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1. Introduction. Let B(H) denote the algebra of operators (i.e., bounded linear
transformations) on the Hilbert space H.A e B(H) is said to be p-hyponormal
(0<p=1), if (AA*)Y =(A*A). (Of course, a 1-hyponormal operator is hyponormal.)
The p-hyponormal property is monotonic decreasing in p and a p-hyponormal operator is
g-hyponormal operator for all 0 <g =p. Let A have the polar decomposition A = U |A]|,
where U is a partial isometry and |A| denotes the (unique) positive square root of A*A. If
A has equal defect and nullity, then the partial isometry U may be taken to be unitary.
Let #U(p) denote the class of p-hyponormal operators for which U in A= U |A]| is
unitary. #U(1/2) operators were introduced by Xia and #U(p) operators for a general
0 <p <1 were first considered by Aluthge (see [1,14]); #U(p) operators have since been
considered by a number of authors (see [3,4,5,9,10] and the references cited in these
papers). Generally speaking, #U(p) operators have spectral properties similar to those of
hyponormal operators. Indeed, let A € HU(p), (0<p <1 /2), have the polar decomposi-
tion A=U|A|, and define the HU(p +1/2) operator A by A=|AI"2U|A|'"* Let
A=V|A| with V unitary and A be the hyponormal operator defined by A=
|A|'"?V |A|'2. Then we have the following result.

Lemma 0. o,(A) = o (A), where o, denotes either of the following: point spectrum,
approximate point spectrum, eigenvalues of finite multiplicity, spectrum, Weyl spectrum,
and essential spectrum.

Recall that an n-tuple & =(A,,A,,...,A,) of operators is said to be doubly
commuting if A;A;— A;A, =0 and A¥A, — AAF =0, for all 1 =i%j=n Doubly com-
muting n-tuples & of operators in FU(p) have been considered by Muneo Cho in [3],
where it is shown that a weak Putnam theorem holds for & and that & is jointly
normaloid. In this note we study the relationship between the spectral properties of
and f=(A,, A,,...,A,), and prove that o,(sf)=o,(sf), where o, is either the joint
point spectrum or the joint approximate point spectrum or the joint (Taylor) spectrum.
This then leads us to:

(a) sl =1Isl;
(b) if o() e R, then A; is self-adjoint, for all 1 =i =<n.

We show that the (Cho-Takaguchi) joint Weyl spectrum of & is contained in the
(Taylor) spectrum o(&f) of & minus the set of isolated points of o(sf) which are joint
eigenvalues of finite multiplicity, and that & and & have the same (Harte) essential
spectrum. We conclude this note with a result (in the spirit of Dash [8, Corollary 4.6]) on
the joint eigenvalues of & in the Calkin algebra.

We assume henceforth, without loss of generality, that 0<p <1/2. Most of the
notation that we use in this note is standard (and usually explained at the first instance of
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occurence). The following theorem, the n-tuple version of the Berberian extension
theorem, will play an important role in the sequel.

THEOREM B. If o = (A, A4, ..., A,) is an n-tuple of commuting operators on H, then
there exists a Hilbert space H° > H and an isometric *-isomorphism A;,— A}, (1 <i=n),
preserving order such that o,(A;) = 0,(A?) = a,,(A?) and o,(4)=0.(A), As..., A)=
o.(AY, AY, ... AN =0,(A),A),... AN = 0,(A°). (Here o,(f) and o.(sf) denote,
respectively, the joint spectrum and the joint approximate point spectrum (defined below)
of &.)

It is my pleasure to thank Professor Muneo Cho for supplying me with off-prints and
preprints of his papers.

2. Results. Throughout the following & =(A,, A,,...,A,) will denote a doubly
commuting (i.e., A;A; — A;A; =0 and A;AF — AFA; =0, for all 1 <i#j=<n)n—tuple of
HU(p) operators A; (1 =i =n). Given A, = U, |A,|, define A4, by 4, =|4,]'"? U, |A,|'?; also,
letting A, have the polar decomposition A; = V;|A;|, define A; by

A=A VA7 (1=i=n).

The n-tuples A and o are then defined by A =(A,,A,...,A,) and o, =
(A17A27"'7An)'

Lemma 1. of is doubly commuting= s is doubly commuting=> sl is doubly
commuting. Also, & is doubly commuting = [A;,|A;[]=0=[4,, |.2i/-!] =0,forl=i#j=n,
where [A, B] denotes the commutator AB — BA of A and B.

Proof. Given A, =U;|A;| and A;=V;|A/|, the doubly commuting hypothesis on
implies that
(U, U] = [1Ail, 14;] = [14], U] =0,

for all 1=i#j=<n. (See [11, Theorems 2 and 4].) Consequently, < is doubly commuting
and so

[Vi’ V/] = “All, |A]|] = [lAll’ vj] = 0,

for all 1=<ij=<n. This implies that &/ is doubly commuting. The argument above also
implies that [4,, A;] = [A;,A¥]=[4,, A]]=[A,,A}] =0, for all 1<i%j=<n. Hence, also,
[AL 1A =[A,|A]]=0, forall 1<i#j=<n.

In the following we shall denote the Taylor joint spectrum of & by o (). (See [13]
for the definition of Taylor spectrum of a commuting n-tuple of operators.) We say that
A=A Ay .., A,), (A; € C for all 1 =i=n), is in the joint approximate point spectrum
o () of o if there exists a sequence {x,} of unit vectors in H such that

N(A; = A)x[| >0 as k— oo,

forall 1=si=n; A=(A;,As...,A,), A, e Cforall 1 =i=n, is in the joint point spectrum
o,(s) of o if there exists a non-trivial vector x e H such that

(Ai—A)x=0, forall 1=<i=n.
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We say that A= (A, Ay,...,A,) is in the normal point spectrum o,,(f) of o if there
exists a non-trivial vector x e H such that (A, —A)x=0&(A, —A)*x =0, for all
1<i=n.

LEMMA 2. 0,(H) = 0,,(H) = 0,,(H) = a,(H).

Proof. Let A=(A,A,,...,A,)e0,(4) and let x e H be such that x#0 and
(A;—A)x=0forall l<i=<n. Tt is easily seen that A; |A,|'"?|A4,]'"% = |A,|'?|A;|'"?A;; hence

Ai |Ai|”2 |Ai|”2 =X |Ai|l/2 |Ai|”2X,

forall 1<i=n. Let

l—[ A ”2|A,|”2x,

ety

where on the product “II” denotes that only those |A,|s, (and so also |A,|s), appear
=1

in the product for which A, in A,x = A,x does not equal 0. Then y is non-trivial, and
A;y=A\y, forall i=1,2,...,n for which A;#0.

If A;=0,ie. A;x =0, then |4,|"? x = 0. This implies that Ax =0. Since this in turn implies
that |4,/ x =0, we conclude that A,x =0. Since [4;, A;] =0 for all 1 <i#j=<n, we have
that A,y =0. Consequently, A € 0,(«) and 0,() € o,(A).

If, on the other hand, A = (/\l, Az, - ,AL) € a',,(&f) then there is a non-trivial x ¢ H
such that (A, —A,)x=0 and (A*-A; )x =0 for all 1=i=n. Since A¥|A,|"?|A|"?=
IA Il/Z IA II/ZA

AF A" |Ai|”2x = Xi A" lAi|”2x
for all 1 =i =n. Defining (0 # )y by

n'
=[T141")14,"? ,
=1

where [’ has meaning similar to that above, we have A¥y = X,»y, forall i=1,2,...,n

=1
such that A;#0. Since A, € 0,(A,) implies A; € 0,(A;) = 7,,(A;) (see Lemma 0), A,y =

Ay foralli=1,2,...,nsuch that A;#0. Now if A;x =0, then 0 0,,(A,) o,(A;) and
Afx =047 VFIA{"?x=0
SAFIA " x=004,|A"x=0
1412 x=0>Ax=00A% =0
SAFA|I"x=00A4;14]"x =0
DA x=02Ax =0 A% =0.

(Line 2 follows since 0e 0,(A;). Line 4 follows because 0 e a,(A;) = 0,,(A).)
Consequently, A;y =0 for such an i. Hence 0,(d) < 0,(#). Since 0,(A;) = 7,,(A;) and
o,(A;)=0,,(A)), for all 1 =i =n, this completes the proof.

1p
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LemMa 3. 0,(H) = 0uu(H) = T u(H) = 0:(A).

Proof. Letting A°= (A}, AS,...,A)) denote the Berberian extension of & (see
Theorem B), it follows from Lemma 2 that

() = 0o(A°) = 0, (H4°) = 0, (A°) = 0, (A°) = 04( ).
We are now in a position to prove the equality of the (Taylor) spectra of & and .
THEOREM 1. () = o(H).
Proof. Let A =(Ay, As,...,A,) € o(«). Then there exists a partition
{is. s idULys o0 of {1,2,...,n}
and a sequence {x.} of unit vectors in H such that
(A, — A)xc—0 and (A¥—X)x,—0 as k-,

for all I=r=m and 1=t<s. (See [7, Corollary 3.3).) Let &° denote the Berberian
extension (AJ,...,Ad, A}, ..., AY) of &, and let B=(A},..., A} AY* ... AD¥). Then

LAk
(A,‘], ey /\im, Xfl’ ceey X/) € Up(%)
Since 0,(A}) = a,(A}) = 0,,(A}), for all 1 <r=m, and since

112 * 4%

i [/ T

AFIAP VAU =1A) VEIA
it follows (from an argument similar to that used in the proof of Lemma 2) that
0,(B) < 0,(B) and

Ae 0, (A4 %) = o (A*) < a(A*).
Hence A € o(sf), and o(sf) < o(A). )
Conversely, if A e o(4), then (from an argument similar to that above) A e
0,(s4**). This implies that A € g,(#*) S o(s*), A € o(sf) and o(sf) S (). Hence
o(d) = o(s), and the proof is complete.

The joint spectral radius r(7) and the joint operator norm [ 7] of an n-tuple
J=(1,T,...,T,) are defined by

r(9)= sup{lx\l = (; |)\,~|2)m: A=(AL Ay .. 0, € a(ﬁ‘)}
and

171 =sup{ (3 1Tl cx e e =1}

See [6]. The operators & and & being jointly normaloid (see [3, Theorem 9] and [6,
Theorem 3.4]), r(#f) = ||| and r(sf)=|sf||. Theorem 1 thus implies the following
result.
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CoroLLarY 1. ||| = ||| = | ]

That ||A|| = ||A|| for a single operator A e U(p) has been proved by M. Fujii et al.
in [10].

Given a semi-normal (i.e., hyponormal or co-hyponormal) operator T=X +iY, a
well known result of Putnam [12] states that if a real number r € o(X) (or r + is € a(T),
for some real numbers r and s), then there exists a real number s such that r + is € o(7)
(resp., r e o(X) and s € o(Y)). This result extends to doubly commuting n-tuples of
hyponormal operators [4]. Does a similar result hold (for A € %U(p) and) doubly
commuting n-tuples in #U(p)? The technique of this paper (seemingly) does not lend to
a proof of this. We do however have the following analogue for #U(p) operators of a
result on n-tuples of doubly commuting hyponormal operators with spectrum in R”". (See
[4, Corollary].)

CoRoOLLARY 2. [f o() = R", then A, is self-adjoint, for all 1 =i =n.

Proof. Since a(&f)=(r(.sz¢)~g R", A, is self-adjoint, for all 1=<i=n, by [4]. Recall
that A; is normal if and only if A, is normal [9, Corollary 2]; hence A,; is self-adjoint, for all
l=i=n

Following Cho [2], we define the joint Weyl spectrum o,,(7) of a commuting n-tuple
T by

0,(7)= N{c(J + K); ¥ is an n-tuple of compact operators and (J + ¥) is a
commuting n-tuple}.

Let a0(T) denote the set of isolated points of o(J) which are joint eigen-values of finite
multiplicity of J. It is clear from Theorem 1 that, if A is an isolated point of o(sf), then A
is an isolated point of o(sf). The operator s being a doubly commutitive n-tuple of
hyponormal operators, an isolated point A of o(sf) is a point of g,(#). Hence by
Lemma 2 we have the following result.

CoroLLARY 3. If A is an isolated point of o (), then A € 7,().

Recall that if A is p-hyponormal, then ¢,(A) = o(A) — gp(A) by [9] and if T is a
doubly commuting n-tuple of hyponormal operators, then o,(9) € 0(J) — 04(J) by [2].

THEOREM 2. o ,,(H) S o(A) ~ ooy A).

Proof. Suppose (A}, Az,...,A,) € on(sf), and let N = ker{ i (A, — A)*A; - )\,-)}.
i=1
Since A € 0,() if and only if 0 € a,,( 2 (A= *A, - A,-)), N is finite dimensional. By
i=1

Lemma 2, 0,() = 0,,,(); hence N reduces &,y =& | N=(A,|N,A;|N,..., A, |N)
is normal and &, =& |N*=(A,|N* A;|N*,...,A,|N*) is a doubly commuting
n-tuple of #U(p) operators. Let P be the orthogonal projection of H onto N. P is then a
compact operator which satisfies [A;, P] = [AF, P]=0, for all i = 1,2,...,n The operator

1 1 1
+P= —= +—=P,.. A+
A+ P <A.+\/;P,A2 \/;P, VA, \/EP)
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is a doubly commuting n-tuple. Let

%=(ﬂ+@)|N=((A,+\%P) lN,(Aﬁ\—};P)‘N,...,(A,,+%1>P|N),
F=(d+ P)| N*“.

% and & are then doubly commuting n-tuples such that o(d + P) = o(R)Uo ().

Suppose that A € o(A + P). Then A ¢ o(R) and so A must be an isolated point of
o(%). There exists a partition {i\,. .., i, }U{ji,...,js of {1,2,...,n} and a sequence {x,}
of unit vectors in N* such that

1 - 1
(Ai’_/\i’+\/—ZP>Xk—)O and (A}f—/\j,+\—/——ﬁP)xk-—>O as k — .

But then A € o(#,) and hence (by Corollary 3) A € 0,,(s,). Thus there exists an x e N*
such that (A, — A;)x =0, for all i =1,2,...,n. Since this is a contradiction, we must have
A ¢ o, ().

RemaRks. (i) the Taylor-Weyl spectrum of 7, o,(9), is defined to be the set of
A=(A, Ay, ..., A,) such that (F — A) is not Taylor-Weyl (where J — A is said to be
Taylor-Weyl if  — A is Fredholm and index (7 —A)=0). Theorem 2 implies that
o(\07,(A) 2 0go(A). The inclusion o(H)\ o, (H) S o4(H) does not hold (even for
hyponormal &).

(ii) Given a p-hyponormal operator A, o,(A4)=o0,(A) by [9]. Does o, ()=
0,(H)?

The Harte spectrum o,(J) of the commutative n-tuple 7 is defined to be
o (D)= (TUc’(9), where o'(F) (respectively, ¢'(F)) is the set of A=
(A1, Az, ..., A,) such that {T; — A}, <;<, generates a proper left (resp., right) ideal in B(H).
The (Harte) essential spectrum o,(9) is defined by o.(9)=c(a), where a=
(ay,ay,...,a,)=n(9) and 7 is the canonical homomoprhism of B(H) onto the Calkin
algebra B(H)/K(H); K(H) is the algebra of compact operators on H. For a single linear
operator, the (Harte) essential spectrum coincides with the essential spectrum; the
following extends the conclusion o.(A) = o,(A) of Lemma 0 to o,(sf).

THeOREM 3. 0.() = 0.(A).

Proof. Suppose A € o,(sf). Then, o being a hyponormal n-tuple, there exists a
sequence {x;} of unit vectors converging weakly to 0 in H such that

I(A; = A)*x | =0 as k—oo, foralll=i=<n,

by [8, Theorem 2.6]. Let {y,} be the sequence defined by

ve= (11 = idaes) /| I armiaes

3

334!

where on the product [] denotes that only those |4,|s and |A,| s appear in the product
i=1

t
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for which A, # 0. (Notice that if |||A/!x,|| or |[|A,["? |A;|"%x, || — 0 as k— o, for some i
with 1 <i=<n, then ||}]A,|"?x.|| and ||A.x;|| >0 as k — %.) Since (x,, h)—0 as k — = for
allh e H, (y,\,h)—>0 as k— o« and

HI IA |1/2 lA lI/Z

i=1

”(Aj - )\j)*)’k” = (Aj - ’\j)*xk -0 ask—o,

n -
H_Hl' |4 A" x,
i=

for all 1<j=<n. Thus A € o(s4) and o.(A) < 7.(f).

Consider now A € o.() = ol(f) U o,(). Suppose that A € o'(sf); then there exists
a sequence {x,} of unit vectors converging weakly to 0 in H such that ||(A; — A,)x;|| -0 as
k — o, for all 1 =/ =n. Defining the sequence {y,} by

n -
(1T 1Aa= a0

?

n ~
[ 1a12 a0,

(where IT" has a meaning similar to that above), an argument similar to that above shows
i=1

that {y,} is a sequence of unit vectors converging weakly to 0 in H such that
N(A, = A)yk] =0 as k—ow, foralll=i=n.

Hence A € ol(sf). A similar argument shows that if A € o’(sf) then A € o’(sf). Thus
o.(d) € o,(s), and the proof is complete.

COROLLARY 4. o,(f) = o).
Proof. The argument of the proof of Theorem 3 implies that
0l SA) € o) = 0.(sd) = o) € T SA).
CoroLLARY 5. oy () = o (A) U o, (*)*.
Proof. Let os()={A= (A}, As,...,A,): there exists a sequence {x,} of unit vectors

in H such that ||(A; — A)*x | >0 as k— o, for all i=1,2,...,n} denote the joint
approximate defect spectrum of &/. Then

o) = o' (A) U o' (o) = 0,(4) U o5(H).

By Lemma 3, 0,(f) = 0,(sf); applying an argument similar to that used in the proof of
Lemma 2 1o AV it is seen that o5(s) = o5(f). We have

7(d) = ox(A) U 05(sd) = o() U 05(A) = 75(A) = 7y(A),
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since & is a hyponormal n-tuple. Also, since
() = o5(d) = 0.(A) U 0,(d*)* = 0.(A) U o, (%)%,

the proof is complete.

The n-tuple (A, A,,...,A,) is said to be essentially doubly commuting (resp.,
essentially #U(p)) if the n-tuple (a,,a,,...,a,), where a;,=n(A;) for all 1=i=n, and
n:B(H)— B(H)\K(H), is doubly commuting (resp., #U(p)). We close this note with the
following result.

THEOREM 4. Suppose (A, A,,...,A,) is an n-tuple of essentially doubly commuting
essentially #U(p) operators. Then A, A,,..., A, have a common reducing subspace
“modulo the compact operators”.

Proof. The hypotheses imply that a; € #U(p) for all 1 =<i=n and that the a;s are
doubly commuting. Since oi(«)N o) is not empty (this is consequence of the

definition of essential spectrum—see [8, Lemma 4.2]), there exists A =(A;,A5,...,A,) €
ol(sf) N o(sf) and a non-zero projection g in (the Calkin algebra) B(H)/K(H) such
that

aq=Xrqg (Q=i=n)

Since 0,(a;) = g,,(a;), this implies that afqg= Ag (1=i=n). Consequently a,q=
(Aig)* = (afq)*=qa; (1=<i=<n), or, letting n(Q)=¢q, (A;Q— QA;) is a compact
operator, for all 1 =i = n. This completes the proof.
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