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CRITICAL INITIAL CONDITIONS
FOR SPATIALLY-DISTRIBUTED THERMAL EXPLOSIONS
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Abstract

The problem of finding critical initial data which separate conditions leading to
blow-up from those which give solutions tending to the (stable) minimal solution
is considered. New criteria for blow-up and global existence are found; these are
equivalent to obtaining upper and lower bounds respectively for the set of critical
initial data.

1. Introduction

Semi-linear parabolic equations of the form

ut=Au + f(u), (1)

are well known to be capable of exhibiting blow-up for functions / which
grow sufficiently fast with u. By this we mean that if we consider the initial-
boundary value problem {P), which is (1) in some open bounded region ft
in R^, t> 0, with the (linear) boundary condition

Bu = aun+{\ -Q)M = 0 , ondO.,t>0 (2)

where we assume dGl is smooth, 0 < a(x) < 1, un is the outer normal
derivative on dCl, and the initial condition is

u(x, 0) = 4>(x) i n n a t / = 0, (3)
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[2] Thermal explosions 351

then the solution u(x, i) is unbounded above as t —> t* < oo. We call t*
the "blow-up time".

Throughout this paper we shall be considering (1) as modelling an exother-
mic chemical reaction, with u representing temperature and / being essen-
tially the temperature-dependent reaction rate. The representation by a sin-
gle equation, so that reactant depletion is neglected, is valid provided that u
does not get too large. In this case the reaction rate which is more accurately
modelled by the Arrhenius law f(u) — <5exp(w/(l + eu)) can be approxi-
mated by an exponential function (the Frank-Kamenetskii approximation)
f(u) = de", for some 8 > 0. (See Boddington et al. [4]).

For such problems, where f(s), /(s), f(s) are all positive for s > 0
and

f
Jo

ds/f(s)<oo, (4)

it is known (see Keller and Cohen [8]) that for region Q, 8 , or a sufficiently
large then there is no steady-state solution of (1), (2). We then have the result
(see Lacey [9]; Bellout [3]) that the solution to (1), (2), (3) blows up for any
initial data <t>(x) > 0 (or any </> positive or negative if f(s) > 0 for all
s G R). In this case there is ignition for the physical system being modelled.
As the temperature u becomes large, we say that thermal runaway occurs.

In many applications, the region and boundary conditions are such that
steady-states are possible, but given sufficiently large initial data, the system
still blows up. Some practical cases of interest with initial data high enough
to cause the material to ignite are described in Gray and Scott [6]. The same
paper gives some numerically computed values of uniform critical initial data
for balls in 1, 2, 3 dimensions. The question of whether or not a system will
ignite with a given initial condition is of high practical interest. We wish to
improve on both necessary and sufficient conditions for blow-up. This is the
first principal aim of this paper. In Section 2, we review briefly the known
criteria for blow-up and global existence, which is followed in Section 3 by
a new method of obtaining bounds for critical initial conditions. The other
intention, recognising that for many problems numerical solution is going
to be important for discovery of whether or not blow-up occurs, will be to
describe the structure of the set of critical initial conditions; that is, those
functions (f>(x) which neither blow up nor tend to the minimal steady-state
(the only one which can be stable). The aim here is to allow deductions to be
drawn on solutions of the initial value problem (1), (2), (3), given knowledge
(perhaps obtained numerically) for somewhat different problems. This is
done in Section 4.
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352 A. A. Lacey and G. C. Wake [3]

2. Known conditions on initial conditions for blow-up

We now suppose there is a steady-state for (1) and (2), and we shall seek
those functions <$> which lead to blow-up and those which do not.

A. (Energy method)
One class of methods is based on energy, and is most suitable for problems

where f(u) = ul+ , b > 0 (or something similar); of course for this we must
relax one requirement on / so that uf(s) > 0 for s > 0". Following Ball [1]
and Wake and Rayner [15], we define (for a constant or zero)

J * W . (5)= jf (i|Vu|! - fM

where r = {x e dQ: a > 0} and F(u) = /„" f(s)ds. By differentiating (5)
with respect to t, we get

u.Vut- F\u)ut) dx + i - ^ ^ uut ds(x). (5)

Using the divergence theorem, and (1), (2), we obtain

E = - f u]dx,
Ja

and so E < 0 (E < 0 unless u is a steady-state), and E(t) < Eo = E(0).
Defining J — fa u2 dx, we obtain, using (1),

j = 2 f (uAu + uf(u)) dx,
Jn

= 2 [ (uf(u) - |VM|2) dx + 2 I uun ds(x)
Jn Jxedti

j = 2 f (uf(u) - 2F{u))dx-4E + 2 [ u ( u + ^ ^ u ) ds(x).
Ja Jx€da \ OL )

In view of the boundary condition (2) and noting that u{x) — 0 on dQ \ F,
the boundary term in the last equation vanishes. Accordingly

j>2 f(uf(u) -2F(u))dx-4E0.
Ja

Further, if Eo < 0 , we have

J>2[(uf(u)-2F(u))dx. (6)
Ja

In the case of / («) = ul+b , b > 0, (5) gives, using Jensen's inequality,

f
+ b Jn
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[4] Thermal explosions 353

where C is independent of u and so / becomes unbounded after a finite
time (less than (2/bC)J^b/2), under the assumption that a solution continues
to exist. We conclude that blow-up must occur.

For more general / , in particular with /(0) = A > 0, we have for the
expression on the right-hand side of the inequality (6)

[ (uf{u)-2F(u))dx= f h{u)dx-A f udx,
Ja Ja Ja

where h(u) = u(f(u) + A) — 2F(u) is a positive increasing function (and
h(u)/u2 -> oo as u —> oo). Then, again in the equality (6)

J>Ch{Jxl2)-cAJ{'2,

for some C > 0 and c = (volume of Q)1^2 . This gives blow-up provided
that

/•OO

/ ds/h{sl/2) < oo and /(O) is sufficiently large.

Again if we denote W — {v e C(Q): v is a steady state of (1), (2)}, then if

since E is decreasing in time, then u does not tend to a steady-state and
must therefore be unbounded. But if E —> -oo we must have / —» oo and
we again deduce blow-up.

B. (Bounding solutions)
Following Lacey [9], we take some g(x) > 0, g ^ 0 and (support of

g) n (dfi \ F) empty, and define z so that

Az + g = 0, xefi ,

together with the boundary condition (2). Then we may take the constant a
large enough such that

aAz + f(az) > 0.

If (j>>az, the solution to the initial value problem (1), (2), (3) will blow-up.

C. (Fourier coefficient method, see Kaplan [7]; Tzanetis [13])
Taking X, <p to be the principal eigen-pair for the Helmholtz problem

and scaling so that / n y/ dx = 1, then if a(t) is the Fourier coefficient

a(t)= f u{x,t)if/{x)dx,
Ja
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FIGURE 1. Schematic diagram of graphs showing calculation of criteria for blow-up.

we have

or

a= f
Jn

= f (
Ja

- Xu)y/dx,

a > f(a) - Xa.
For / of the required form (satisfying the conditions (4)) and under
the assumption of existence of a steady-state, f(s) = As has two roots s{,
s2(s{ < s2), between which f(s) < As and outside of which f(s) > As (see
Figure 1).

Again, if a(0) = fa <j){x)y/(x) dx >s2 we get blow-up.

D. (Fourier coefficients method, see Lacey [9], Sattinger [12], Fujita [5])
If there are at least two steady states then one of them, say w , is minimal

and stable. We denote a second steady-state as v with v > w, and v is
unstable since the principal eigenvalue for A^ + f{v)y/ = ky/ in £2, with
the boundary condition (2), is positive. We scale y/ so that fay/dx — 1.
Denning now

a(t)= f y/{x){u{x,t)-v{x))dx,
Ja

we obtain
a>h(a) + Aa, (7)

where h is some function satisfying /?(0) > 0; h(s) > 0, s / 0; h'(s) > 0,
h"(s) > 0 for s > 0 ; and /,°° ds/h(s) < oo. The inequality (7) for a is
strict except when u = v. Then we conclude that if a(0) > 0 and <j> ^ v , u
must blow up. Also if <f>{x) < v(x), <j> ^ v , then u —+ w as / - t o o (see for
example, Sattinger [12]).
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[6] Thermal explosions 355

In this case, the nonminimal steady-state is a critical initial condition i.e.
if (f><v, u-+w;if<f)>v, u blows up.

We now wish to use this last method as a basis for more conditions. In
particular the only criteria so far for a global solution has been that <f> < v
and we shall now find some initial conditions which lead to u tending to w
even though <j>{x) > v{x) for some x e Q. This will enable us to obtain
better estimates for what is termed the SET OF CRITICAL INITIAL CONDITIONS.
To completely characterise this set is clearly impossible.

3. New conditions for global existence or blow-up

We take a one-parameter family of functions / (« , /?) such that L > 0,
/(• , 0) = / and an increasing function g(fi) such that g(0) = 0, and for
any /? ^ 0, at least one of

(/(•;/?)-/(•)), *(/?)# o. (8)

The function z{x; /?) is defined to be the solution of

Az + /(z;/?) = 0 inQ,Q, 1
dQ.J

If there is more than one solution, we take z to be a nonminimal solution
(in order to get stronger results). We note that in general (/*„) has solutions
for some ft > 0 as well as 0 < 0. However, for the special critical case
where

0 inQ,
BV = 0 on

fails to have solutions for A > 1, there will not be solutions to (Pg) for 0
positive.

Let us now suppose there are two steady-state solutions for (1), (2), v and
w , with v > w and w the minimal solution. Take z to be a nonminimal
solution of (Pp) with 0 < 0. Since p < 0, L > 0, and in view of the
conditions in (8), it follows that

Az + / ( z ) > 0 inQ, B(z) < 0 ondQ, (9)

with at least one inequality being strict, so that z is a strict lower solution
for (1) and (2).

It follows that if <j>{x) > z(x) on Q, then u blows up. (We note that
z(x) < w(x) on parts of the region o).)
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Conversely, if the system is subcritical, we may take some /? > 0 and z
the solution (preferably not the minimal solution, so as to get a higher bound)
to (Pp). Now

Az + / ( z ) < 0 i n Q , B{z) > 0 on dfi (10)

with at least one inequality being strict, so that z is a strict upper solution
for (1) and (2). It follows that if <f>(x) < z(x) then u is bounded and must
tend to a steady-state. Now, taking 4> = z we see that since blow-up does not
occur, z < v somewhere (assuming that a second steady-state exists) and u
is also monotonic decreasing with time t. We conclude that u tends to the
minimal steady-state.

We have above a way of constructing upper and lower bounds to the set of
critical initial conditions, which uses solutions of related steady-state prob-
lems. We now consider an example in which we are able to use explicit so-
lutions of the steady-state problem, but of course, even for situations where
explicit solutions are not known, the method works equally well using solu-
tions determined by numerical methods.

EXAMPLE. Take Q = 5 ( 0 , 1) C R2, the two-dimensional unit ball, with
/ («) = e" , and, for simplicity a = 0 , that is, we have Dirichlet conditions.
The steady-state solutions to (1) satisfy

urr + ur/r + e" = 0 , 0<r<l; wr(0) = 0

and are given by u = -21n(a + br2), with Sab = 1. Taking f(u; ft) =
f{u) = eu and g(P) = ft , the boundary condition gives

+ b) = fi or b = e~p/2-a.

The steady-states to (1), (2) (that is, 0 = 0) thus satisfy b = I - a,
8fl(l - a) = 1 and a = 1/2(1 ± l / \ /2) . Hence

u = ln8-21n{v/2 + l + ( v / 2 - \)r2},

v = In 8 - 2 ln{sfl - 1 + (Vl + 1 )r2}

are the steady-states.

Firstly, taking 0 < 0 , z is given by Sa(e~p/2 - a) = 1 or a =
j{e~^2 - (e~P - 5)^2} (for the nonminimal solution we need the smaller
value of a). Thus by the results above, for all /? < 0

<j){r) >zx= In 8 - 21n{v/2<T/'/2 - (2e~p - 1)1/2
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ensures blow-up will occur. We note that near the boundary, where z, =
/? < 0, the comparison function z is less than v and thus gives a differ-
ent sufficient condition for blow-up, or conversely a necessary condition for
global existence to (P). Secondly, taking /? > 0 we have: if </>(r) < z2 =
In8 - 2\n{V2e'fil1 - {2e~p - 1)1/2 + {y/2e~fi/2 + (2e'fi - l)1/2)r2} then u
tends to w = In8 - 21n{%/2 + 1 + (y/2 - l)r2} as t tends to infinity, for all
In 2 > P > 0 . Again, we see that this is a new sufficient condition for global
existence or, conversely, gives a necessary condition for blow-up. Again we
note that near the boundary where z = /?, we have z2 > v (= the nonmin-
imal steady-state).

We show the arrangement for these bounds on Figure 2. The function z,
provides an upper bound and z2 a lower bound, since <j> > zl guarantees
blow-up and <f> < z2 guarantees global existence. Of course different values of
P can be chosen. We note that z((0) and z(.(l) are respectively monotonic
decreasing and increasing with ft, and so a pay-off for changing ft occurs.
It should also be noted that the bounds z^r) cross-over in the region and are
on opposite sides of w than what would be expected in the neighbourhood
of r = 1.

The same ideas can be used for comparing different boundary conditions
if the problem is radially symmetric, or has different sized regions, provided

FIGURE 2. Illustrative arrangement for the upper (z, with /? = - l n 2 ) and lower (r2

fi = In 2) bounds for critical initial data.
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the boundary conditions are Dirichlet (a = 0). We get the following:
(A) If Q is a ball and we define B.u by

Bpu = a{0)ur + {\-a{0))u,

with a an increasing function of 0 ; now taking z to be a solution of

Az + f(z;0)=O inQ; Bpz

then <f> < z for 0 > 0 ensures a global solution while (f> > z (with z not
the minimal solution) for 0 < 0 ensures blow-up.

(B) Take a = 0, that is, (2) becomes u = 0 on d Q . If Q c D and z
satisfies

Az + /(z;£) = 0 inD; z = g{0) ondD

for p > 0, then ^ < 2 in fi ensures a global solution to (1), (2), (3).
If D c Q, and z is a nonminimal solution to

Az + f(z;0) = O inD; z = g{0) ondD

for 0 < 0 then </>>z in Z), </>>0 in Q\Z> ensures that « blows up.

4. Structure of the set of critical initial data

We may define two disjoint sets of initial data as follows

sf = {cj>: u —» w as t -• o o } ,

& — {<j>: u blows up completely}.

By the statement "u blows up completely at some time tc
n we mean that

a solution (possibly a weak solution) exists for t < tc but not (even as a
weak solution) for t > tc. Equivalently if some approximate monotonic
increasing regularising sequence of problems is considered for (1), (2), (3)
their solutions tend to u a.e. for t < tc and to infinity everywhere for t > tc

(see Baras and Cohen [2], Lacey and Tzanetis [11]).
The critical conditions are those </»'s remaining (that is, not in sf

3r = (<j>: u neither blows up completely nor tends to w as t —> oo}

We have the following properties:
(1) sf and £8 are both open, so 2! is nonempty. The fact that stf is

open follows immediately from Lacey and Tzanetis [11]. The property for
£8 needs further justification. Suppose <f> 6 38, then u blows up completely
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at some t — tc, that is, given a subregion D of Q, D c Q the sequence of
solutions un to a regularised problem:

du/dt-Au = fn{u), x e f l , t>0,

Bu = 0, xedQ, t>0,

u(x, 0) = 4>(x), x e Q ;

where, say,

f sz"'
s>n,

satisfy, for t - t{ > tc, un(x, t) -> oo uniformly for x in D. But then
given any K, there exists r\ > 0 , and /n such that the solution un to

du/dt-Au = I
Bu = O,
u(x,O) =

,(")>
XEi

4>{X)-

X (.E Q , t>0,

t>0,

X G Q ,

satisfies M > K for i = tt, x e D, and n>m.
Applying method C of Section 2 and noting that Mn —> « - as « —> oo

for M which is the solution to problem (P) with <p-t] replacing <f>, before
any complete blow-up of u, we see that u must blow up, that is, <f>-ri e 38 .
We conclude that if \<j> - 0| < r\ then 4> ^38 , that is ^" is open.
(2) Convexity. Using comparisons (upper and lower solutions) it is easy to
show that:

if <j>{, <t>2 € s/ then p<j>x + (1 - P)4>2 e j / for 0 < fi < 1 ,
/ ^ for 0 < B < 1,

if ^»,, ^2 e ^ then ^ + (1 - y9)(̂ 2 e ^ for y? < 0, SS > 1.

(3) Bounds (see Section 3)

If $ < z for yS > 0 or $ < z for fi > 0 then 0 e sf .
If 0 > z for yS < 0 or 0 > z for ^ > 0 then <j> e ^ .

(4) Ordering

If <£j e J / and <j>2 < (j)l then <j>2€£/ .
If 4>xe3t and </>2 < <f>x t h e n </>2 € ^ u 2 1 .
I f ^ , 6 ^ a n d </>2 > </>1 t h e n <f>2 G ̂ " U ^ .
If (^ e ^ and <j)2 > <t>x then 4>2 G ̂ " .

(5) Comparison of regions (see Section 3)
Suppose 4>\ is denned on Q, ^ on D with flcfl, with <f>2> <px in Q ,
<j>2 > 0 in D\Cl. We obtain the following results by direct comparison of
solutions of problem (1), (2), (3).
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If <f>{ e & a then <j)2e&D.
If (f>{ e&n then ^ 2 6 ^
If <f>2 e 3D then <£, e ^
If (j>2€£/D then <f>1 e J ^

5. Discussion

We must end somewhat inconclusively, in that it is not always possible to
determine what happens to u if 0 is critical (in 2). It is certainly possible
that, if there is a steady-state solution v other than the nonminimal one,
then u —» v as / —• oo. We conjecture that this will invariably happen in
one or two dimensions: if fl C R or Q C R then i f ^ e ^ , u -> v > w
as / —» oo. We see by the following argument that if <f>l e 21 and <j> < <t>x

then <f> e sf , that is u -» u> while if 0 > 0, , then ^ e j 1 , that is M blows
up. Suppose that <f> > <f>l . Define z by

dz/dt = Az+/(ul)z, x e Q , t>0;

Bz = 0, xedCl;

z = </>-</>! att = O;

where M, is the solution of problem (1), (2), (3) with Wj(x, 0) = ^J(JC) , and
thus z > 0 . Also

^(M, + Z) - A(«, + Z) - / (« , + Z) = / (« , ) + / (« , )Z - / ( « , + Z) < 0

since / " > 0;

so M, + z is a lower solution for u i.e. « > M, + z > z . Also the principal
eigenvalue of

Ay/ + f(v)i// = ky/, x e Q ,

has A, > 0, and gives, since u^ -> v, z ~ V^*1' as t —> oo(^, > 0).
Comparing this with method Z> of Section 2 we see that u must blow up
completely.

For <p < (f>l we clearly have u < M, so M is bounded. It must then have
an omega limit set, co(<f>), with oj{<ji) a subset of the steady-states. But since
u < M, and M, —> v the only possible steady-states in co(<f>) are t; and w .
Moreover if v e co(4>) we would have a sequence (n->oo with M(- , tn) -> u
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and we could deduce by similar reasoning to the above, that u, blows up.
Thus (o{(j>) = {w} and u —* w as / - » o o .

We denote the set of (f> such that u —> v as t -» oo by 3fx. Certainly
if </>, e 2X then <j> < </>, and <f> G srf , that is, « - » « ; , while if </> > 4>\
then <f> e £& that is, M blows up. A second possibility is that if <j> e 3
then u may exist in some weak sense for all time but may partially blow up
at some time, that is, there exists t* < oo such that HMH^ —> oo as t —* tt

but u exists for t > t*. Such solutions are known to exist for f(u) — e"
in dimension N, 3 < N < 9 (Lacey and Tzanetis [10]). We denote the set
of <f> leading to partial blow-up by 32. Again we have that for <t>{ e 2S2

then <j> < <j){ has <f> e sf , while </>></>, has <f> e 38. One final possibility
is that there may exist <f> e 31 such that u exists classically for all time but
IMIoo ~* °° a s { ~~* °°- ^ e denote the set of these initial conditions (if
they exist) by 3!^. For cf> — (f>3 e 33 then, at least for radially symmetric
problems, u —> w (the minimal steady state) as t —* oo except for t = 0
while w(0, t) —* oo. If <f> > <f>3 it is possible to show (again for radially
symmetric problems in R3 with f(u) — eu) that u blows up completely i.e.
<f> e 38 (Tzanetis [14]). We note that each of these comparisons give stronger
results than the convexity and ordering results in (2), (4) of Section 4.
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