution is known
for r > 3 only. First of all, we use this assumption in order to check that the inertial
term is in Lq, see (3.11). After that, we justify the multiplication of equation (3.1)
by u as well as the multiplication of for difference of two weak solutions u and v by
u − v and this gives us the following identity for the difference w := u − v:

1
2

d
dt

‖w‖2
L2 + ‖∇xw‖2

L2 + ([f(w + v) − f(v)], w) + ((w,∇x)v, w) = 0, (3.12)

see [10, 16] for the details. Then, using the integration by parts, we estimate the
inertial term as follows

|((w,∇x)v, w)| � (|w| · |v|, |∇xw|) � ‖∇xw‖2 + (|w|2, |v|2).
Moreover, using assumption (3.4) on the nonlinearity, we arrive at

(f(u) − f(v), w) � κ′(|u|r−1 + |v|r−1, v2) � (|v|2, |w|2) − Cr,κ‖w‖2
L2
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for some positive constants κ′ and Cr,κ (here we have used that r > 3 again).
Inserting these estimates into (3.12), we have

1
2

d
dt

‖w‖2
L2 � Cr,κ‖w‖2

L2

and the Gronwall inequality gives us that w = 0 which proves the uniqueness.
Finally, if u0 ∈ H ∩ W 2(1−1/q),q(Ω), we may apply the maximal Lq-regularity esti-
mate (3.10) to the linear Stokes equation (3.9) and verify that the unique weak
solution (3.9) satisfies (3.5). This finishes the proof of the proposition. �

We are now ready to state and prove the main result of this section, which gives
the global well-posedness of problem (3.1) in the phase space Φ = V ∩ Lr+1(Ω).

Theorem 3.3. Let u0 ∈ Φ := V ∩ Lr+1(Ω), the nonlinearity f satisfy (3.4) and
(3.3) for some r > 3 and let g satisfy (3.2). Then the weak solution u(t) ∈ Φ for all
t � 0 and satisfies the following estimate:

‖u(t)‖2
Φ+
∫ t

t−1

‖∂tu(s)‖2
L2ds�Q

(
‖u0‖2

Φe−βt+
∫ t

0

e−β(t−s)‖g(s)‖2
L2ds

)
, (3.13)

where ‖u‖2
Φ := ‖u‖2

V + ‖u‖r+1
Lr+1 , Q is a monotone function and β is a positive con-

stant, both are independent of t and g and we put 0 instead of t − 1 if t � 1.
Moreover, if we only assume that u0 ∈ H, then u(t) ∈ Φ for all t > 0 and the
following estimate holds for t � 1:

‖u(t)‖2
Φ+
∫ t

t−1

‖∂tu(s)‖2
L2ds�Q

(
‖u0‖2

He−βt+
∫ t

0

e−β(t−s)‖g(s)‖2
L2ds

)
. (3.14)

Proof. Of course, the analogue of the smoothing property (3.14) holds for all t > 0
with the function Q depending also on 1/t and we state the smoothing property
for t � 1 just in order to avoid extra technicalities.

We first assume that u is a sufficiently smooth solution of (3.1), for instance,

u ∈ Cloc([0,∞),H2(Ω)) ∩ L2
loc([0,∞),H3(Ω)), (3.15)

and derive the desired estimates for it. We divide the proof on several steps.

Step 1. Interior estimates. This step is almost identical to Step1 in the proof of
theorem 2.2. Indeed, let ϕ be the same as in that step. Multiplying equation (3.1)
by −∑i ∂xi

(ϕ∂xi
u), we arrive at

d
dt

(ϕ, |∇xu|2) + (ϕ, |Δxu|2) + κ(|u|r−1ϕ, |∇xu|2)
� C(1 + ‖g(t)‖2

L2 + ‖∇xu‖2
L2 + ‖u‖r+1

Lr+1 + ‖∇xp‖q
Lq )

+ 2(Δxp,∇xϕ · u) − 2((u,∇x)u, div(ϕ∇xu)). (3.16)

Thus, we just have an extra term in the right-hand side of (3.16) which is related
with the inertial term which should be properly estimated and also we now have

Δxp = −div f(u) − div g − div(u,∇x)u
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with the extra term related with the divergence of the inertial term (in comparison
with (2.9)). Both of the extra terms are not difficult to control. Indeed,

|((u,∇x)u,div(ϕ∇xu))| � C(|u| · |∇xu|, ϕ|Δxu|)

+ C(|u|, ϕ1/2|∇xu|2)| � 1
4
(ϕ, |Δxu|2)

+
1
4
κ(ϕ|u|r−1, |∇xu|2) + C‖∇xu‖2

L2 . (3.17)

The extra term in the expression for the Laplacian of pressure p, after inserting it
into the right-hand side of (3.16) gives us the term

|(div(u,∇x)u,∇xϕ · u)| = |((u,∇x)u,∇x(∇xϕ · u))|,
which can be estimated exactly as in (3.17). Combining all of the estimates together,
we arrive at

d
dt

(ϕ, |∇xu|2) +
1
2
(ϕ, |Δxu|2) +

κ

2
(|u|r−1ϕ, |∇xu|2)

� C(1 + ‖g(t)‖2
L2 + ‖∇xu‖2

L2 + ‖u‖r+1
Lr+1 + ‖∇xp‖q

Lq ). (3.18)

Finally, integrating this relation in time and using (3.5), we arrive at the desired
interior estimate

(ϕ, |∇xu(t)|2)

+ α

∫ t

0

e−α(t−s)
(
(ϕ, |Δxu(s)|2) + (|u|r−1ϕ, |∇xu|2)) ds

� C‖u0‖2
Ve−αt + C

(
1 +

∫ t

0

e−α(t−s)‖g(s)‖2
L2 ds

)
. (3.19)

for some positive constants C and α.

Step 2. Boundary regularity: tangential directions. Analogously to § 2, we multi-
ply equation (3.1) by ∂∗

τ ∂τu and integrate over x ∈ Ω. Then, in comparison with
(2.19), we will have an extra good term 1/2d/dt‖∂τu‖2

L2 as well as the term
((u, ∇x)u, ∂∗

τ ∂τu) related with the extra inertial term, which can be estimated
as follows:

|((u,∇x)u, ∂∗
τ ∂τu)| � ||((u,∇x)∂τu, ∂τu)|

+ C(|u| · |∂τu|, |∇xu|) � |((∂τu,∇x)u, ∂τu)| + C(|u|2, |∂τu|2) + C‖∇xu‖2
L2 .
(3.20)

Furthermore, integrating by parts, we get

|((∂τu,∇x)u, ∂τu)| � C|(|∂τu| · |u|, |∇x(∂τu)|)|
� ε‖∇x(∂τu)‖2 + Cε(|u|2, |∂τu|2). (3.21)

Thus, using again that r > 3, we arrive at

|((u,∇x)u, ∂∗
τ ∂τu)| � ε

(‖∇x(∂τu)‖2
L2 + (|u|r−1, |∂τu|2))+ Cε‖∇xu‖2

L2 ,
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where ε > 0 is arbitrary, and, therefore, this extra term is under the control and,
arguing as in the stationary case, we arrive at

d
dt

‖∂τu‖2
L2 + α

(‖∇x(∂τu)‖2
L2 + (|u|r−1, |∂τu|2) + ‖∂τf(u)‖q

Lq

)
� C(1 + ‖g(t)‖2

L2) + C‖∇xu(t)‖2
L2 + C‖u(t)‖r+1

Lr+1 + C|(A(x)∇x(∂τp), u)|.
(3.22)

Integrating this inequality in time and using (3.8), after the standard transforma-
tions, we arrive at

sup
s∈[0,t]

{e−β(t−s)‖∂τu(s)‖2} + κ

∫ t

0

e−β(t−s)
(‖∇x(∂τu(s))‖2

L2

+(|u(s)|r−1, |∂τu(s)|2) + ‖∂τf(u(s))‖q
Lq

)
ds � C‖u0‖2

Ve−βt + C+

+ C

∫ t

0

e−β(t−s)‖g(s)‖2
L2 ds + C

∫ t

0

e−β(t−s)|(A(x)∇x(∂τp(s)), u(s))|ds,

(3.23)

where κ, β and C are some positive constants, which are independent of t and u.
Thus, we only need to estimate the term, containing pressure. To this end, we
introduce a function G = G(t) as a solution of the linear Stokes equation:

∂tG − ΔxG + ∇xpG = g(t), G
∣∣
t=0

= u0, div G = 0, G
∣∣
∂Ω

= 0.

Then, using the L2-maximal regularity estimate for the linear Stokes equation, see
[35], we end up with

‖G(t)‖2
L2

+
∫ t

0

e−β1(t−s)
(‖∂tG(s)‖2

L2 + ‖G(s)‖2
H2 + ‖∇xpG(s)‖2

L2

)
ds

� C‖u0‖2
Ve−β1(t−s) + C

∫ t

0

e−β1(t−s)‖g(s)‖2
L2 ds (3.24)

for some positive constants β1 > β, and C (and we also have the Lq-version of this
estimate). We also introduce a new function v := u − G which also solves the linear
Stokes equation:

∂tv − Δxv + ∇xpv = −f(u) − (u,∇x)u, v
∣∣
t=0

= 0, div v = 0. (3.25)

Differentiating this equation with respect to τ and denoting w := ∂τv and pw :=
∂τpv, we arrive at

∂tw − Δxw + ∇xpw = ∂τf(u) − ∂τ (u,∇x)u − [Δx, ∂τ ]v

+ [∇x, ∂τ ]pv, w
∣∣
∂Ω

= 0, w
∣∣
t=0

= 0,

div w = [div, ∂τ ]v := H(t). (3.26)

Our plan is to apply the Lq-maximal regularity estimate to this linear non-
homogeneous Stokes equation. Indeed, from estimates (3.5) and (3.24), we only
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know that

‖H(t)‖W 1,q + ‖∂tH(t)‖W−1,q � C(‖u(t)‖W 2,q + ‖∂tu(t)‖Lq

+ ‖∂tG(t)‖Lq + ‖G(t)‖W 2,q ) (3.27)

and the Lq-norm in time from the left-hand side is under the control. However, this
is not enough in general to get the maximal Lq-regularity estimate (in general, we
need ∂tH to belong to Lq(0, t;Lq), see e. g. [9] for the counterexample). Fortunately,
the function H(t) in (3.26) has a special structure which allows us to overcome this
problem. Namely, it is not difficult to see that

H(t) = div W (t) + h(t), Wi := −v · ∇xτi, h := v · ∇x div τ.

Important is that W
∣∣
∂Ω

= 0. Therefore, we may subtract the function W from the
solution w and get a new linear Stokes problem for the function w̄ := w − W :

∂tw̄ − Δxw̄ + ∇xpw = ∂τf(u) − ∂τ (u,∇x)u − [Δx, ∂τ ]v

+ [∇x, ∂τ ]pv − gW := gw̄,

w
∣∣
∂Ω

= 0, w
∣∣
t=0

= 0, div w = h(t), (3.28)

where gW := ∂tW − ΔxW . Since both W and h are proportional to v, we have the
control of the Lq-norms of GW and ∂th from (3.5). Moreover, since

‖[Δx, ∂τ ]v‖Lq � C‖v‖W 2,q , ‖[∇x, ∂τ ]pv‖Lq � C‖pv‖W 1,q

and p = pG + pv, all terms with commutators are also controlled by (3.5). We actu-
ally need not to estimate ∂τf(u) since this term is presented in the left-hand side
of (3.23) and will be finally cancelled out. However, we still need to estimate the
most complicated term related with the inertial term in (3.28), but we prefer to
postpone this estimate and first complete the exclusion of pressure. To this end, we
apply the Lq-regularity estimate to problem (3.28), see [9] and get∫ t

0

e−β1(t−s)‖∇xpw(s)‖q
Lq ds

� C

∫ t

0

e−β1(t−s)
(‖gw̄(s)‖q

Lq + ‖h(s)‖q
W 1,q + ‖∂th(s)‖q

Lq

)
ds

� C

∫ t

0

e−β1(t−s) (‖∂τf(u(s))‖q
Lq + ‖∂τ (u(s),∇x)u(s))‖q

Lq ) ds

+ C

∫ t

0

e−β1(t−s)
(‖v(s)‖q

W 2,q + ‖∂tv(s)‖q
Lq + ‖∇xpv(s)‖q

Lq

)
ds. (3.29)

Using the obvious estimate∫ t

0

e−β1(t−s)

(∫ s

0

e−α(s−τ)|U(τ)|dτ

)
ds � C∗

∫ t

0

e−β1(t−s)|U(s)|ds, (3.30)
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where α > β1 > 0 and the constant C∗ depends only on α and β, together with
estimate (3.5) and the Lq-version of estimate (3.24), we arrive at∫ t

0

e−β1(t−s)‖∇xpw(s)‖q
Lq ds

� C

∫ t

0

e−β1(t−s) (‖∂τf(u(s))‖q
Lq + ‖∂τ (u(s),∇x)u(s))‖q

Lq ) ds

+ C‖u0‖Ve−β1t + C

(
1 +

∫ t

0

e−β1(t−s)‖g(s)‖q
Lq ds

)
. (3.31)

We are now ready to return to estimation of the last term in (3.23). Namely,

|(A(x)∇x(∂τp), u)| � |(∇x(∂τpG), A∗(x)u)| + |(A(x)∇xpw, u)||
� C

(‖u‖2
H1 + ‖∇xpG‖2

L2

)
+ ν‖∇xpw‖q

Lq + Cν‖u‖r+1
Lr+1 , (3.32)

where ν > 0 is arbitrary. Using the obtained estimates (3.31) and (3.24) together
with (3.30), we exclude the pressure from (3.23) and get

sup
s∈[0,t]

{
e−β(t−s)‖∂τu(s)‖2

}
+
∫ t

0

e−β(t−s)
(‖∇x(∂τu(s))‖2

L2

+(|u(s)|r−1, |∂τu(s)|2) + ‖∂τf(u(s))‖q
Lq

)
ds � Cν‖u0‖2

Ve−βt + Cν

+ Cν

∫ t

0

e−β(t−s)‖g(s)‖2
L2 ds + ν

∫ t

0

e−β(t−s)‖∂τ ((u(s),∇x)u(s))‖q
Lq ds. (3.33)

Moreover, the last term in this estimate can be further simplified. Namely,

∂τ (u,∇x)u = (∂τu,∇x)u + (u,∇x)∂τu + (u, [∇x, ∂τ ])u (3.34)

and

‖(u,∇x)∂τu‖q
Lq � ‖∇x(∂τu)‖q

L2‖u‖q

L
2q

2−q

� ν‖∇x(∂τu)‖2
L2 + Cν‖u‖

2q
2−q

L
2q

2−q

.

Since 2q
q−2 = 2(r+1)

r−1 < r + 1 if r > 3, this term is under the control. The third term
in the right-hand side of (3.34) can be estimated analogously using the fact that
the commutator [∇x, ∂τ ] is a first order differential operator. So, we only need to
estimate the first term. We will do this with the help of (2.29), the Hölder inequality
and the fact that 3q

2 � 2, namely,

‖ |∂τu|q · |∇xu|q‖L1 � ‖∂τu‖q
L3q/2‖u‖q

W 1,3q

� C‖∂τu‖q
L2‖∇x(∂τu)‖2q/3

L2 ‖Δxu‖q/3
W 2,q � ‖∇x(∂τu)‖2

L2

+ C‖∂τu‖
3q

3−q

L2 ‖u‖
q

3−q

W 2,q � ‖∇x(∂τu)‖2
L2 + C‖∂τu‖

5q−4
3−q

L2 ‖∂τu‖
2(2−q)
3−q

L2 ‖u‖
q

3−q

W 2,q .
(3.35)

Crucial for us is the fact that 5q−4
3−q < 2 for q < 10

7 and therefore, due to our assump-
tions, q < 4

3 < 10
7 , so the number m := 2 − 5q−4

3−q is always positive. In addition, the
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first term in the right-hand side of (3.35) is not dangerous since it is absorbed by
the corresponding term in the left hand side of (3.33), so we only need to estimate
the integral

I :=
∫ t

0

e−β(t−s)‖∂τu(s)‖
5q−4
3−q

L2 ‖∇xu(s)‖
2(2−q)
3−q

L2 ‖u(s)‖
q

3−q

W 2,q ds.

To this end, we use that the exponents 2(2−q)
3−q and q

3−q are such that, due to the
Young inequality

‖∇xu(s)‖
2(2−q)
3−q

L2 ‖u(s)‖
q

3−q

W 2,q � ‖∇xu(s)‖2
L2 + ‖u(s)‖q

W 2,q

and, therefore,

I � C

(
sup

s∈[0,t]

{
e−β(t−s)‖∂τu(s)‖2

L2

})1−m/2

×
∫ t

0

e−β(t−s)/2
(‖∇xu(s)‖2

L2 + ‖u(s)‖q
W 2,q

)
ds

� ν sup
s∈[0,t]

{
e−β(t−s)‖∂τu(s)‖2

L2

}
+ Cν

(∫ t

0

e−β(t−s)/2
(‖∇xu(s)‖2

L2 + ‖u(s)‖q
W 2,q

)
ds

) 2
m

. (3.36)

Inserting this estimate to the right-hand side of (3.33) and using estimate (3.5)
with α = β/2, we finally end up with the following estimate:

sup
s∈[0,t]

{
e−β(t−s)‖∂τu(s)‖2

}
+
∫ t

0

e−β(t−s)
(‖∇x(∂τu(s))‖2

L2

+(|u(s)|r−1, |∂τu(s)|2) + ‖∂τf(u(s))‖q
Lq

)
ds

� C

(
‖u0‖2

Ve−βt/2 + 1 +
∫ t

0

e−β(t−s)/2‖g(s)‖2
L2 ds

)m̃

, (3.37)

where m̃ := max{1, 2/m}. This finishes the boundary regularity estimate in
tangential directions.

Step 3. Key interpolation estimate. Namely, we start with the Gagliardo–Nirenberg
inequality:

‖u‖L∞ � C‖u‖1/4
Lr+1‖u‖3/4

W 1,3q ,

since 3
4 − 3

(
1

4(r+1) + 1
4q

)
= 0, see e.g. [25] or [2]. This inequality, together with

(2.29), give us

‖u‖2
L∞ � C‖u‖1/2

Lr+1‖u‖1/2
W 2,q‖∇x(∂τu)‖L2

� C(‖u‖r+1
Lr+1 + ‖u‖q

W 2,q + ‖∇x(∂τu)‖2
L2), (3.38)

The non-autonomous Navier–Stokes–Brinkman–Forchheimer equation 375

https://doi.org/10.1017/prm.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.87


where we have used that 1 = 1
2(r+1) + 1

2q + 1
2 . Using estimates (3.5) and (3.37), we

get the desired estimate∫ t

0

e−β(t−s)‖u(s)‖2
L∞ ds

� C

(
‖u0‖2

Ve−βt/2 +
∫ t

0

e−β(t−s)/2‖g(s)‖2
L2 ds

)m̃

. (3.39)

Step 4. Φ-energy estimate. Till that moment, we have nowhere used our extra
assumption that the nonlinearity f is gradient, but it is essentially used at this
step. Indeed, we now multiply equation (3.1) by ∂tu and integrate over x ∈ Ω. This
gives

d
dt

(
1
2
‖∇xu‖2

L2 + (F (u), 1) + L‖u‖2
L2

)
+

1
2
‖∂tu‖2

L2 = −1
2
‖∂tu‖2

L2

− ((u,∇x)u, ∂tu) + (g + 2Lu, ∂tu) � C(‖g‖2
L2 + ‖u‖2

L2)

+ C‖u‖2
L∞

(
1
2
‖∇xu‖2 + (F (u), 1) + L‖u‖2

L2

)
, (3.40)

where L is such that F (u) + L|u|2 � 0 (it exists due to assumption (3.4)). Note
that assumption (3.4) implies also that

κ2|u|r+1 − C2 � F (u) � κ1|u|r+1 + C1 (3.41)

for some positive constants κi and Ci. Therefore, estimate (3.39) allows us to apply
the Gronwall inequality to (3.40) and to get the following control:

‖u(t)‖2
H1 + ‖u(t)‖r+1

Lr+1 � CeC
∫ t
0 ‖u(s)‖2

L∞ ds

×
(
‖u(0)‖2

H1 + ‖u(0)‖r+1
Lr+1 +

∫ t

0

(‖u(s)‖2
L2 + ‖g(s)‖2

L2

)
ds

)
. (3.42)

We will use this estimate for 0 � t � 1 only since it is growing in time even if g(t)
is bounded and, therefore, is not convenient for study the attractors. Combining
(3.42) with (3.39) and (3.5), we arrive at the following estimate for t ∈ [0, 1]:

‖u(t)‖2
H1 +‖u(t)‖r+1

Lr+1 � Q

(
‖u(0)‖2

H1 +‖u(0)‖r+1
Lr+1 +

∫ t

0

‖g(s)‖2
L2 ds

)
(3.43)

for some monotone increasing function Q. For t � 1, we will use the following
smoothing estimate:

‖u(1)‖2
H1 +‖u(1)‖r+1

Lr+1 � Q

(
‖u(0)‖2

L2 +
∫ t

0

‖g(s)‖2
L2 ds

)
(3.44)
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for some new monotone function Q. This estimate is a standard corollary of (3.43)
and (3.5). Indeed, from (3.5), we know that

∫ 1

0

(‖u(t)‖2
H1 +‖u(t)‖r+1

Lr+1

)
dt � C

(
‖u0‖2

L2 + 1 +
∫ 1

0

‖g(t)‖2
L2 dt

)
.

Therefore, there exists t0 ∈ [0, 1] (depending on u) such that

‖u(t0)‖2
H1 +‖u(t0)‖r+1

Lr+1 � C

(
‖u0‖2

L2 + 1 +
∫ 1

0

‖g(t)‖2
L2 dt

)
.

Applying after that estimate (3.43) on the time interval t ∈ [t0, 1], we arrive at
(3.44). In turn, combining estimates (3.43) (on interval t ∈ [0, 1]) with estimate
(3.44) (which will give us the estimate of the H1 ∩ Lr+1-norm of u(t) through the
L2-norm of u(t − 1), t � 1) together with the dissipative estimate (3.5), we end up
with the desired estimates (3.13) and (3.14). The estimate for the L2-norm of ∂tu
in them follows immediately by integrating (3.40) in time.

Step 5. Φ-regularity of solutions. We recall that all previous estimates were derived
assuming that u(t) is a sufficiently smooth solution of (3.5), for instance, satisfying
(3.15), will be enough to justify all of them (here we used that H2 ⊂ C in 3D,
so all terms related with the nonlinearity are under the control). To get such a
regular solution, we approximate the external force g and the initial data u0 by
the sequences gn and un

0 of smooth functions. Then, as proved in [16], there exist
an L∞

loc(R+, H2) smooth solution un(t) of problem (3.5) where the initial data u0

and the external force g are replaced by un
0 and gn respectively. Moreover, since

f ∈ C1, it is easy to see that ∂tf(un) ∈ L2
loc(R+, L2) and, therefore, the standard

regularity result for the linear Stokes equation gives us that (3.15) are satisfied.
For this reason, the solutions un satisfy estimates (3.13) and (3.14) uniformly with
respect to n. Passing to the limit n → ∞, we see that the limit unique solution u(t)
of problem (3.1) also satisfies these estimates. Thus, theorem 3.3 is proved. �

The next corollary is gives us slightly stronger version of estimate (3.39). This
improved estimate will be used later for the attractors theory.

Corollary 3.4. Let the assumptions of theorem 3.3 hold. Then the solution u of
problem (3.1) satisfies the following estimate:

∫ t

t−1

‖∇xu(s)‖2
W 1,3q + ‖u(s)‖8/3

L∞ ds

� Q

(
‖u0‖2

Φe−βt/2 +
∫ t

0

e−β(t−s)/2‖g(s)‖2
L2 ds

)
(3.45)

for some monotone function Q and positive constant β.
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Proof. We rewrite equation (3.1) in the form of a stationary problem (2.1) at every
fixed time t, namely,

−Δxu + ∇xp + f(u) + Lu = g̃(t) :=

= g(t) − ∂tu(t) − (u(t),∇x)u(t) + Lu(t),

div u = 0, u
∣∣
∂Ω

= 0. (3.46)

Moreover, due to the proved theorem, the L2
loc(R+, L2)-norm of g̃ is under the con-

trol. For this reason, we may apply estimates (2.3) and (2.6) to this equation (recall
that the modified non-linearity f̃(u) := f(u) + Lu satisfies (2.2). Then, integrating
estimates (2.3) (in a power 2/q) and (2.6), we arrive at∫ t

t−1

‖u(s)‖2
W 2,q + ‖u(s)‖2

W 1,3q ds

� Q

(
‖u0‖2

Φe−βt/2 +
∫ t

0

e−β(t−s)/2‖g(s)‖2
L2 ds

)
. (3.47)

Thus, we have got the part of the desired estimate related with the W 1,3q-norm
of u. In order to get the remaining part, we improve estimate (3.38) using that we
now have estimate for the L2-norm in time for ‖u(t)‖W 2,q and also the L∞ norm
in time for ‖u(t)‖Lr+1 :

‖u‖8/3
L∞ � C‖u‖2/3

Lr+1‖u‖2/3
W 2,q‖∇x(∂τu)‖4/3

L2

� C‖u‖2/3
Lr+1(‖u‖2

W 2,q + ‖∇x(∂τu)‖2
L2), (3.48)

This estimate, together with (3.13) and (3.47) completes the desired estimate (3.45)
and finishes the proof of the corollary. �

Remark 3.5. In the case of periodic boundary conditions, we are able to multiply
equation (3.1) by Δxu and the pressure term will still disappear. This immediately
gives us the result of theorem 2.2 with linear function Q and also the control of the
integral of (f ′(u)∇xu, ∇xu). Then, from (2.7), we get the control of the Lq-norm in
time of ‖f(u)‖L3q . Combining this with the interpolation inequality (2.33) and the

L∞-control for ‖f(u(t))‖Lq , we arrive at the control of the L
4q

3(2−q)

loc (R+, L2)-norm of
f(u). In particular, if r � 5. then 4q

3(2−q) � 2 and we get the L2 space-time regularity
of f(u) which together with the L2-regularity estimate for the linear Stokes problem
gives us the maximal L2-regularity for equation (3.1), namely,

u, ∂tu,∇xp,Δxu, f(u) ∈ L2
loc(R+, L2(Ω). (3.49)

Unfortunately, we do not know how to get such a regularity for r > 5 (even
in the case of periodic boundary conditions). Instead, applying the anisotropic
L

4q
3(2−q) (L2)-regularity estimate for the linear Stokes equation, we have a weakened
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version of the regularity (3.49) for r > 5:

∂tu,Δxu ∈ L2
loc(R+, L2(Ω)), f(u),∇xp ∈ L

4q
3(2−q)

loc (R+, L2(Ω)). (3.50)

We now return to the case of Dirichlet boundary conditions. In this case, we do not
have the control over the term (f ′(u)∂nu, ∂nu), so the regularity (3.50) should be
further weakened. In this case, we need to use estimate (2.32) instead. Note that
for r � 5, we have the exponent s = 2 there and, therefore, using again that the
term with the Lq-norm of g comes from the estimate of ‖f(u(t))‖Lq and we have
the L∞-norm control for this term, we see that, for r � 5, we have the maximal
regularity (3.49) for the case of Dirichlet boundary conditions as well. In the case
r > 5, we have s = 4(2−q)

3q−2 and, therefore, the obtained regularity reads

∂tu ∈ L2
loc(R+, L2(Ω)), Δxu,∇xp, f(u) ∈ L

3q−2
2−q

loc (R+, L2(Ω)). (3.51)

Since 4q
3(2−q) > 3q−2

2−q for r > 5, the regularity (3.51) available for Dirichlet bound-
ary conditions and r > 5 is indeed weaker than in the case of periodic boundary
conditions. We do not know whether this is a drawback of the method or a real loss
of regularity for the case of Dirichlet boundary conditions.

We also note that the most difficult part in the proof of the key theorem 3.3 was
to estimate the Lq-norm of ∂τ ((u, ∇x)u). There is an alternative way to treat this
term, namely, we may rewrite the inertial term in the form of div(u ⊗ u) and then,
up to lower order terms, we will need to estimate div(u ⊗ ∂τu + ∂τu ⊗ u). Since we
have the term (|u|r−1∂τu, ∂τu) in the right-hand side of (3.22), the L2

loc(R+, H−1)-
norm of ∂τ ((u, ∇x)u) is under the control. In order to complete the estimate in this
way, we need the maximal regularity for the non-stationary Stokes equation in H−1.
Unfortunately, in contrast to the stationary case, this maximal regularity fails in
general and we need some extra assumptions on the right-hand side in order to
restore it. It would be interesting to check whether or not the inertial term satisfies
these extra assumptions.

We finally note that the function Q in the key estimate (3.13) has an exponential
growth rate (Q(z) ∼ eCzm̃

), which somehow indicates that the nonlinearities in the
problem (3.1) are critical for all r > 3. Since there is no such a criticality for the
case of periodic boundary conditions, we expect that this also may be the drawback
of the method.

4. The higher energy identity

The aim of this section is to verify the H1-energy equality, which can be formally
obtained by multiplying equation (3.1) by ∂tu and which is the key technical tool
for verifying the asymptotic compactness of the dynamical processes associated
with this equation. The problem here is that the proved regularity of a solution
does not allow to interpret the terms (Δxu, ∂tu) and (f(u), ∂tu) in the sense of
distributions, only the inner product with their difference (Δxu − f(u) −∇xp, ∂tu)
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is well-defined. Therefore, we need some accuracy with verifying the identity

d
dt

E(u(t)) = −(∂tu(t)−(u(t),∇x)u(t) + g, ∂tu(t)) := (∂tu(t),Hu(t)),

E(u) :=
1
2
‖∇xu‖2

L2 + (F (u), 1). (4.1)

Following [29], we use the convexity arguments to verify (4.1).

Theorem 4.1. Let the assumptions of theorem 3.3 hold and let u(t) be the solution
of (3.1). Then the function t → E(u(t)) is absolutely continuous and the identity
(3.5) holds for almost all t ∈ R+ as well as in the sense of distributions.

Proof. Note first of all that, without loss of generality, we may assume that
f ′(u) � 0, so F (u) is convex. We use the following identities, which can be verified
by straightforward computations:

− (Δxu(t), u(t + h) − u(t)) +
1
2
‖∇xu(t + h) −∇xu(t)‖2

L2

=
1
2
(‖∇xu(t + h)‖2

L2 − ‖∇xu(t)‖2
L2

)
= −(Δxu(t + h), u(t + h) − u(t)) − 1

2
‖∇xu(t + h) −∇xu(t)‖2

L2 (4.2)

and

(f(u(t + h)), u(t + h) − u(t)))

+
∫ 1

0

(f ′(su(t + h) + (1 − s)u(t))(u(t + h) − u(t), u(t + h) − u(t)) ds

= (F (u(t + h)), 1) − (F (u(t)), 1)

= (f(u(t)), u(t + h) − u(t)))

−
∫ 1

0

(f ′(su(t + h) + (1 − s)u(t))(u(t + h) − u(t), u(t + h) − u(t)) ds. (4.3)

Note that all terms in (4.2) and (4.3) make sense as functions from L1
loc(R+) and

these identities and the regularity of a solution u(t) is enough to justify them.
Taking a sum of these two identities and using that f ′(u) � 0, we end up with the
following two-sided inequality:

(−Δxu(t + h) + f(u(t + h)), u(t + h) − u(t))

� E(u(t + h)) − E(u(t)) � (−Δxu(t) + f(u(t)), u(t + h) − u(t)). (4.4)
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Inserting the expression for −Δxu + f(u) from (3.1) to (4.4) and integrating over
t ∈ [S, T ], we arrive at

1
h

∫ T

S

(Hu(t + h), u(t + h) − u(t)) dt

� 1
h

∫ T+h

T

E(u(t)) dt − 1
h

∫ S+h

S

E(u(t)) dt � 1
h

∫ T

S

(Hu(t), u(t + h) − u(t)) dt.

(4.5)

We know that Hu ∈ L2
loc(R+, L2), E(u) ∈ L1

loc(R+) and u ∈ W 1,2(R+, L2), there-
fore, we may pass to the limit h → 0 in (4.5) and get that, for almost all S, T ∈ R+,
S � T , we have the integral identity

E(u(T )) − E(u(S)) =
∫ T

S

(Hu(t), ∂tu(t)) dt. (4.6)

To finish the proof of the theorem, we need to remove the condition that (4.6) holds
for almost all S � T only. To this end, let us assume that the energy inequality

E(u(T )) − E(u(S)) �
∫ T

S

(Hu(t), ∂tu(t)) dt. (4.7)

is already verified for all 0 � S < T . We recall that u(t) is weakly continuous as a
function of time with values in Φ, therefore the values of E(u(t)) are well-defined
for all t ∈ R+. Moreover, since the function u → E(u) is convex, we have

E(u(t)) � lim inf
s→t

E(u(s)) (4.8)

for all t ∈ R+. In particular, this property, together with (4.7) imply that the func-
tion t → E(u(t)) is continuous from the right for all t ∈ R+. In turn, this ensures
us that the energy equality (4.6) holds for all 0 � S < T . Indeed, since (4.6) holds
almost everywhere, we may find sequences Sn → S, Sn � S, and Tn → T , Tn � T
such that (4.6) holds for Sn and Tn for all n. Passing to the limit n → ∞, we see
that it holds for S and T as well. This finishes the proof of the theorem since the
energy equality (4.6), which holds for all S and T is equivalent to the absolute
continuity of the function t → E(u(t)) and equality (4.1).

Thus, we only need to verify the energy inequality (4.7). Moreover, due to the
uniqueness of a solution for problem (3.1), it is sufficient to verify it for S = 0 only
(the general case will follow just by replacing the initial time t = 0 by t = S). To do
this, we approximate the initial data u0 ∈ Φ and the external force g ∈ L2

loc(R+, L2)
by smooth functions un

0 and gn respectively. Let un(t) be the corresponding solu-
tions of (3.1). Then, analogously to the end of the proof of theorem 3.3, on the one
hand, the solutions un(t) ∈ Cloc(R+, H2) and therefore, the energy equality (4.6)
holds for them for every T � 0, i.e.

E(un(T )) − E(un(0)) =
∫ T

0

(Hun
(t), ∂tun(t)) dt. (4.9)

On the other hand, the solutions un satisfy the key estimates obtained in § 3
uniformly with respect to n. These estimates guarantee that, in particular, un(t) →
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u(t) weakly in Φ for all t � 0 and, by the choice of the initial data, we have the
strong convergence at t = 0. Therefore, without loss of generality we have

E(u(0)) = lim
n→∞E(un(0)), E(u(t)) � lim

n→∞E(un(t))

for all t ∈ R. In order to pass to the limit in the term containing Hun
, we note that

we also know that ∂tun → ∂tu weakly in L2
loc(R+, L2) and, therefore,∫ T

S

‖∂tu(t)‖2
L2 dt � lim

n→∞

∫ T

S

‖∂tun(t)‖2
L2 dt.

Taking into account that gn → g strongly in L2
loc(R+, L2), it only remains to verify

that

(un,∇x)un → (u,∇x)u strongly in L2
loc(R+, L2). (4.10)

Indeed, due to (3.45), the functions un are uniformly bounded in the space
L2

loc(R+, W 1,3q) and their time derivatives are uniformly bounded in the space
L2

loc(R+, L2) (due to theorem 3.3). Therefore, without loss of generality, we have the
strong convergence of un in L2

loc(R+, W 1−ε,3q) for all ε > 0. Since W 1−ε,3q ⊂ L∞

if ε > 0 is small enough, we have verified that un → u strongly in L2
loc(R+, L∞).

Using also that un is bounded in L
8/3
loc (R+, L∞) (again by (3.45)), we conclude that

un → u, strongly in Lr1
loc(R+, L∞) (4.11)

for all 2 < r1 < 8
3 . We now turn to the sequence ∇xun. According to estimate

(3.5) and the compactness lemma, we conclude that ∇xun → ∇xu strongly in
Lq

loc(R+, W 1−ε,q) for all ε > 0. Combining this result with the uniform bound-
edness of ∇xun in L2

loc(R+, L3q) (due to (3.45)) and using that 3q > 2, we end up
with the strong convergence

∇xun → ∇xu, strongly in Lr2
loc(R+, L2) (4.12)

for all 1 < r2 < 2. Moreover, combining this result with the uniform boundedness
of the sequence ∇xun in L∞(R+, L2), we see that the convergence (4.12) holds
for all 1 � r2 < ∞. Fixing finally the exponents r1 and r2 in such a way that
1
r1

+ 1
r2

= 2 and using the convergences (4.11) and (4.12), we end up with the
desired convergence (4.10). This convergence allows us to pass to the limit n → ∞
in the energy equality (4.9) and get the desired inequality (4.7). Thus, the theorem
is proved. �

We conclude this section by verifying an interesting fact about the solution u(t)
of (3.1), which is also based on the convexity arguments and which is important for
what follows in the next section.

Corollary 4.2. Let the assumptions of theorem 3.3 hold. Then the solution u(t) of
the Brinkmann–Forchheimer equation is continuous in time in the strong topology
of Φ.
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Proof. This fact is a standard corollary of the uniform convexity of the function
u → E(u) as the function from Φ to R (without loss of generality, we assume that
f ′(u) � κ|u|r−1 which gives us the desired uniform convexity) and the proved energy
equality. Namely, let tn → t, tn � 0, be an arbitrary sequence of times. Then, due
to the weak continuity of u(t) and the energy equality, we have

E(u(t)) = lim
n→∞E(u(tn)) and u(tn) ⇁ u(t)in Φ. (4.13)

Since u → E(u) is uniformly convex, the above convergence imply that u(tn) → u(t)
strongly in Φ. Although this fact seems to be well-known, see e.g. [40, 43], for the
convenience of the reader, we present its proof below.

For the quadratic part of the functional E(u), we will use the following obvious
identity:

‖∇xv‖2
L2 − ‖∇xu‖2

L2 = 2(∇xu,∇xv −∇xu) + ‖∇xu −∇xv‖2
L2 .

The analogue of this identity for the nonlinearity F follows from the Taylor
expansions near the point u, namely,

F (v) − F (u) = f(u).(v − u) +
1
2

∫ 1

0

(1 − s)f ′(sv + (1 − s)u) ds(v − u).(v − u).

It is not difficult to verify that∫ 1

0

|su + (1 − s)v|r−1 ds � α(|u|r−1 + |v|r−1) � α1|u − v|r−1

for some positive α and α1. Therefore, putting u = u(x), v = v(x) in the above
Taylor’s expansion of the nonlinearity F and integrating it with respect to x, we
get the inequality

(F (v), 1) − (F (u), 1) � (f(u), v − u) +
κα1

2
‖u − v‖r+1

Lr+1 ,

which holds for every u, v ∈ Lr+1(Ω). Combining this inequality with the identity
for the quadratic part of Eu mentioned above, we end up with the key inequality

E(v) − E(u) � (∇xu,∇xv −∇xu) + (f(u), v − u)

+
1
2
‖∇xu −∇xv‖2

L2 +
κα2

2
‖u − v‖r+1

Lr+1

� (∇xu,∇xv −∇xu) + (f(u), v − u) + α3‖u − v‖2
Φ, (4.14)

where α3 is a positive constant. This inequality gives us the uniform convexity of
E(u) as well as the desired continuity of u(t). Indeed, let us take u = u(t) and
v = u(tn) in this inequality. Then, we have

‖u(tn) − u(t)‖2
Φ � α−1

3 (E(u(tn)) − E(u(t))

− (∇xu(t),∇xu(tn) −∇xu(t)) − (f(u(t)), u(tn) − u(t))) . (4.15)

It only remains to note that the convergence (4.13) implies that the right hand
side of (4.15) tends to zero as n → ∞, therefore, u(tn) → u(t) strongly in Φ. This
finishes the proof of the corollary. �
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5. Attractors

In this section, we will study the long-time behaviour of solutions of problem (3.1).
Since the considered equation depends explicitly on time, we will construct a uni-
form attractor for the cocycle associated with (3.1). First of all, in order to get
the dissipativity, we assume that the right-hand side g(t) is in a sense bounded as
t → ∞, namely, we assume that

‖g‖L2
b

:= sup
h∈R

‖g‖L2((h,h+1)×Ω) < ∞. (5.1)

Following the general theory, we introduce the hull H(g) via

H(g) :=
[
T (h)g, h ∈ R

]
L2,w

loc (R,L2(Ω))

, (5.2)

where (T (h)g) := g(t + h) is a group of temporal shifts and L2,w
loc (R, L2(Ω)) means

the space L2
loc(R, L2(Ω)) endowed with the weak topology and [·]W stands for the

closure in the space W . Then, due to assumption (5.1) and the Banach–Alaoglu
theorem, the hull H(g) is compact in L2,w

loc (R, L2(Ω)) and, obviously, is shift
invariant

T (h)H(g) = H(g), h ∈ R. (5.3)

From now on we endow the hull H(g) with the weak topology of the space
L2

loc(R, L2(Ω)), so H(g) is a compact metrizable topological space. In order to
construct a cocycle associated with problem (3.1), we will consider a family of sim-
ilar problems with all right-hand sides ξ(t) belonging to the hull H(g) of the initial
right-hand side g(t), namely,

∂tu + (u,∇x)u + ∇xp + f(u) = Δxu + ξ(t), div u = 0, u
∣∣
t=0

= u0, (5.4)

where u0 ∈ Φ and ξ ∈ H(g). Let Sξ(t) : Φ → Φ be the solution operator of this
problem, i.e.

Sξ(t)u0 := u(t),

where u(t) is a unique solution of problem (5.4), which is well-defined due to theorem
3.3. Then, the operators Sξ(t) generate a cocycle in the phase space Φ:

Sξ(t1 + t2) = ST (t2)ξ(t1) ◦ Sξ(t2), ξ ∈ H(g), t1, t2 � 0, (5.5)

which is a natural generalization of a solution semigroup to the non-autonomous
case (see [3, 7, 8, 18, 37, 42] and references therein) and which is our main object
to study in this section. Recall also that the cocycle property (5.5) allows us to
reduce the considered cocycle to a semigroup, acting in the extended phase space
F := Φ ×H(g) via

S(t) : F → F, S(t)(u0, ξ) := (Sξ(t)u0, T (t)ξ), (5.6)

so we may reduce the study of the non-autonomous dynamical system generated by
cocycle Sξ(t) to the autonomous dynamical system acting on the extended phase
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space F. This naturally leads to the uniform attractor. We recall below the basic
concepts of the attractor theory adapted to our case.

Definition 5.1. A set B ⊂ Φ is bounded if supu0∈B ‖u0‖Φ < ∞. A set B ⊂ F is
bounded if Π1B is bounded in Φ. Here and below Π1 : F → Φ is the projector to the
first component of the Cartesian product Φ ×H(g).

A set B is a (uniformly) absorbing set for the cocycle Sξ(t) if, for any bounded
set B ⊂ Φ, there is a time moment T = T (B) such that

Sξ(t)B ⊂ B, ∀ ξ ∈ H(g), ∀ t � T.

Analogously, a set B is a uniformly attracting set for the cocycle Sξ(t) in Φ endowed
with a suitable topology if, for any bounded set B ⊂ Φ and any neighbourhood O(B),
there exists T = T (B, O) such that

Sξ(t)B ⊂ O(B), ∀ ξ ∈ H(g), ∀ t � T.

A set Aun is a uniform attractor for the cocycle Sξ(t) if

(1) The set Aun is compact in Φ;

(2) The set Aun is an attracting set for the cocycle Sξ(t);

(3) The set Aun is a minimal (by inclusion) set which satisfies properties 1)
and 2).

We will consider two choices of the topology in Φ, namely, weak and strong topolo-
gies. The corresponding attractors Aw

un and As
un will be referred as weak and strong

uniform attractors respectively.

In order to describe the structure of the uniform attractor, we need one more
standard definition.

Definition 5.2. A function u : R → Φ is a complete bounded trajectory of the
cocycle Sξ(t) which corresponds to the symbol ξ ∈ H(g) if supt∈R ‖u(t)‖Φ < ∞ and

u(t + h) = ST (t)ξ(h)u(t), t ∈ R, h ∈ R+. (5.7)

The set of all bounded trajectories of the cocycle Sξ(t) which correspond to the
symbol ξ ∈ H(g) is denoted by Kξ. It is not difficult to see that a bounded Φ-valued
function u(t), t ∈ R, belongs to Kξ if and only if it solves equation (5.4) for all
t ∈ R, so the set Kξ ⊂ C(R, Φ) is nothing else than the set of all complete bounded
solutions of problem (5.4) which correspond to the right-hand side ξ ∈ H(g).

We will use the following standard criterion to verify the existence of a uniform
attractor.

Proposition 5.3. Let Sξ(t) : Φ → Φ, ξ ∈ H(g) be a cocycle in the phase space Φ
and let B be a bounded uniformly absorbing set for Sξ(t). Then, this cocycle pos-
sesses a weak uniform attractor Aw

un. If, in addition, the map (u0, ξ) → Sξ(t)u0
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is continuous in a weak topology for any fixed t � 0, then the attractor Aw
un is

generated by all complete bounded trajectories of the considered cocycle, namely,

Aw
un = ∪ξ∈H(g)Kξ

∣∣
t=0

. (5.8)

Finally, if the uniform absorbing set is compact in the strong topology of Φ, then the
strong uniform attractor As

un exists and coincides with the weak uniform attractor
Aw

un:

Aun := As
un = Aw

un. (5.9)

The proof of this proposition in a more general setting can be found in [8], see
also [42]. We mention here that since Φ is a reflexive Banach space, bounded sets
in it are precompact in a weak topology, so if we are given a bounded absorb-
ing/attracting set, its closed convex hull will be a compact absorbing/attracting
set, so the standard asymptotic compactness condition is satisfied. We also men-
tion that the uniform attractor Aun is related with the global attractor A of the
extended semigroup S(t) via

Aun = Π1A.

We are now ready to study the cocycle generated by the Navier–Stokes–Brinkmann–
Forchheimer equation (5.4). We start with the case of the weak uniform attractor.

Theorem 5.4. Let the assumptions of theorem 3.3 hold and let, in addition,
assumption (5.1) be satisfied. Then the cocycle Sξ(t) : Φ → Φ possesses a weak uni-
form attractor Aw

un in the phase space Φ and this attractor is generated by all
complete bounded trajectories, i.e. the representation formula (5.8) holds.

Proof. The statement of the theorem is an almost immediate corollary of theorem
3.3. Indeed, since

‖ξ‖L2
b(R,L2(Ω)) � ‖g‖L2

b(R,L2(Ω)), ∀ξ ∈ H(g),

estimate (3.13) implies that

‖Sξ(t)u0‖Φ � Q(‖u0‖Φ)e−βt + Q(‖g‖L2
b
) (5.10)

for some monotone increasing function Q and a positive constant β which are
independent of u0 ∈ Φ and t ∈ R+. Estimate (5.10) guarantees that the set

B := {u0 ∈ Φ, ‖u0‖Φ � 2Q(‖g‖L2
b
)} (5.11)

is a bounded uniformly attracting set for the cocycle Sξ(t). Therefore, the existence
of a weak uniform attractor Aw

un follows from proposition 5.3. The weak continuity
of the maps (u0, ξ) → Sξ(t)u0 for every fixed t can be checked in a standard way
(we leave the rigorous proof of this fact to the reader). This gives the representation
formula (5.8) and finishes the proof of the theorem. �
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Remark 5.5. Recall that the cocycle Sξ(t) generates a family of dynamical
processes Uξ(t, τ) : Φ → Φ, t � τ ∈ R, ξ ∈ H(g), via

Uξ(t, τ) := ST (τ)ξ(t − τ).

Then the cocycle property (5.5) transforms to

Uξ(t, τ) = Uξ(t, s) ◦ Uξ(s, τ), t � s � τ ∈ R, ξ ∈ H(g).

Moreover, the uniform attractor Aw
un can be defined using the dynamical process

Ug(t, τ) which corresponds to the initial external force g only (without introduc-
ing the hull H(g) and the cocycle Sξ(t)). Namely, the set Aw

un is a weak uniform
attractor for the process Ug(t, τ) if

(1) Aw
un is a compact set in Φ endowed with the weak topology;

(2) It possesses a uniform attracting property, i.e. for every bounded set B and
every neighbourhood O(Aun) (in a weak topology of Φ), there exists T =
T (O, B) such that

Ug(t, τ)B ⊂ O(Aw
un), ift − τ � T ;

(3) Aw
un is a minimal (by inclusion) set which satisfies properties (1) and (2), see

[8, 42] for the proof of the equivalence of these definitions. However, if we
want to present the attractor as a union of complete bounded trajectories,
we need to introduce the hull H(g) and the cocycle Sξ(t). For this reason, we
prefer to introduce the cocycle formalism from the very beginning

Our next aim is to verify that, under some natural extra assumptions, the con-
structed weak uniform attractor Aw

un is actually a strong one. We first note that,
if the right-hand side g ∈ L2

b(R, L2(Ω)) only, we cannot expect the existence of
a strong uniform attractor in H1(Ω), the corresponding counterexamples can be
constructed even on the level of a linear Stokes equation, see [41], so some extra
assumptions on g are really necessary. Following the general theory developed in [8],
see also references therein, the straightforward assumption which can be posed is
the assumption that g is translation compact in L2

b(R, L2(Ω)) (i.e. that the hull
H(g) is compact in the strong topology of L2

loc(R, L2(Ω))). This assumption covers
the cases when g is periodic, quasi or almost periodic in time or g(t) is a hetero-
clinic orbit between two stationary right-hand sides or g(t) possesses some extra
regularity in both space and time, see [8] for more examples of translation-compact
external forces. However, as it was pointed out in [21, 22, 41], the translation com-
pactness assumption can be essentially relaxed. For instance, the extra regularity
of g(t) only in space (e.g. g ∈ L2

b(R, H1(Ω))) or in time (e.g. g ∈ H1
b (R, L2(Ω)))

is often enough to get the strong uniform attractor. We introduce below the most
general (to the best of our knowledge) class of external forces, for which we may
expect the existence of a strong uniform attractor (at least in the case of parabolic
PDEs) and verify that this is indeed true for the case of our problem (5.4).
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Definition 5.6. A function g ∈ L2
b(R, L2(Ω)) is weakly normal if for every ε > 0

there exists a finite-dimensional subspace Hε ⊂ L2(Ω) and a splitting

g = g̃ε + ḡε

such that g̃ε ∈ L2
b(R, Hε) and the function ḡε satisfies the condition

lim sup
s→0

sup
t∈R

∫ t+s

t

‖ḡε(τ)‖2
L2 dτ � ε. (5.12)

Important for us that the finite-dimensional spaces Hε can be chosen in such a
way that Hε ⊂ C∞

0 (Ω), see [41] for more details. Recall also that the function g ∈
L2

b(R, L2(Ω)) is called normal if

lim
s→0

sup
t∈R

∫ t+s

t

‖g(τ)‖2
L2 dτ = 0. (5.13)

It is worth mentioning as well that if g is weakly normal, then any ξ ∈ H(g) is also
weakly normal, namely, for any ξ ∈ H(g), there exist ξ̃ε ∈ H(g̃ε) and ξ̄ε ∈ H(ḡε)
such that ξ = ξ̃ε + ξ̄ε and the functions ξ̄ε satisfy (5.12) uniformly with respect to
ξ ∈ H(g).

The next theorem can be considered as the main result of this section.

Theorem 5.7. Let the assumptions of theorem 5.4 hold and let also the right-hand
side g ∈ L2

b(R, L2(Ω)) be weakly normal. Then the cocycle Sξ(t) associated with
problem (5.4) possesses a strong uniform attractor As

un which coincides with the
weak uniform attractor constructed above.

Proof. According to proposition 5.3, we only need to find a (pre)compact uniformly
absorbing set for the cocycle Sξ(t). We claim that the set

B1 := ∪ξ∈H(g)Sξ(1)B, (5.14)

where B is defined via (5.11) is a desired absorbing set. Indeed, due to estimate
(5.10) this set is absorbing and bounded, so we only need to check its compactness.
Let vn ∈ B1 is an arbitrary sequence. Then there exists a sequence of the initial
data un

0 ∈ B and a sequence of right-hand sides ξn ∈ H(g) such that vn = un(1),
where un(t) := Sξn

un
0 is the corresponding sequence of solutions of problem (5.4).

Since B and H(g) are compact in a weak topology, we may assume without loss of
generality that

un
0 ⇁ u0 and ξn ⇁ ξ.

Moreover, since the maps (u0, ξ) → Sξ(t)u0 are continuous in a weak topology
for every fixed t � 0, we conclude that un(t) ⇁ u(t) in Φ for every fixed t, where
u(t) := Sξ(t)u0. In particular, vn ⇁ u(1). Therefore, we only need to verify that
this convergent is actually strong.

Arguing as in the proof of corollary 4.2, we see that we only need to verify that
E(un(1)) → E(u(1)). In turn, in order to verify this convergence, we will use the
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energy identity (4.1) together with the trick suggested in [41]. In order to avoid
technicalities, we first give the proof for the particular case where g is normal and
after that indicate briefly the changes which should be made to cover the general
case where g is only weakly normal.

Namely, we multiply equation (5.4) for solutions un by Nun, where N is a big
positive constant, integrate over x ∈ Ω and take a sum with (4.1) for un. This gives
the following identity:

d
dt

E(un(t)) + 2NE(un(t))

+ ‖∂tun(t)‖2
L2 + N(f(un).un − 2F (un), 1)

+ N(un(t), ∂tun(t)) = (ξn, ∂tun + Nun) − ((un,∇x)un, ∂tun). (5.15)

Multiplying this identity by t and integrating over t ∈ [0, 1], we arrive at

E(un(1)) +
∫ 1

0

te−2N(1−t)‖∂tun(t)‖2
L2 dt

+ N

∫ 1

0

te−2N(1−t)(f(un(t)).un(t) − 2F (un(t)), 1) dt

=
∫ 1

0

e−2N(1−t)E(un(t)) dt + 2
∫ 1

0

te−2N(1−t)((un(t),∇x)un(t), ∂tun(t)) dt

+ N

∫ 1

0

e−2N(1−t)t(ξn(t), un(t)) dt +
∫ 1

0

te−2N(1−t)(ξn(t), ∂tun(t)) dt

− N

∫ 1

0

te−2N(1−t)(∂tun(t), un(t)) dt. (5.16)

We want to pass to the limit n → ∞ in this identity. To this end, we note that by
convexity arguments∫ 1

0

te−2N(1−t)‖∂tu(t)‖2
L2 dt � lim inf

n→∞

∫ 1

0

te−2N(1−t)‖∂tun(t)‖2
L2 dt.

To pass to the limit in the other terms, we recall that, due to estimates (3.5) and
(3.45), the sequence un is bounded in the space

L8/3(0, 1;L∞(Ω)) ∩ L2(0, 1;W 1.3q(Ω)) ∩ H1(0, 1;L2(Ω)) ∩ L∞(0, 1;Lr+1(Ω))

and therefore, since this space is compactly embedded to L2(0, 1;W 1,2(Ω)) ∩
Lr+1(0, 1;Lr+1(Ω)), we have the strong convergence un → u in this space. This
allows us to pass to the limit in the last term in the left-hand side of (5.16)
as well as in the first and the last terms in the right-hand side there. More-
over, arguing analogously to the proof of theorem 4.1 (see (4.10)), we prove that
(un, ∇x)un → (u, ∇x)u strongly in L2(0, 1;L2(Ω)) and this allows us to pass to
the limit in the second term in the right-hand side of (5.16). The third term is
obvious since un → u strongly in L2(0, 1;L2(Ω)) and the only problem is the last
term in the right-hand side. In contrast to the other terms, we have here only weak
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convergence ξn → ξ and ∂tun → ∂tu in L2(0, 1;L2(Ω)) and cannot use the convex-
ity arguments. Instead, we prove that this term is small when N is large uniformly
with respect to n and this will be enough for our purposes. �

Lemma 5.8. Under the above assumptions, the following convergence holds:

lim
N→∞

sup
n∈N

∫ 1

0

te−2N(1−t)|(ξn(t), ∂tun(t))|dt = 0. (5.17)

Proof. Indeed, since ∂tun are uniformly bounded in the space L2(0, 1;L2(Ω)), due
to Cauchy-Schwarz inequality, we have∫ 1

0

te−2N(1−t)|(ξn(t), ∂tun(t))|dt � C

(∫ 1

0

te−2N(1−t)‖ξn(t)‖2
L2 dt

)1/2

.

It only remains to recall that assumption (5.13) implies that

lim
N→∞

sup
t∈R

sup
ξ∈H(g)

∫ t

−∞
e−2N(t−s)‖ξ(s)‖2

L2 ds = 0, (5.18)

see [41, 42] for the details. This finishes the proof of the lemma. �

We now ready to finish the proof of the theorem for the case where g is normal.
Let ε > 0 be arbitrary. Then, due to the lemma, we may fix N = N(ε) in such a
way that the last term in the right-hand side of (5.16) will be less than ε. Passing
to the limit n → ∞ in (5.16) then gives

lim sup
n→∞

E(un(1)) +
∫ 1

0

te−2N(1−t)‖∂tu(t)‖2
L2 dt

+ N

∫ 1

0

te−2N(1−t)(f(u(t)).u(t) − 2F (u(t)), 1) dt

�
∫ 1

0

e−2N(1−t)E(u(t)) dt +
∫ 1

0

te−2N(1−t)((u(t),∇x)u(t), ∂tu(t)) dt

− N

∫ 1

0

te−2N(1−t)(∂tu(t), u(t)) dt + N

∫ 1

0

e−2N(1−t)t(ξ(t), u(t)) dt + ε. (5.19)

Comparing this inequality with the identity (5.16) for the limit solution u(t) and
using the lemma again, we end up with the inequality

lim sup
n→∞

E(un(1)) � E(u(1)) + 2ε.

Since ε > 0 is arbitrary, passing to the limit ε → 0 gives us the inequality

lim sup
n→∞

E(un(1)) � E(u(1)). (5.20)

The opposite inequality follows from the weak convergence un(1) → u(1) in Φ
and the convexity arguments. Thus, we have proved the convergence E(un(1)) →
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E(u(1)) which gives us the desired strong convergence un(1) → u(1) in Φ and
finishes the proof of the theorem in the case of normal external forces g.

Let us assume now that g is weakly normal. In this case, the external forces
ξn can be split in two parts ξ̃n,ε ∈ L2

b(R, Hε), where ε > 0 is arbitrary and Hε is
smooth and finite-dimensional and ξ̄n,ε which satisfy (5.12) uniformly with respect
to n. The analogue of (5.18) now reads

lim sup
N→∞

sup
t∈R

sup
ξ∈H(g)

∫ t

−∞
e−2N(t−s)‖ξ̄ε(s)‖2

L2 ds � Cε, (5.21)

where C is independent of ξ ∈ H(g), see [41]. Therefore, as in the case of normal
external forces, the term containing (ξn,ε(s), ∂tun(s)) can be made arbitrarily small
by choosing N and ε big and small enough respectively. In contrast to this, the term
containing (ξ̃n,ε(s), ∂tun(s)) cannot in general be made small and we should treat
it in a different way. Namely, we introduce a corrector vn,ε(t) as a solution of the
following linear Stokes problem

∂tvn,ε + ∇xqn = Δxvn,ε + ξ̃n,ε(t), div vn,ε = 0, vn,ε

∣∣
t=0

= 0. (5.22)

Then, since ξ̃n,ε are uniformly with respect to n smooth, using the anisotropic
L2(0, 1;Ls(Ω))-maximal regularity estimate for the solutions of the Stokes equation,
for every finite s, we have the uniform estimate

‖vn,ε‖C(0,1;W 1+δ,2(Ω)) + ‖∂tvn,ε‖L2(0,1;Ls(Ω)) � Cε,s. (5.23)

This estimate shows that, without loss of generality, we may assume that

vn,ε → vε in C(0, 1;Φ) and ∂tvn,ε ⇁ ∂tvε in L2(0, 1;Ls(Ω)). (5.24)

Let wn := un − vn,ε. Then this function solves

∂twn + (un,∇x)un + ∇xpn + f(un) = Δxwn + ξ̄n,ε, div wn = 0. (5.25)

We write the analogue of (5.16) for this equation by multiplying it by t(∂twn +
Nwn) and integrating over x ∈ Ω and time. Due to the presence of the corrector
vn,ε, we will have several extra terms in this equality, namely, the energy E(un(t))
will be replaced by

Ẽ(un(t)) :=
1
2
‖∇xwn(t)‖2

L2 + (F (un(t), 1).

From the nonlinearity f , we will have an extra term which contains

(f(un(t)), ∂tvn,ε(t) + Nvn,ε(t)).

This term is not dangerous since from (5.24) we have the weak convergence of
∂tvn,ε + Nvn,ε in L2(0, 1;Ls(Ω)) for all s < ∞ and, arguing as above, we may
check that f(un) → f(u) strongly in L2(0, 1;L1+δ(Ω)) for sufficiently small posi-
tive δ. We will also have the term containing (un, ∇x)un, ∂tvn,ε + Nvn,ε) which
is not dangerous as well since we have the strong convergence of (un, ∇x)un in
L2(0, 1;L2(Ω)).
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The main advantage of this modified energy identity is that the bad term con-
taining (ξ̃n,ε, ∂tun) disappears and we may argue as in the case of normal external
forces and verify that

lim sup
n→∞

Ẽ(un(1)) � Ẽ(u(1)) + Cε. (5.26)

Moreover, since vn,ε(1) → vε(1) strongly in Φ, we may replace Ẽ(un(1)) by E(un(1))
in (5.26). Finally, since E(un(1)) is independent of ε, we may pass to the limit ε → 0
and end up with inequality (5.20) in the case of weakly normal external forces as
well. Then, as before, we derive the opposite inequality by the convexity arguments
and finally establish that un(1) → u(1) strongly in Φ. This finishes the proof of the
theorem.
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