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SUMMABY

A method is introduced that allows the simplification of the calculation
of equilibrium solutions in multiple locus genetic models of a single
infinite population. The method can be applied when the number of
different fitnesses is equal to or less than one more than the number of
independent allelic frequencies. The results are in terms of relationships -
the symmetry constraints - between the gametic frequencies that must
be satisfied at any boundary or internal equilibrium. The symmetry con-
straints are independent of the fitness values and of the recombination
fractions. This can lead to some understanding of the equilibrium
structure of a model when the full equilibrium solution is not obtained
and reduces the number of independent variables in the calculations of
the full equilibrium solutions. Examples of two locus models with two
alleles at each locus and with two alleles at one locus and three at the
other are discussed.

The inherent complexity of multiple locus genetic models that is imposed by
mendelian inheritance precludes their complete description by a useful and general
analytic theory. Only when many simplifying assumptions are made is it possible
to understand either the transient or equilibrium structure of multiple locus models.
The purpose of this note is to introduce and apply a new method for simplifying
the computation of the equilibrium gametic frequencies when there are relatively
few distinct phenotypic fitnesses. This method makes it possible to find the con-
straints on the gametic frequencies that must be satisfied at any equilibrium of
a model without finding the complete analytic solution for the equilibrium
gametic frequencies. When the method can be applied the results are very general
in that they do not depend on either the fitness values or on the recombination
fractions between the loci. In addition, information is obtained on both 'internal'
equilibria, in which all gametes are present, and 'boundary' equilibria in which
one or more of the gametes are absent.

Consider a dioecious species that has discrete, non-overlapping generations and
that is effectively infinite in size, and let xx, ...,xm be the frequencies in a generation
of gametic types 1, ..., m being considered. Using notation introduced elsewhere
(Slatkin, 1979), assume that there are n distinct phenotypes with different fit-
nesses, and let «f ik be the fraction of the individuals of genotype jk (j, k = 1,..., m)
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that are of phenotype i. The uit ik provide a simple way of expressing all the
dominance relationships among the gametes. In most applications the uit ik are
either 0 or 1, but more general cases with fractional values describing 'somatic
polymorphisms' can be used (Slatkin, 1979). We will assume throughout that the
Uf _ jk are constant and, since the list of phenotypes is exhaustive,

i{Jk ()
for all pairs jk.

Assume that the relative (or absolute) fitnesses of the different phenotypes in
the population are Wt (i = 1, ...,n). Usually the Wi are assumed to be constants,
but here we need to assume only that, if the W{ depend on population density or
genotypic frequencies, they be different for all feasible densities or frequencies.

With the above notation, the basic recursion equations for the gametic fre-
quencies have the following form:

Wx't = XjFj + Rj (2)

for j = 1, ..., m, where the prime indicates the succeeding generation, F^ is the
marginal fitness of the jth gametic type, and ify represents all the terms that
appear from the various types of recombination that can occur for the number of
loci and numbers of alleles being considered. The recombination terms will not be
a part of the results, so we will not be more specific about the details of their form.

While the basic equations for a multiple locus model depend on the recombina-
tion fractions, there are certain combinations of those equations that do not and
that can be expressed as homogeneous functions of the marginal fitnesses alone.
One such equation is obtained by summing (2) over all j to obtain.

m

w s *; = 2 XiFt = w. (3)
Other equations can be found by adding the gametic frequencies in such a way
that recursion equations for each of the allelic frequencies are obtained. The actual
combinations of the equations depend on the number of loci and the number of
alleles at each locus, but there is the same number of such linearly independent
equations as there are independent allele frequencies. The set of equations that
form the starting point for the analysis contains one more equation (eqn. 3) than
the number of independent allelic frequencies. The resulting set of equations is not
sufficient to determine the equilibrium allelic or gametic frequencies, but we will
see that some information can be obtained about the equilibrium frequencies from
that set.

We will proceed by considering some examples that illustrate both the method
itself and the type of the results obtained. Consider two linked loci with two alleles
at each. Using the standard notation (Karlin & Feldman, 1970), let the set of
frequencies (xlf x2, xs, a;4) correspond to the set of gametes (A1B1, A1B2, A^B^,
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A2B2) (Karlin & Feldman, 1970). With this notation, the basic recursion equa-
tions, (2), are

(4)
Wx'2 =

Wx3 = + rDft,

Wx't = x^-rDW,
where T̂ "is the fitness of the double heterozygote, D (= XjX^ — x^) is the linkage
disequilibrium between the two loci, and r is the recombination fraction (Lewontin
& Kojima, 1960). If we add the equations in (4) in the way described above, we
obtain the three equations

(5)

where the first equation is (3) and the second two are the recursion equations for
the frequencies of the Ax and Bx alleles. There are obviously other combinations
of (4) that will have the effect of eliminating the recombination term but all such
linear combinations can be derived from (5).

To consider the equilibrium solutions for the gametic frequencies, we assume
that x'j = Xj for j = 1, ..., 4, and rewrite (5) as

2-W) + x3(F3-W) + xi(Fi-W) = 0,

W (F2-W) = 0,

(F3-W) = 0.J

We write the marginal gametic fitnesses,
Wt, and the uiJk, as n m

Fj = S S *k

(6)

, in terms of the phenotypic fitnesses,

(7)

Finally, we can substitute (7) in (6) to obtain

(

1=1 I k = l

xjxkuiJk\(Wi-W) = 0,

{Wt-W) = 0,

( ^ - W) = o,

(8)

where we have used (1) and the fact that the gametic frequencies sum to one in
order to express each equation in terms of (Ŵ— W).

The set of equations in (8) are of the form

Ty = 0, (9)

where T is a 3 x n matrix and y is a n-vector with elements (Ĵ — W). From the
standard theory of linear, algebraic equations (e.g. Hoffman & Kunze, 1961) we

https://doi.org/10.1017/S0016672300018188 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300018188


84 M. SLATKIN

know that, if n ^ 3, the system (9) has non-trivial solutions (i.e. not all elements
of y equal to zero) only if the rank of T is less than n. That is, if n = 3, then T is
a square matrix and its determinant must be zero, because we have assumed that
the Wt are different and thus cannot all equal W. Similarly, if n = 2, then T is a
3 x 2 matrix and the determinants of the three 2x2 submatrices it contains must
be zero. As we can see from (8), the elements of T are functions only of the xi and
the utjk so we have obtained conditions that must be satisfied at the equilibrium
values of the x} that depend only on the dominance relationships and not on the
values of the Wt or the recombination fraction. Thus, if the number of distinct
phenotypic classes is less than or equal to one plus the number of independent
allele frequencies, there are constraints on the equilibrium gametic frequencies.

Table 1. Summary of results for 2-locus model with two alleles at each locus

Case

Ax

A*

Genotypic fitnesses

BXBX
Wx

w[

BXB2
w2w3w2

BZB2
Wx

wl

Subscripts (i,jk) of the uijlc

for which uiijk = 1. All
other uitjk = 0

Constraints on xit the
equilibrium gametic

frequencies

(1, 11) (1, 22) (1, 33) (1, 44) Either x1 = x4, .•», = x3 or
(2, 12) (2, 21) (2, 13) (2, 31)
(2, 24) (2, 42) (2, 34) (2, 43)
(3, 14) (3,41) (3, 23) (3, 32)

Ax
A-,
A*

Ax

Ax

A,

A-x
Ax
A,

w2

W1

w,

w2

w,

B , B ,

w,

B2B2

(1, 11) (1, 44) (2, 12) (2, 13) Either xx = xA or x2

(2, 14) (2, 21) (2, 23) (2, 24)
(2, 31) (2, 32) (2, 34) (2, 41)
(2, 42) (2, 43) (3, 22) (3, 33)

(1, 11) (1,22) (1,33) (1,44)
(2, 12) (2, 13) (2, 14) (2, 21)
(2, 23) (2, 24) (2, 31) (2, 32)
(2, 34) (2, 41) (2, 42) (2, 43)

= x4 mid x2 =

W2 Wx Same uiw jk as case (i)
Ws W2 except M1>44 = / and
W2 f: Wx M2.44 = 1 —/. where

Either x2 = x3 or

To illustrate this result, we consider the first example (case i) in Table 1, in
which the fitnesses are determined by the number of heterozygous loci. The
completely symmetric, multiplicative model is a special case of this. The locations
of the Wt in the 3 x 3 table of genotypic fitnesses completely specify the values of
the uiik. The subscripts of the non-zero uit ik are included to show the relationship
between the usual notation and notation used here. With those values of the
uijk, the matrix T can be found from (8) to be

T =
+ x3

2 + x*
/Q "T" **̂ i wo

2(a;1a;4 + a;2«3)\
x1xi + x2x3 I. (10)
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While the direct evaluation of the determinant of (10) would be a difficult and
tedious problem in elementary algebra, there are some simplifying properties of
T that follow from its basic form and that make the problem less difficult than it
first appears to be. If we consider (8), equation (1) implies that if we add the
columns of T, the sum of each row is simply the sum of gametic frequencies added
to obtain (6). Since we can add any column of a matrix to any other without
changing the determinant, we can replace any column of T by the sum of the
appropriate gametic frequencies. This can be verified by adding the columns in
(10). To simplify the calculations, we should always choose the column with the
most terms in the sum. Thus, with (10) we would replace the middle column.
Also, we can subtract any row from the first without altering the determinant, so
T can be simplified further. Clearly, the choice of the row would depend on the
algebraic structure of T. In the present example, either the second or third row
could be used.

With these two simplifications, which can be used for any selection model, we
are left with the problem of finding the conditions under which the determinant of

x^x4-\-x2x3\
a^+a^aU (11)

is zero. We can further simplify (11) by using more elementary row operations to
obtain . _

Ix + x 1 \
det T' = (xx — xA) (x2 — x3) det Ix1

2 + x2
2 x1 + x2 x1xi + x2x3 I (12)

/
which can be easily evaluated as

= (xt-xA) (x2-x3) (x1 + xi-x2-x3) (x^ + x^) = 0. (13)

From (13) we can obtain all of the possible constraints on the gametic fre-
quencies at an equilibrium under a selection model of the form in Table 1, case i.
At equilibrium, at least one of the following conditions must be satisfied:

x1 = x4, x2 = x3,

i. (14)

In addition, we find the trivial equilibria in which one locus or both loci are fixed
(e.g. xx = x2 = 0, x3 = x4 = 0, etc.). There is no guarantee that there is always a
solution satisfying one of the constraints in (14) or that such a solution is stable,
but we can be sure that any equilibrium solution, including any solution for which
one or more of the Xj are zero, must satisfy at least one of the constraints. If that
is not the case, then the condition imposed by the structure of (9) is violated. The
constraints in (14) do not provide the values of the equilibrium solutions, which
usually depend on r and the Wt, but they do provide a way to reduce the number
of independent variables in the equations for the equilibrium solutions from three
to two with the certainty that no possible solutions will be missed.

https://doi.org/10.1017/S0016672300018188 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300018188


86 M. SLATKIN

I t is important to emphasize what is actually being claimed for this method. The
algebraic manipulations and the form of the terms in (13) are similar to those in
Karlin & Feldman (1970) in which the full analytic solutions for a more general
class of fitness models is obtained by using a set of transformations on the gametic
frequencies. For the class of symmetric viability models considered in that paper,
those transformations yield the complete set of equilibrium solutions, and it would
not be necessary to use the method described here. However, this method still has
some value for the symmetric models by showing in a simple way what features
of the fitness models give rise to different sets of equilibrium solutions. This is
illustrated by comparing cases i and ii in Table 1. Both of these models are in the
class considered by Karlin & Feldman (1970), but we can see that a slightly
different arrangement of the fitnesses changes the types of equilibrium solutions
that are possible. In particular, one type of solution possible in case i is not in
case ii. Of course, this can be obtained from the complete analysis in Karlin &
Feldman (1970), but it is much easier to do so using the present method. Also,
this method guarantees that the exclusion of one class of solutions in case ii does
not depend on the values of r or the Wit and it can be applied to two-locus models
that do not fall in the class of symmetric models of Karlin & Feldman (1970) (e.g.
case iv, Table 1). However, this method does not replace a full analysis of the
equilibrium solutions. Instead it can simplify that analysis by reducing the
number of independent variables and revealing some features of the solutions
that are due only to the dominance relationships.

The results for some other selection schemes are also shown in Table 1. Case iii
illustrates the kinds of result that are obtained when there are fewer values of
Wt than independent equations. The matrix T in (8) for this case is now a 3 x 2
matrix which ran be put in the form

j x\
T = [xf + xf x1 + xA. (15)

W 2 xx+xj
Since the rank of T' in (15) must be one, the determinants of all three 2 x 2 sub-
matrices must be zero at the equilibrium values of the Xy That condition can be
satisfied only when xx = x4 and x2 = x3. The final case, case iv, shows the increase
in complexity of the results when even a slight deviation from a simple symmetric
viability scheme is used. The genotype fitnesses are the same as in case i except
that a fraction / of the A2A2B2B2 individuals are in phenotypic class 1 and a
fraction 1 —/ are in class 2. The constraints on the equilibrium solution are more
complex and probably would not be apparent from an inspection of the basic
recursion formulae. They do, of course, reduce to the constraints found in case i
when / = 1.

This technique can be used for models of more alleles at one or more loci. The
greater algebraic complexity of such problems usually means that it is not possible
to obtain complete algebraic solutions for all of the symmetry constraints, but
this method can still provide some information about the solutions for models
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that are inherently difficult to analyse. As an illustration of both the use and the
possible limitations of this method, we can consider the model analysed by
Feldman et al. (1975) of a two-locus system with three alleles {Alt A2, A3) at the
first locus and two alleles (By, B2) at the second. Following their notation, we let
the set {x-y, x2, x3, x4, x5, x6) denote the frequencies of the gametes (AyBy, A1B2,
A2Blt A2B2, A3By, A3B2). We will consider a generalization of the case analysed in
that paper and assume that the genotypic fitnesses depend only on the number of
homozygous loci and not on the identity of the alleles. We can denote the fitness of
the double heterozygotes as Wx, of the single heterozygotes as W2, and of the
complete homozygotes as W3. In the multiplicative fitness model analysed by
Feldman et al. (1975, equation 1), Wt = w^1* where w i s a given constant.

This specification of the fitnesses determines the subscripts of all 36 non-zero
uijk. There are three independent allele frequencies so we can obtain four inde-
pendent equations for the gametic frequencies. Since there are only three pheno-
typic classes, we expect there to be several symmetry constraints imposed on the
equilibrium frequencies. The set of independent equations that appears to be the
easiest to manipulate is obtained by adding the recursion equations for Xy and x2;
x3 and xi; x5 and x6; and xlt x3 and x&. This provides the recursion formulae for
Ay, A2, A3 and By. The matrix T' that is analogous to (11) is

Xy-{-X% X-y -\-X2

Xy + x3 x-y +x3

T' = | xxx6 + x2x5 +x3x6 +xtx5 x5+x6 xb
2+x6

2 | , (16)
Xy + X3 + X§ Xy + £3

and the general theory tells us that its rank must be 2 or less at the equilibrium
values of the Xj. Clearly, the evaluation of the four 3 x 3 determinants contained in
(16) is not trivial, but some information can be obtained from (16) without
evaluating all the determinants. By first subtracting the second and third column
from the first and using the fact that the frequencies sum to one, we can see that
the rank of (16) is the same as the rank of

f(X2-Xy)

* 3 2

(17)

From (17) we can easily establish that there are certain kinds of symmetric
solutions that might be expected but are not permitted under this selection model.
For example, there is no solution of the form x± = x2, x3 = xt and x5 = x6, except
for the 'central' equilibrium at which all six frequencies equal 1/6. This was
asserted without proof by Feldman et al. (1975) who said it followed from the
structure of the model. This method shows how it follows from the structure.
With somewhat more difficulty, it can be shown that there are no solutions with
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any two of those pairs of frequencies equal but the third unequal. It is also
possible to investigate the various kinds of boundary equilibria that are possible.
However, a complete analysis would depend on the evaluation of subdeterminants
that do not appear to possess any simple form although computer languages exist
that could simplify the calculations. As a consequence, the power of this method
depends on the actual dominance relationships among the alleles and in some cases,
such as the one considered above, all of the symmetry constraints cannot easily
be found. Nevertheless, the analysis of multiple locus genetic models is sufficiently
difficult that this technique can be useful in some problems, and, when it is, it
provides very general results that can lead to significant simplification of the
problem of finding equilibrium gametic frequencies.

I thank J. Felsenstein, R. Lande and G. J. Thomson for helpful discussions of this topic.
This research is supported by a NIH Research Career Development Award No. K04-GM00118.

REFERENCES

FEIDMAN, M. W., LEWONTIN, R. C, FBANKLIN, I. R. & CHRISTIANSEN, F. B. (1975). Selection
in complex genetic systems, I I I : An effect of allele multiplicity with two loci. Genetics 79,
333-347.

HOFFMAN, K. & KUNZE, R. (1961). Linear Algebra. Englewood Cliffs, New Jersey: Prentiss
Hall.

KABIIN, S. & FELDMAN, M. W. (1970). Linkage and selection: Two locus symmetric viability
model. Theoretical Population Biology 1, 39-71.

LEWONTIN, R. C. & KOJIMA, K. (1960). The evolutionary dynamics of complex polymorph-
isms. Evolution 14, 458—472.

SLATKIN, M. (1979). The evolutionary response to frequency and density dependent inter-
actions. American Naturalist. (In the Press.)

https://doi.org/10.1017/S0016672300018188 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300018188

