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1. Introduction

In this paper we consider spaces Ap, pe[ l ,2] , and multipliers (A", A*),
pe[l ,2], qe[ l ,2] . In 4.4 and 6.1 we identify (A",Aq) for pe[ l ,2] , gej>,2],
and in 7.3 we identify (A2, A1). In 7.1 we give a sufficient condition, and in 7.5
a necessary condition, for membership of (Ap,Aq), pe(l,2), q e[l,/>). We give,
in 7.2, a necessary condition for membership of (A2,Aq), q e[l,2). We include
constructive proofs of some strict inclusion results for Ap, p e [1,2], (3.1 and 3.2),
and also, in 5.3, for (AP,AP), pe[ l ,2] .

The author would like to thank Professor Robert Edwards for his many
helpful suggestions and for his constant guidance during the work for this paper.

2. Preliminaries

2.1 We consider functions on the circle group T, and write

Ap = {feC(T):feF(Z)}, pe[l,oo);

compare here the author's paper [1]. It is known that Ap is a Banach space under
the norm

We define ev to be the function e"i->eIV' on Tand note that, for heAp,

(2.1) Np(eyh) = N,{h); Mp(evh) = Mp{h).

The spectrum of h eLl{T) is defined by

sp(/0 = {neZ : / i (n)^0}.

If (j), ij/ are positive functions on {0,1,2, •••}, we write 4> ~ \\i if and only if
0 < inf 0"1i/' ^ sup (j>~lij/ < oo.
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320 Lynette M. Bloom [2]

2.2 In [4 ] , p . 33, the Rudin-Shapiro polynomials Pm (m = 0,1,2,—) are

denned by

Pm=2-Lem(n)en,
n = O

where the em(n) e { — 1,1} are chosen in such a way that

(2.2) |Pm| ^ 2(m + 1)'2 ; Mp{Pm) = 2m">, m = 0 ,1 ,2 , - .

2.3 By a multiplier from Ap to 4*,pe[ l ,2] ,qe[ l ,2] , we mean a continuous
linear operator T : A" -* Aq which commutes with translations. As can be seen
from [2], 16.3.1, to each multiplier T : Ap -+ Aq there corresponds a unique dis-
tribution <f> such that T is (the restriction to Ap of) the operator 7^ defined by

(2.3) V=0*/.

We denote the space of such distributions (j> by (Ap, A*) and refer to <b e (Ap, Aq)
as a multiplier from Ap to Aq. A distribution <b belongs to (A", Aq) if and only if

(2.4) Nq(4> */) g const. Np(f), V/e TP,

where TP denotes the space of trigonometric polynomials on T. In particular, a
distribution <b belongs to (A",C) = (A", A2) if and only if

(2.5) \\<l>*f\U ^ c o n s t - NP</)> V/eTP;

or, what is equivalent, if and only if

(2.6) | <h */(l)| g const. JVp(/), V/e TP.

2.4 We denote by PM the space of pseudomeasures on T, and those pseudo-
measures having Fourier transforms in lk,ke(0, oo], we denote by PMk. PM1 is
identifiable with A = A1, PM2 with L2, and PM°° with PM. We denote by M
the space of Radon measures on T, and by Mk those measures having Fourier
transforms in /*, ke(0, oo]. M2 is identifiable with L2.

2.5 We write p' for the conjugate exponent of pe[l,oo). p' is such that
\jp + lip' = 1, p G(1, GO), and p' = oo if p = 1.

2.6 We define (Ap)' to be the set of linear functional / on TP such that

(2.7) \l(f)\S const. Np(f), VfeTP.

Since TP is dense in Ap, the restriction from A" to TP gives a 1 — 1 map of the
dual of Ap onto (Ap)'.

2.7 For a e T, we define translation operators xo by

(2.8) T j : x ^ / ( a x ) , VxeT.
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3. Strict inclusion results for A", p e [1,2]

In this section we will prove constructively the following strict inclusions:

(3.1) U A'SA<ifqe(l,Z],
peri,?)

and

(3.2) A«% 0 ^ ' i f « 6 [1,2).
P e 07.2]

CONSTRUCTION 3.1 The strict inclusion (3.1).
Consider a given q e(l,2]. Define fke TP by

(3.3) ft = Pt.,Ptew k = 0,1,2,-,

where the sequences (/?*,,) and (vt) will be chosen appropriately, the latter in
such a way to ensure that the Sk = sp(/t) are disjoint. Now, from (2.1), (2.2) and
(3.3) we have

(3.4)

and

(3.5)

Define / = S*% fk. Since N9(f) ^ ££=0 W * ) it follows from (3.4) that a suf-
ficient condition for feAq is that

(3.6) £ ft ,2*'«< oo,4e(l,2].
lt = 0

Choose

(3.7) ft., = (fc + l)-22-*/ f , k = 0 ,1 ,2 , - .

Then (3.6) is satisfied since

I Pk,q2
k/«= Z (fc + l ) - 2 < oo.

*=0 t=0

We will now show that, with (/?M) as in (3.7), f£\Jpell q)A
p. Since the series

defining / converges in Aq,

(3.8, A . )

where
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Also, for fk defined as in (3.3),

(3.10) Sk = {neZ:vk^ n g, vk + 2k-l},

so each Sk is a finite set with cardinality

(3.11) N=2*.

Thus, making use of (3.8), (3.9) and (3.11),

= 2 |/(»)|"
n e Z

= 2 2 \}k{n)\"
*=O neSk

= 2 (k + l)-2p2-k''l'>2k

k = 0

= 2 (fc + l)-2*2*(1-p/«>
t = 0

= oo for « e(l,2],

We still need to choose (vk) appropriately. It is sufficient to choose (yk) to
be a strictly monotonic increasing sequence such that

(3.12) vk+i>vk + 2k-l, fc = 0,1,2,. . . ,

to ensure that the Sk, k — 0,1,2, •••, are disjoint. (3.12) is satisfied by the choice

(3.13) v, = 2*+1, fc = 0 , 1 , 2 , - ,

and our construction is completed.

CONSTRUCTION 3.2. The strict inclusion (3.2).
The method employed here is the same as in 3.1. Similar reasoning shows

that, given

/ = 2 A,
Jt = O

where
, fc = 0,1,2,-,

is such that/^4«, but/enpe(,,2]^P-

4. The multipliers (^p,^p), P e [1,2]

LEMMA 4.1. 04p,/P) = (Ap,C),pe[l,2].

PROOF. Since, for pe [1,2], 4̂P s C with a continuous injection,
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(4.1) (AP,A»)^(AP,C).

Conversely, suppose <t> e (Ap, C), p e [1,2]. Then

(4.2) H*f\U^ const. l/IU.V/eTT.

Also, using (2.5),

(4.3) | <?(n) • /(n) | ^ \\<t> */||a, £ const. Np(/), V/e 77>, Vn e 2.

P u t / = <?„ in (4.3) to get

(4.4) |<£(n)| g const., VneZ.

Thus 4>ePM, and so

Hence, combination of (4.2) and (4.5) shows that

Np(4>*f)£ const. Np(

and so by (2.4) <£e(A",Ap). Thus

(4.6)

Combination of (4.1) and (4.6) completes our proof.
4.2 In view of what was said in 2.3 and 2.6, there is a 1 — 1 correspondence

/ «-> (j> between (A")' and (Ap, C) under which

(4.7)

This is equivalent to

(4.8) l(xxj)=4>*f(x), V/eTP, VxeT.

LEMMA 4.3. To every le(Ap)' corresponds fieM and oePM"' such that

(4.9) l(j) = »*Kl) + a*f(l), V/eTP.

The converse is also true.

PROOF. Consider the mapping /»-• (/,/), / e TP, and define

(4.10) S = {(fJ)eCxl":feTP}.

Take / e (Ap)' and define a map /' on S by

(4.11)

/' is well-defined since

/' is clearly linear; and since
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(4.12) | r (( / , / )) | = | l(j)\ S const. JV,(/). = const. ( | | / |w + | | / | | , ) ,

V is continuous on S as a subspace of C x I". Thus, by the Hahn-Banach Theorem,
I' can be extended to a continuous linear functional on the whole of C x I".
Denote this extension by /' also. We can now write

(4.13) i(/) = *'((/,0)) + /'((0,/)), V/eTP.

The mapping /H>/'((/,0)) is a continuous linear functional on C, so it can
be represented by a measure, n e M, such that

(4.14) /'((/,0)) = <£/> = ^*/(l), V/eC.

Also, fli->i'((O,0)) is a continuous linear functional on lp, pe[ l ,2] , so it can be
represented by an element, <xelp, such that

(4.15) T((O,0))= Ia(n)0(n).
« e Z

Define aePM"' by

(4.16) 6(n) = a(n), VneZ.

Then, f o r / G T P ,

(4.17) <7*/= S*(n)/(nK.
n e Z

Thus, by (4.15), we can write

(4.18) <r*/(l)= 2 «(«)!(«) = /'((0,/)), V/eTP.
neZ

Combination of (4.13), (4.14) and (4.18) gives

'CO = /**/(!)+ **/(!), V/GTi»,

where /* £ M and a £ PMP.
Conversely, suppose / I E M and asPMp. Consider the map / :/i->/i*/(l)

+ a */(l) on 7T. We see that, for every fe TP,

S const. Np(J).

Thusle(Ap)'.

THEOREM 4.4. (AP,C) = (A", A") = M + PM"', pe[ l ,2] .

PROOF. By 4.1, (^p,^p) = (AP,C) for pe[ l ,2] . By 4.2, 4>e{,Ap,C) if and
only if (j> is such that
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4>*f(x) = l(rxf), V/eTP, VxeT,

for some / e (A")'. Thus, by 4.3, <j> e (A", C) if and only if there exist n e M, a e PM"'
such that, for every fe TP and every xeT,

This signifies that <j> = n + a.

5. Strict inclusion results for (A", A"), p e [1,2]

Firstly, we will prove the following strict inclusion results:

(5.1) (A")'^ fl (AT if«e (1,2],
pe[l,9)

and

(5.2) U UT£Wif«e[l,2).
XE(«,2]

We note here that the wide inclusion " c " in (5.1) and (5.2) is trivial, since Nr is
stronger than Ns if r < s.

CONSTRUCTION 5.1. The strict inclusion (5.1).
Consider a given ge(l ,2]. We wish to construct a linear functional, / say,

on the space TP, such that

(5.3) /(/)= Z cj(n), feTP,
ncZ

where (cn) is chosen so that / is not continuous in the topology induced by Aq,
but / is continuous in the topology induced by A", for every p e [1, q). For pe(l,q)
it is sufficient to choose (cn) e I"', for then, for every fe TP,

|/(f)| ^ | 2 cj(n)\ Z \\(cn)\\p.Mp(f) g ||(c
neZ

Now define

(5-4) / t = pkAPkew k = 0,1,2,

where (ft,) and (vt) will be chosen appropriately, the latter to ensure that the
Sk = sp(/t) are disjoint. We have

(5.5)

Put
(bk.qsgnfk(n)\fk(n)\-'-i neSk

(5.6) c. = {

to nt\JtSk

=
10 n^Sk .
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where (bkq) is a sequence of positive terms which will be chosen appropriately.
Then (cB) e I"' if and only if

n 6 Z * = 0 neSk

which is equivalent to

(5.7) l(o||;: = JQ bgX;1*' N < »•
To ensure that / is not continuous in the topology induced by A", we seek to
arrange that

By (2.1), (2.2) and (5.4),

Also,
\Kfk)\ = | 2 cJUiOl = S **.f|/*(»)|f = bkJl,q\Sk\

n E Z n e Sic

Thus (5.8) can be replaced by the condition

that is, by

(5-9) Jfc\\
k

(3.10) and (3.11) apply here, so (5.9) becomes

(5.10) s u p ( b M ^ - 1 ) 2 - ^ 2 * ) = o o .
k

Choose

(5.11) fc*.f = (fc + l ) " w ; A . f = (fe+l)2/«2-t/*, fc = 0,1,2,

Then (5.7) is satisfied, since

t=o

< oo for pe(l,q).

Also, (5.9) is satisfied, since
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iy1/q\k

= sup[(fc + l ) w ] = oo for q 6(1,2].
*

As in 3.1 we can choose (yk) such that

(5.12) vt = 2*+1, k = 0,1,2,....

For the case q e(l,2] and p = 1, it is sufficient to have (cn)e Z00. From (5.6)
and (5.11),

= sup \cn\ = sup((fc + I)1"'2"*"').
nsZ I

Since

we see that ||(O||» = 1 < °°> and so (O e /°°,and our construction is completed.

CONSTRUCTION 5.2. The strict inclusion (5.2).
Consider a given q e(l,2). The method employed here is the same as in 5.1,

and similar reasoning shows that the linear functional, /, on TP, defined by

(5.13) / ( / )= S cj(n),
n e Z

where

(5.14) c ,= l o

(5.15) fk = Pk,qPkeVk, k = 0,1,2, - ,

(5.16) bktt = (k+\)~llq'\ i?M = (fc + l)-12"i /«' , fe = 0 ,1 ,2 , - ,

is such that / is continuous in the topology induced by Aq, qe(l,2), but / is not
continuous in the topology induced by Ap for every pe(#,2].

We now consider the case q = 1. We want to construct a suitable linear
functional, I, on TP, of the form given in (5.13). (cn) e /°° is a sufficient condition
for / to be continuous in the topology induced by A1 = A. Choose

ibk sgn fk(n)(M7) c.-[o

where (bk) is a sequence of positive terms which we will choose appropriately,
and

(5.18) fk = PkeVk, k = 0 ,1 ,2 , - .
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To ensure that I is hot continuous in the topology induced by A", p 6(1,2], we
seek to arrange that

(5.19) (
k \Np\

By (2.1), (2.2) and (5.18),

and

|'(/*)| =
R £ Z n 6 Sic

so we can replace (5.19) by

(5.20) sup(^ |5 t |2-* / p )= oo, Vp 6(1,2].

(3.10) and (3.11) apply here, so (5.20) becomes

(5.21) sup[fct2*(1-1/p)] = oo, Vpe(l,2].

Choose

(5.22) 6t = l,fc = 0 , 1 , 2 , - .

Then (cn) e / °° since

= sup |cn | = l < o o ;
n s Z

and (5.21) is satisfied since

sup(2k(1-1/">) = oo,

Again, as in 3.1, we can choose (vk) such that

vt = 2*+1, fc = 0 , 1 , 2 , - ,

and our construction is completed.

THEOREM 5.3. The following strict inclusions hold:

(5.23) (A", A") 5 fl 04". A") if q e (1,2],
pell.q)

and

(5.24) U (A", A") S (A", A") if q e [1, 2).
( 2 )

PROOF. By 5.1, if qe(l, 2], then ^leOp^i.qM")', /^ (A*)'. Let (^correspond
to / as in 4.2. Then <t>e(Ap,C),Vpe[l,q) and 4>$(A",C). Use of 4.1 gives the
result (5.23).
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Similar resoning can be used to derive (5.24) from 5.2.

6. The multipliers (Ap, A"), pe [1, 2] , q e[p, 2]

THEOREM 6.1. (A",A") = (A", A") = M + PM"', pe[1, 2] , ge[>, 2] .

PROOF. For g e [p, 2] , /P £ yl« with continuous injection, so

(6.1) (A",A") 2 G4',^p), p e [ l , 2 ] , «e [p ,2 ] .

Conversely, since Aq £ C with continuous injection,

(6.2) (A', A") £ (A", C), p 6 [1, 2] , q e [p, 2].

Use of 4.1 with (6.2) gives

(6.3) (A', A") £ (^', A"), p e [1, 2] , q e [p, 2].

Combine (6.1) and (6.3) and then use 4.4 to deduce the required result.

7. The multipliers (A", A"), p e [ l , 2 ] , qe[l,p).

T H E O R E M 7 . 1 . MpqKp-q) £ (A",A9), p e [ l , 2 ] , qe[l,p).

PROOF. ConsiderneM'qKp~q). Then, since / ieM,

(7.1) ||/x*/||00 ^ ||jiH 11/11,, V/eTP, p e [ l , 2 ] .

Also, Holder's inequality gives for every / e TP

neZ \« e Z ' \ n e Z

For 5 = pjq, s' = p/(j> — q), this becomes

, q/p, \ 9/P / \ip-i)!pq

(7.2) E|/2(«)/(n)|^ 2|/(n)|p ^ ( I, \Kn)\pqKp~q)) , V/eTP.
ii eZ \neZ •' \neZ /

By (7.1) and (7.2), we have for/e TP

Now refer to (2.4).

THEOREM 7.2. ^e(A2,Aq)=>4>el2qK2~q\ ?e[l,2).

PROOF. From [3], Corollary 2.3, p. 468 it follows that, if 0 -fe lq(Z), q e [1,2),
for each/e C(T), then ^ e /2«/(2"«>. Since A2 = C, our result follows directly.

THEOREM 7.3. (C,A) = L2.
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PROOF. From 7.1,

Conversely, suppose <j)e(C,A). Then, by 7.2, $ e / 2 , and so <j>eL2. Thus
{C,A) £ L2.

7.4 We now establish preliminary results leading to a necessary condition
for (j> e (Ap, Aq), p e [1 , 2 ] , q e [1, p).

Consider

(7.4) S = {(cn)eF: S | c,|2log1+£| n\ < oo , £ > 0}.
neZ\{0)

Then, from [2], 14.3.6, p. 205, for (cn) e S, almost all the series

HEZ

are the Fourier series of continuous functions. (In fact, of functions in Ap). If
<j>e(A",Aq), p e [ l , 2 ] , p e [ l , 2 ] , qe\\,p), then

<f>*feA\ V/eX",
and so

I X I $(n)cn |*J < oo, Vc = (cB) e S.
Wz /

Define a map Q^: S -• lq by

Q,j is clearly linear. It is not hard to see that S is a Banach space under the norm

neZ ' VneZ\{0}

An application of the Closed Graph Theorem shows that Q^ is a continuous map
from S to /*, so we have

(7.5) \ \ { \ { |
VieZ / L\neZ / \neZ\{0}

where K = K(<t>,e) is a constant.

THEOREM 7.5. If <t>e(A",A9), p e [ l , 2], qe[l,p), thenfor every E > 0 ,

wftere K = K(<J),E) is independent of R and

(7.6) JR= max
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PROOF. Suppose <f> e (Ap, A9), p e [1, 2], q e [1, p). Then (7.5) holds. Choose
(cn)eS such that

c " ~ l o | B | > j t ,

and consider JR as defined in (7.6). Then, on writing aR =
(7.5) yields

_Xlq ^* zT/_lfp | T l /2 \ .
OR S 1L\OR + JROR ),

that is,

It follows that

COROLLARY 7.6. If <t>e(A",Aq), />e[l ,2],

where A = (1 + e)pql2(p — #), and e>0.

PROOF. Suppose # e (4",.4*), p e [ l , 2], ge[ l ,p) . Then 0e(/4,C) =
and it follows that J,5 = 0{(logfl)(1+£)/2}, where JR is defined in (7.6). Applica-
tion of 7.5 now gives the desired result.

COROLLARY 7.7. 1/ 4> e (A", A"), p e [1, 2], q e [1, p), and JR = 0(1), where
JR is defined in (7.6), then $ e /«/<'-«>.

PROOF. This result follows directly from 7.5.
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