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Manifold-Valued Holomorphic
Approximation

Edgar Lee Stout

Abstract. This note considers the problem of approximating continuous maps from sets in complex

spaces into complex manifolds by holomorphic maps.

1 Introduction

A compact subset X of a complex space X is said to admit holomorphic approxi-

mation if each continuous C-valued function on X can be approximated uniformly

on X by functions that are holomorphic on varying neighborhoods of X. If Y is a

second complex space, the set X is said to admit Y -valued holomorphic approxima-

tion if Y -valued continuous maps defined on X can be approximated uniformly on

X by holomorphic Y -valued maps defined on varying neighborhoods of X in X .

Throughout this note, complex spaces are reduced and paracompact.

We shall see below that for trivial reasons, Y -valued holomorphic approximation

cannot occur without essential restrictions on the space Y . For this reason, we only

consider the case of M -valued approximation in which M is a complex manifold.

The notion of uniform convergence for sequences of functions with values in

metrizable spaces can be formulated as follows. If X and Y are metrizable spaces

with X compact, a sequence { f j} j=1,... of Y -valued functions on X converges uni-

formly to f if for every neighborhood U of the graph of f in X × Y , the graph of f j

lies in U for all large j.

The main result of the present note is the following theorem about manifold-

valued approximation.

Theorem 1.1 Let X be a complex space, and let M be a complex manifold. If the

compact subset X of X admits holomorphic approximation, then X admits holomorphic

M -valued approximation.

A particular case is that of rectifiable arcs in C
N , which are known to admit holo-

morphic approximation from the work of Alexander [1, 10].

Corollary 1.2 If λ is a rectifiable arc in C
N , and if f is a continuous map from λ to a

complex manifold M , then f can be approximated uniformly on λ by maps to M that

are holomorphic on neighborhoods of λ.

Manifold-valued holomorphic approximation has been considered earlier in the

papers [2–4, 6, 7, 11].
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2 Preliminaries

In what follows, we shall often use the expression X admits holomorphic approxima-

tion without reference to the ambient complex space.

The simplest nontrivial case of the theorem is that in which the target manifold M

is a Stein manifold. This result, which was noted by Gauthier and Zeron in [6] and

which will be used in the proof of Theorem 1.1, is a direct consequence of the embed-

ding theorem for Stein manifolds and the existence, due to Docquier and Grauert, of

holomorphic retractions onto submanifolds of Stein manifolds. (For the latter point,

see [8, p. 257, Thm. 8].)

When X admits holomorphic approximation (or holomorphic Y-valued approx-

imation) we shall often write that OOO(X) is dense in C (X) (or that OOO(X, Y) is dense

in C (X, Y)), understanding by OOO(X) the algebra of germs of holomorphic functions

on X, and by OOO(X, Y) the space of germs of holomorphic Y-valued functions on X.

Properly speaking, this is an abuse of notation: Germs are not functions.

There is the following simple observation: If X, Y, and Z are complex spaces, if

X ⊂ X is a compact set such that OOO(X, Y) is dense in C (X, Y), and if η : Y → Z is a

holomorphic map, then every continuous Z-valued map defined on X that is of form

η ◦ g for a function g ∈ C (X, Y) is uniformly approximable by elements of OOO(X, Z).

An easy example of this phenomenon follows.

Example 2.1 Let X be a compact set that admits holomorphic approximation.

Consider the map ϕ : C → C
2 given by ϕ(ζ) = (ζ2, ζ3).

The map ϕ is a holomorphic homeomorphism onto its image, the variety V =

{(z1, z2) : z3
1 = z2

2} in C
2, but it is not biholomorphic: The variety V has a singularity

at the origin. Because ϕ is a homeomorphism, continuous maps from X to V factor

through C, and consequently continuous maps from X to V can be approximated by

holomorphic ones.

Example 2.2 Trivial examples show that for the general subvariety Y of C
N there

cannot be holomorphic Y -valued approximation. Let

Y = {(z1, z2) ∈ C
2 : z1z2 = 0}.

If f : [−1, 1] → Y is given by f (t) = (t, 0) for t ∈ [−1, 0] and f (t) = (0, t) for

t ∈ [0, 1], then f is a continuous Y -valued function that cannot be approximated on

[−1, 1] by holomorphic Y -valued functions defined near [−1, 1].

Perhaps if we restrict our attention to normal varieties as targets, there is an ap-

proximation theorem of the kind we are considering.

3 Proof of Theorem 1.1

The proof uses the standard result that a totally real submanifold of a complex man-

ifold has Stein neighborhoods. The details of this result are given in [10, p. 278,

Thm. 6.1.2].

The proof of the theorem depends on a lemma.
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Lemma 3.1 If M is a complex manifold and h : M → R
p is an immersion of class

C 1, then the graph of h is a totally real submanifold of M × C
p.

The condition that h be an immersion is the condition that at each point of M , the

differential of h have trivial kernel. Thus, p ≥ dimR M if dimR M is the dimension

of M as a real manifold. It is not required that h be injective, i.e., h need not be an

embedding.

Proof Denote by Γ the graph {(x, h(x)) : x ∈ M } of h, which is a C 1 submanifold

of M × R
p and, a fortiori, of M × C

p. If ξ is a vector tangent to Γ at the point

z = (x, h(x)), then ξ is of the form (ξ ′, dhx(ξ ′)) for some vector ξ ′ tangent at x to

M . If in addition iξ is tangent to Γ, then iξ = (ξ ′ ′, dhx(ξ ′ ′)) for some other vector

ξ ′ ′ tangent at x to M . We have then that idhx(ξ ′) = dxh(ξ ′ ′). As both dxh(ξ ′) and

dxh(ξ ′ ′) lie in R
p, both must be zero. The injectivity of dhx implies that ξ ′

= 0

whence ξ = 0. Thus, as claimed, Γ is totally real.

Proof of the Theorem With X a complex space and M a complex manifold, let

X be a compact subset of X that admits holomorphic approximation, and let

f : X → M be a continuous function.

Fix a metric ̺, i.e., a distance function, not a Hermitian metric, on M that defines

the topology of M .

Fix ε > 0.

Apply the lemma to the manifold M : if h : M → R
p is a smooth embedding,

then the graph Γ = {(z, h(z)) : z ∈ M } is a totally real submanifold of M × C
p.

Let ̺ ′ be the metric on M × C
p defined by

̺ ′
(

(x, y), (x ′, y ′)
)

= max{̺(x, x ′), ‖y − y ′‖}.

Let V be a Stein neighborhood of Γ in M × C
p; V is a Stein manifold. The map

f1 : X → M × C
p defined by f1(x) = ( f (x), h( f (x))) is continuous and V -valued.

Accordingly, there is a holomorphic V -valued map ϕ defined on a neighborhood of

X in X that satisfies ̺ ′( f1(x), ϕ(x)) < ε for all x ∈ X.

If π : M × C
p → M is the natural projection, which is holomorphic, then

π ◦ ϕ is an M -valued map holomorphic on a neighborhood of X in X . Since

̺( f (x), π(ϕ(x)) < ε for all x ∈ X, the theorem is proved.

The method used above to prove Theorem 1.1 can be used equally well to deal

with tangential approximation in the following sense.

Definition 3.2 A closed subset X of a complex space X is said to admit holo-

morphic tangential approximation if for each positive continuous function ε defined

on X and for each C-valued continuous function f on X, there is a function ϕ de-

fined and holomorphic on a neighborhood of X in X such that for all x ∈ X,

| f (x) − ϕ(x)| < ε(x). Similarly, if M is a complex manifold, X is said to admit

holomorphic tangential M -valued approximation if for each metric ̺ on M , for each

M -valued continuous function f on X, and for each positive continuous function ε
on X, there is a holomorphic M -valued function ϕ defined on a neighborhood of X

in X such that for all x ∈ X, ̺( f (x), ϕ(x)) < ε(x).
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In the second part of Definition 3.2, it is equivalent to require the approximation

with respect not to all metrics but only with respect to some fixed metric. If the

condition is satisfied for some metric, it is satisfied for all.

In the case that X is compact, this notion of tangential approximation coincides

with uniform convergence, so the following result contains Theorem 1.1 as a special

case.

Theorem 3.3 Let X be a complex space, and let M be a complex manifold. If the

closed subset X of X admits holomorphic tangential approximation, then it admits

holomorphic tangential M -valued approximation.

Proof The case that M is a Stein manifold follows from the embedding theorem for

Stein manifolds and the theorem of Docquier and Grauert on holomorphic retrac-

tions, as was noted in [7].The case of general M follows then by approximating M

by a totally real manifold as in the proof of Theorem 1.1 and replacing the small con-

stant ε of that theorem by the positive function ε of the definition of holomorphic

tangential approximation.

Questions of holomorphic tangential M -valued approximation have been con-

sidered previously in [6, 7].1

4 Sections of Vector Bundles over Complex Manifolds

There is an analogue of the approximation theorem above for sections of vector bun-

dles, at least when the domain space is a manifold. To formulate it properly, we need

to use Hermitian metrics. Recall that given a complex vector bundle V
η

−→ M , a

Hermitian metric on V is an assignment of a Hermitian inner product 〈 · , · 〉x on

each fiber Vx = η−1(x) in such a way that if s and s ′ are smooth sections of V , then

〈s(x), s ′(x)〉x depends smoothly on x ∈ M . Associated with a Hermitian metric on

V is the corresponding family of norms ‖ · ‖x on the fibers Vx = η−1(x) given by

‖v‖x =

√

〈v, v〉x for all v ∈ Vx.

Suppose now that V
η

−→ M is a holomorphic vector bundle.

Definition 4.1 The closed subset X of M admits asymptotic holomorphic V -valued

bundle approximation if for every Hermitian metric on V , for every positive contin-

uous function ε defined on X, and for every continuous section s : X → V of V

over X, there is a holomorphic section ϕ of V defined on some neighborhood of X

in M such that for all x ∈ X

‖s(x) − ϕ(x)‖x < ε(x).

In the particular case that the set X is compact, this notion of approximation is

simply the notion of uniform approximation of continuous sections of V over X by

sections holomorphic on a neighborhood of X.

1I am indebeted to Paul Gauthier for drawing the paper [7]to my attention.
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Theorem 4.2 Let M be a complex manifold, and let X be a closed subset of M that

admits asymptotic holomorphic approximation. If V
η

−→ M is a holomorphic vector

bundle over M , then X admits asymptotic holomorphic V -valued bundle approxima-

tion.

Whether there is an analogous result in the case that the complex manifold M

is replaced by a complex space is not evident. There is also the open problem of

establishing a result of this kind with the vector bundles of the theorem replaced by

more general holomorphic bundles.

Given what we have in hand, there is an obvious approach to this theorem in the

case that M is a Stein manifold and X is compact. The vector bundle V is a Stein

manifold [8, p. 258, Thm. 9], so a continuous section s : X → V can be approxi-

mated uniformly by maps f : X → V that are holomorphic on a neighborhood of X.

However, this does not prove the theorem in the restricted case under consideration.

We are not guaranteed that the approximating holomorphic functions f are sections

of V , i.e., that they satisfy η ◦ f = id on X.

Proof of Theorem 4.2 Assume to begin with that M is a Stein manifold. By [8,

p. 256, Thm. 7], there is a split exact sequence

0 → V
′ ′ ι
−→ V

′ τ
−→ V → 0

of holomorphic vector bundles over M with V ′ the trivial bundle M ×C
q for some

q. Let σ : V → V ′ be a spliting map so that τ ◦ σ = id on V . Let V and V ′ be

endowed with Hermitian metrics, and let the associated norms be ‖ · ‖ and ‖ · ‖′. We

assume the metric on V ′ to be chosen so that the norm ‖ · ‖′ is given by the condition

that for (x, z) ∈ M × C
q, ‖(x, z)‖ ′ is the Euclidean norm |z|. Let c : M → (0,∞)

be a continuous function that satisfies ‖τ (v)‖x < c(x)‖v‖ ′

x for all x ∈ M and all

v ∈ V ′

x .

Let s : X → V be a section of V over X, and let ε be a positive continuous function

on X. The composition σ ◦ s is a section of M × C
q over X. That is to say, σ ◦ s(x) =

(x, f (x))) for a continuous C
q-valued function f on X. By hypothesis, there exists a

holomorphic C
q-valued map g defined on a neighborhood of X such that, with | · |

the norm on C
q,

| f (x) − g(x)| < ε(x)/c(x)

when x ∈ X.

The map g̃ defined on a neighborhood of X with values in M × C
q given by

g̃(x) = (x, g(x)) is a holomorphic section of M × C
q on a neighborhood of X. The

map τ ◦ g̃ : X → V is a holomorphic section of V on a neighborhood of X that

satisfies

‖τ ◦ g̃(x) − s(x)‖ = ‖τ ◦ g̃(x) − τ ◦ σ ◦ s(x)‖ ≤ c(x)‖g̃(x) − σ ◦ s(x)‖ ′ < ε(x).

The theorem is proved under the supplementary hypothesis that M is a Stein mani-

fold.

We now deduce the general case of the theorem from that just established.
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Again fix a holomorphic vector bundle V
η

−→ M , fix a Hermitian metric H on

V with associated norm function ‖ · ‖, fix a continuous section s : X → V , and fix a

positive continuous function ε on X. The section s can be extended to a continuous

section of V defined on a neighborhood of X. We fix such an extension and denote it

also by s. Similarly, we assume the function ε to be defined, continuous, and positive

on all of M .

Let h : M → R
p be a smooth embedding, and let Γ ⊂ M × C

p be the graph of h.

Thus, by Lemma 3.1, Γ is a totally real submanifold of M × C
p. Let W be a Stein

neighborhood of Γ in M × C
p. Put X ′

= {(x, h(x)) ∈ M × C
p : x ∈ X}.

Lemma 4.3 The set X ′ admits asymptotic holomorphic approximation.

Proof Let g : X ′ → C be continuous, and let ε be a positive continuous function on

X ′. The function ε∗ defined on X by ε∗(x) = ε(x, h(x)) is a continuous positive func-

tion on X, so there is a holomorphic C-valued function τ defined on a neighborhood

of X in M such that

|τ (x) − g(x, h(x))| < ε∗(x).

If τ̃ (x, z) = τ (x), then τ̃ is a holomorphic function defined on a neighborhood of X ′

that satisfies |τ̃ (x, z) − g(x, z)| < ε(x) for all x ∈ X ′. The lemma is proved.

On M×C
p we take coordinates (x, z) with x ∈ M , z ∈ C

p. Let π : M×C
p → M

be the projection given by π(x, z) = x. There is the holomorphic vector bundle π∗V

on W induced by π (properly by π|W ) that is defined by

π∗
V = {((x, z), v) ∈ W × V : π(x, z) = η(v)}

with projection η ′ : π∗V → W the map given by η ′((x, z), v) = (x, z). For every

point (x, z) ∈ W , the fiber (π∗V )(x,z) of π∗V over (x, z) is the collection of points

((x, z), v) with v in the fiber Vx of V over x. The Hermitian metric H on V gives rise

to a Hermitian metric H∗ on π∗V with associated norm ‖·‖∗ for which if ((x, z), v) ∈
π∗V(x,z), we have ‖((x, z), v)‖∗(x,z) = ‖v‖x.

The map s ′ : X ′ → π∗V given by s ′(x, z) = ((x, z), s(x)) is a continuous section

of π∗V on X ′, so by the case of the theorem that we have already established, there

is a holomorphic section t of π∗V defined on a neighborhood U of the set X ′ that

approximates s ′ on X ′. We can choose t so that ‖t(x, z) − s ′(x, z)‖∗ < ε(x). The

section t is of the form t(x, z) = ((x, z), τ (x, z)) for a holomorphic map τ : U → V

that satisfies π(x, z) = η(τ (x, z)), i.e., x = η(τ (x, z)), and

(4.1) ‖s ◦ π(x, z) − τ (x, z)‖∗ < ε(x).

The hypothesis that X admits asymptotic holomorphic approximation implies

that the embedding h can be approximated asymptotically on X by a map h ′ that is

holomorphic on a neighborhood of X. Define a map ϕ holomorphic on a neighbor-

hood of X and taking values in M × C
p by ϕ(x) = (x, h ′(x)). We have π(ϕ(x)) = x

for x near X.
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The composition τ ◦ϕ is a holomorphic map from a neighborhood of X into V ; it

is a section of V . The composition s ◦ π ◦ϕ is defined and coincides with the section

s on a neighborhood of X, provided h ′ is a sufficiently good approximation to h. As

τ ◦ ϕ − s = τ ◦ ϕ − s ◦ π ◦ ϕ = (τ − s ◦ π) ◦ ϕ

it follows from (4.1) that ‖τ ◦ ϕ(x) − s(x)‖ ≤ ε(x). The theorem is proved.

5 Rational Approximation

For a compact set X in C
N we use the standard notation that R(X) is the subspace

of C (X) composed of the functions that can be approximated uniformly on X by

rational functions without poles on X. Gauthier and Zeron [6, 11] have proved the

following two results.

Theorem 5.1 If X is a compact subset of C
N such that R(X) = C (X), then each con-

tinuous null-homotopic map from X to P
N can be approximated uniformly by rational

maps whose critical set does not meet X.

A rational map is a map f of the form f = π ◦ P in which π : C
N+1 \ {0} → P

N is

the usual projection and P = (p1, . . . , pN+1) : C
N → C

N+1 is a polynomial map. The

critical set of f is the set P−1(0).

There is a partial converse.

Theorem 5.2 If X is a compact subset of C
N that is a CW-complex of real dimension

not more than 2m, and if f : X → P
m is a continuous map that can be approximated

uniformly by rational maps whose critical sets miss X, then f is null-homotopic.

Gauthier and Zeron [6] exhibit the particular example of

T
2
= {(z1, z2) ∈ C

2 : |z1| = |z2| = 1}

that satisfies R(T
2) = C (T

2) but for which not all continuous maps f : T
2 → P

1

can be approximated by rational maps. To be sure, such an f can be approximated

by maps holomorphic on neighborhoods of T
2 in C

2.

Our first object in the present section is to show that in the Theorem 5.2, the

condition that X be a CW-complex is unduly restrictive.

Theorem 5.3 If X is a compact subset of C
N that has dimension not more than 2m,

and if f : X → P
m is a continuous map that can be approximated uniformly by rational

maps, then f is null-homotopic.

Here we understand dimension to be topological dimension. For dimension the-

ory one should consult the classical treatment given by Hurewicz and Wallman in

[9].

The proof of this theorem depends on the following fact from dimension theory.

Lemma 5.4 If X is a separable metric space of topological dimension not more than

2n, then every continuous map from X to C
n+1 \ {0} is homotopic to a constant.
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Proof If ϕ : X → C
n+1 \ {0} is a continuous map, it is homotopic to the map ϕ/|ϕ|

from X to the sphere S
2n+1. According to [9, p. 88, Thm. VI.6], ϕ/|ϕ| is homotopic to

a constant because X is of dimension not more than 2n, whence ϕ itself is homotopic

to a constant.

Proof of Theorem 5.2 The proof of this theorem follows precisely the lines of that

given by Gauthier and Zeron, except that we use Lemma 5.4. By that lemma, each

rational map from the set X of the theorem is homotopic, on X, to a constant, so

every continuous map from X that can be approximated uniformly by rational maps

holomorphic on X must be homotopic to a constant on X.

As Zeron [11] noted, Theorem 5.2 implies that even for a polynomially convex set,

X in C
N , the condition that P(X) = C (X) does not imply that every holomorphic

P
1-valued map defined on a neighborhood of X can be approximated by rational

maps. Zeron gave an explicit example, which is the stereographic projection from

the unit sphere S
2 in R

3 ⊂ C
3 to the Riemann sphere. This map is of degree ±1 and

thus is not homotopic to a constant.

Theorems 5.3 and 5.1 lead naturally to the problem: When does f : X → P
N lift

to f̃ : X → C \ {0}? This is an entirely classical problem in lifting theory . A simple

answer, which is surely well known, is the following.

Lemma 5.5 If X is a paracompact space, if f : X → P
n is continuous, and if the

induced map f ∗ : Ȟ2(P
N ; Z) → Ȟ2(X; Z) is the zero map, then f lifts to f̃ : X →

C
n+1 \ {0}. That is, there is a continuous map f̃ : X → C

n+1 \ {0} such that f = π ◦ f̃ .

Conversely, if f lifts, the map induced from Ȟ2(P
N ; Z) to Ȟ2(X; Z) is the zero map.

In this and below, Ȟ∗ denotes Čech cohomology.

A simple example is this: The bundle C
2 \ {0} → P

1 is not trivial. There does not

exist a lifting of the identity map P
1 to itself. We have that Ȟ2(P

1; Z) 6= 0, and, in

fact, the identity map is a generator of π2(P
1).

Proof of the Lemma The exact sequence of sheaves

0 → Z → CCC X → CCC
∗

X → 0

with CCC X the sheaf of germs of continuous C-valued functions on X and CCC ∗

X the sheaf

of germs of continuous, zero-free C-valued functions on X yields the isomorphism

Ȟ2(X; Z) ≃ Ȟ1(X;CCC ∗

X), for the sheaf CCC X is fine and thus has vanishing cohomology.

Let U = {Uα}α∈A be an open cover, which can be chosen to be finite, of P
N such

that for each α there is a continuous map µα : Uα → C
N \{0} with π◦µα the identity

map on Uα. If we set Wα = f −1(Uα), then W = {Wα}α∈A is an open cover of X.

Thus, µα ◦ f is a lift of f over the set Wα. Set Uα,β = Uα ∩Uβ and Wα,β = Wα ∩Wβ .

The fibers π−1(p) for p ∈ P
N are copies of C \ {0}, so there are continuous

maps µα,β : Uα,β → C \ {0} such that on Uα,β we have µα = µα,βµβ . The family

{(Uα,β), µα,β}α,β∈A determines an element of Ȟ2(P
N ; C ∗) ≃ Ȟ2(P

N ; Z). By hypoth-

esis, the induced map f ∗ : Ȟ2(P
N ; Z) → Ȟ2(X; Z) is the zero map, so the cohomol-

ogy class in Ȟ2(X; C ∗) determined by {(Wα,β , µα,β ◦ f )}α,β∈A is trivial. There exist

zero-free continuous functions gα on Wα such that µα,β ◦ f = gα/gβ on Wα,β .
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If we set hα = gαµα ◦ f on Wα, then hα = hβ on Wα,β . Accordingly, the hα taken

together yield a lift f̃ : X → C
n+1 \ {0}.

Conversely, suppose f : X → P
N to lift to f̃ : X → C

N+1 \{0}. At the cohomology

level we have f ∗ = f̃ ∗ ◦ π∗. The group Ȟ2(C
N+1 \ {0}) vanishes, so f ∗ is the zero

map. The lemma is proved.

Corollary 5.6 If X is a paracompact space with Ȟ2(X; Z) = 0, and if f : X → P
N

is a continuous map, then there is a continuous map f̃ : X → C
n+1 \ {0} that satisfies

π ◦ f̃ = f .

Corollary 5.7 ([11]) If X ⊂ C
n is a rationally convex set that admits holomorphic

approximation, and if Ȟ2(X; Z) = 0, then every continuous map f : X → P
N can be

approximated uniformly on X by a rational map.

In these corollaries, no restriction is placed on the dimensions n and N.

There is an extension of Corollary 5.7.

Corollary 5.8 If the compact set X admits holomorphic approximation, then every

continuous map f : X → P
N for which the induced map f ∗ : Ȟ2(P

N ; Z) → Ȟ2(X; Z)

is the zero map can be approximated uniformly on X by maps of the form π ◦ f with π
the projection from C

N+1 \ {0} to P
N and with f = ( f1, . . . , fN+1) a holomorphic map

from a neighborhood of X to C
N+1 \ {0}.

6 On the Size of Sets that Admit Holomorphic Approximation

We have been concerned with compact sets that admit holomorphic approximation.

There are certain obvious restrictions on such sets. Trivially, no such set can have

interior points. For subsets of C
N a much stronger condition can be established.

Theorem 6.1 If the compact subset X of C
N admits holomorphic approximation, then

dim X ≤ N + 1. If P(X) = C (X), then dim X ≤ N.

In particular, if R(X) = C (X), then dim X ≤ N + 1. Simple examples show that

the bound in the case of polynomial approximation is sharp. If X is any compact

subset of R
N ⊂ C

N , then P(X) = C (X). It is unknown whether the bound of N + 1

in the cases of rational and holomorphic approximation are sharp. Does there exist in

C
N a set of dimension N + 1 that admits holomorphic approximation or that satisfies

R(X) = C (X)? When N = 1, the answers are no. The general case does not seem to

be evident.

Proof (See [5, p. 62, Lem. 5.4].) Consider first the case that P(X) = C (X). This

condition implies that X and all its closed subsets are polynomially convex and there-

fore that if E is a closed subset of X, then [10, p. 96, Cor. 2.3.6], ȞN (E; Z) = 0. This

implies that dim X ≤ N. See [9, p. 151, Thm. VIII 3]. The case of holomorphic

approximation follows precisely the same lines but depends on the vanishing of the

groups ȞN+1(X; Z) for holomorphically convex subsets of C
N . See [10, Th. 6.2.13,

p. 298].

One can go somewhat further in the direction of the preceding result:
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If X is a complex space of dimension N and if the compact subset X of X admits

holomorphic approximation, then the topological dimension of X does not exceed

N + 1.

The proof of this assertion is by induction on the dimension of X . If dim X =

1, then the result is plainly so. No subset of X has topological dimension greater

than two. Assume the result to be correct for all complex spaces of dimension not

more than N. Consider a complex space X of dimension N + 1 and in it a compact

subset X that admits holomorphic approximation. Two cases can occur. It could

be that X is contained in some closed subspace Y of X that has dimension not

more than N, e.g., X might be contained in the singular variety Xsing of X . In this

case the topological dimension of X does not exceed N + 1 because of the induction

hypothesis, for the assumption that X, viewed as a subset of X , admits holomorphic

approximation implies, by restricting the approximating functions, that X admits

holomorphic approximation when considered as a subset of the space Y .2 In the

case that X is contained in no closed subspace of X of dimension less than N + 1, let

us denote by Xmax the union of the (N + 1)-dimensional branches of X . We will

be done if we can show that the topological dimension of the set X ∩ Xmax is not

more than N + 2. For this, it suffices to show that if x ∈ X ∩Xmax is a regular point

of X , then a neighborhood of x in Xmax has dimension not more than N + 2. This,

however, is clear. Given such a point x, there is a neighborhood, say V , of it that is

contained in a coordinate neighborhood in the manifold of regular points of Xmax.

This neighborhood is biholomorphically equivalent to a domain in C
N+1, say under

the biholomorphism ψ. If E is any compact subset of V , then ψ(E) is a compact

subset of C
N+1 that admits holomorphic approximation (as a subset of C

N+1), and

thus has dimension not more than N + 2 by the theorem given above. Our assertion

follows from the Sum Theorem of dimension theory. See [9, p. 30, Thm. III.2].
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