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Abstract

An inhomogeneous version of a general form of the Jarnik-Besicovitch Theorem is proved.
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1. Introduction

In some respects inhomogeneous Diophantine approximation is rather different from
homogeneous Diophantine approximation. Results in the former, where the additional
variables offer extra 'degrees of freedom', are sometimes sharper or easier to prove
than the corresponding ones in the latter. For example, if the real numbers x, a do not
satisfy a = kx + / for any integers k, I, then

for infinitely many integers q (see [5, Theorem IIA, Chapter 3]). Here

11*11 =min{|*-*| : i fc€Z} = min {{x}, 1 - {x}},

where {x} is the fractional part of*. However if x is irrational, the inequality
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holds for infinitely many integers q (see [5, Theorem V in Chapter 1]). Both these
results are best possible. Again, an inhomogeneous version of Khintchine's theorem on
simultaneous Diophantine approximation (see [5, Theorem II in Chapter 7]) is not only
considerably easier to prove but is also slightly more general than the homogeneous
case ([5, Theorem I in Chapter 7]). In this version, the result holds for 'almost all'
the additional points as well and is thus 'doubly metric' [17]. The same is true for
the more general Khintchine-Groshev Theorem [18, Chapter 1, Theorem 12] as the
inhomogeneous 'doubly metric' case has a much simpler proof.

On the other hand the extra variables can 'interfere' with the homogeneous vari-
ables; for this reason there is no inhomogeneous counterpart to Dirichlet's theorem
(see [5, Theorem III in Chapter 3]). Also, the proof of the inhomogeneous Khintchine-
Groshev theorem, where the additional variables are fixed, requires a little more work
(it is a special case of [18, Chapter 1 Theorem 15]) and Schmidt described his ex-
tension [17] of his quantitative refinement [16] of Khintchine's theorem to a result
implying the inhomogeneous case as 'non-trivial'.

The purpose of this note is to establish an inhomogeneous counterpart of a more
general form [6] of the Jarnik-Besicovitch theorem [3, 12]. Firstly some simplifying
notation is introduced. For each real number a, let

| - l + {a} when 1/2 < {a} < 1

denote the symmetrised fractional part of a, which is a translated by a unique integer
ka to (-1/2, 1/2]. Clearly |(a>| = ||a||. In higher dimensions, (a) will denote the
symmetrical fractional part of the vector a e i " , that is,

(a) = ( (a , ) , . . . , («„)) = a + ka e (-1/2, 1/2]"

for a unique ka € 1". For each vector v = (vu ... , vn), write

| v | = M o o = max{\vj\:j = 1 , . . . , n )

for the sup norm of v. The Euclidean norm of v will be written |v|2.
Let V(ijf) denote the set of points (X, a ) e Rmn x R" for which the system of

inequalities given by

(1) \(qX - a)\ = max

where (jty) = X, has infinitely many solutions q € Zm. The Hausdorff dimension
dim V(\(r) of V(VO is obtained in terms of the lower order (at infinity) of the positive
function 1/i/r (the lower order X{f) of a positive function / : N —> R+ is defined by
k(f) = l i m i n f ^ d o g /(<?))/Xlog q)).
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THEOREM. Let if be a decreasing positive function and let k be the lower order of
I/\jf. Then

_•• ¥ , , ix \mn + {m+n)/(k+\) when k>m/n
dim V(if) = \

I (m + l)n when k < m/n.

The natural precursor (mentioned above) of this result is the 'doubly metric' in-
homogeneous version of the Khintchine-Groshev theorem, which asserts that for any
positive sequence f(r), r = 1, 2 , . . . , the Lebesgue measure |V(ir)\ of V{ir) is
given by

( when Y°°, rm"1f (r)n < oo
\V(\lr)\ =

| l when £ ,when £ ~ , rm-lir(r)n = oo.

It is 'doubly metric' in the sense that it holds for 'almost all' X and a and is an
immediate consequence of [17, Theorem 1] or [18, Chapter 1, Theorem 15]. However
in contrast with the (homogeneous) Khintchine-Groshev Theorem, this version also
has a simple direct proof since some of the complications in the homogeneous case
do not arise [7, 18]. Note that the sequence if (r), r = 1, 2 , . . . , is not required to
decrease monotonically.

In this more general setting, the inhomogeneous case can be reduced to a special
case of the homogeneous case (where a = 0) by considering the vectors q e Zm+1

restricted to Tm x {—1}. However the proofs of the homogeneous case in [6, 7,
15] either cannot be adapted or they involve complications which are not relevant to
inhomogeneous Diophantine approximation.

(Added in proof. H. Dickinson has proved the above theorem using restricted
Diophantine approximation in the paper 'A remark on a theorem of Jarnfk', to appear
in Glasgow Math. J.)

Let / = [0,1]. Since (X, a ) H* (qX — a ) is 1-periodic, there is no loss in
generality in restricting X to Im" and a to /". In addition, Mmxn(I) will be identified
with Imn. Write fi = Imn x /". Then the set V(V0 can be expressed as the 'lim-sup'
set

oo oo

(2) V(f) = n U B+mW-
N=l \q\=N

where

(3) Rq = {(X, a ) e ft: (qX - a) = 0},

and for each positive S

Bs(Rq) = {(X,a)€Q:\(qX-ot)\ < 8}
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is a neighbourhood of Rq. Later, the related neighbourhood B(Rq\ 8) given by

B(Rq; 8) = {(X, a) e ft: dist^ ((X, a), Rv) < 8}

where d is^a) , A) = inf{|&> — a\: a e A)} is the distance in the supremum metric of
co from the set A, will be used.

2. Volume calculations

Let 0 < 8 < 1/2 and let xs be the characteristic function on the set S. For each
X <= Imn and q elm, the substitution a' = a - q X gives

|{Q e /": \(qX- a)\ < 8}\ = f XisMb* -a))da = T8n.
Jr

Hence the Lebesgue measure \Bs(R(q))\ of Bs(R(q)) is given by

\Bs(R(q))\ = 1 1 X B . i K , ) ( X , a ) d a d X
J;«. J[„

(4) = / [ X(-S,sr((qX-cx))dadX = 2n8".

Note that given a and a non-zero 9, the 1-periodicity of the function

XBS(R,)(X, a ) = X(-s.sr((qX - a))

together with some geometry [6, 10] or Fourier analysis [18, Lemma 8, p. 35] give

\{XeImn:\(qX-a)\<8}\= f Xt-s.srdqX - a))d X - 2"8"
J jmn

(see [6, 10] and [18, Lemma 8, p. 35]).

LEMMA 1. Let 8,-q e (0, 1/2) and letq, r be distinct non-zero vectors in lm. Then

\BS(RV) n Bn(Rr)\ = 1^(^)1 \Bn(Rr)\ = 4"<5V.

PROOF. On making the substitution a ' = a — qX and integrating, it follows from
the above that

\Bs(Rq) n B,(/^.)| = [ I Xi-tMbX - a))xi-wr((rX - a))dadX

= f xi-i.tr««')) ( f X(-n,«r(((/• - 9)X - a'))dx) da

= I Xi-s,sr((a')H2nvn)da' = 4"«5" r,\
J i"

This lemma does not hold in the homogeneous case when m = 1, corresponding to
simultaneous Diophantine approximation (see [5, 18]).
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3. An inhomogeneous Jarnik-Besicovitch theorem

By contrast with the inhomogeneous Khintchine-Groshev theorem, the 'doubly
metric' inhomogeneous Jarnik-Besicovitch theorem which gives the Hausdorff di-
mension of V(VO is quite difficult; as is often the case, this difficulty lies in establish-
ing the correct lower bound. Dirichlet's theorem and the more general linear forms
theorem of Minkowski do not hold in the inhomogeneous setting and so cannot be
used, as they can be to prove the Jarnik-Besicovitch theorem and its generalisations
[2, 6, 8]. In the case of simultaneous Diophantine approximation, Jarnik [13] used
a Cantor-type construction to determine the Hausdorff s-measure; other approaches
are given in [4, 7, 11]. A. Baker and W. M. Schmidt introduced regular systems
to obtain lower bounds for the Hausdorff dimension of certain subsets of the line to
generalise the Jarnik-Besicovitch theorem to approximation by real algebraic num-
bers [2]. In order to study geodesic excursions in hyperbolic manifolds, Melian and
Pestana [14] extended regular systems to 'well-distributed' systems in higher dimen-
sions. However this approach is limited to approximating points in Rk and is not
suitable for inhomogeneous Diophantine approximation, nor for approximation ques-
tions arising from the problem of 'resonant' sets or 'small denominators', associated
with stability or normal forms questions. To deal with these rather varied questions,
the more general notion of ubiquity has been introduced (for details see [8] and for
some applications, see [9]). As usual the proof of the theorem is in two parts, with
the upward and downward inequalities for the Hausdorff dimension being dealt with
separately.

The upward inequality in the theorem is straightforward but is included for com-
pleteness (note that \jr need not be decreasing).

LEMMA 2. Let \}r be a positive function and let k be the lower order ofl/\j/. Then

I mn + (m + n)/(k + 1) when k > m/n

mn + n when k < m/n.

PROOF. Since V(\fr) c lmn x /", dim V(f) < (m + l)n. The other part of the
bound is obtained by constructing a suitable cover from (2). For each N = 1,2,... ,
the collection

q): q e lm, \q\ > N}

is a cover of V(VO- For each non-zero q e Zm, B^,Qqn(Rq) is covered by a collection
say of at most
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(mn + n)-dimensional hypercubes C of sidelength l(C) = 4yjr(\q\)/\q\ and with
centres on the m/z-dimensional (resonant) set (a finite union of hyperplanes) Rq at
integral multiples of ir(\q\)/\q\ apart on the hyperplanes /?,,,. Thus for each N =
1, 2 , . . . , the collection <gN = {C e <g{q): \q\ > N] of hypercubes C with l(C) «
iJf(N)/N (since \js is decreasing) is a cover of V(\jf). Moreover the s-length
of the cover *jf# satisfies

From the definition of lower order, given any s > 0, ir(q) <K q k+s, whence for
s > mn + (m + n)/(k + 1) = s — r\ say, where r] > 0,

00
Ps (<f \ <£• \ ^ _m —1 mn+« (-A.+f)(j—mn) - s

\ "* m+n+mn

oo
V ^ -l-e'

(k+l)-(k+l)s-l+e(s-mn)

q=N

where e' = (X + \)t) - s(s - mn) > 0 for e sufficiently small. Thus Is&N) ->• 0 as
Af —>• oo and the result follows from the definition of Hausdorff dimension.

The harder downward inequality is obtained by using the idea of ubiquity [8]
combined with a variance argument, an approach which has been taken in [7] for
homogeneous Diophantine approximation.

LetS be an open non-empty subset of Euclidean space. Le t^ = {Rj-j e J] where
J is a countable index set and where the Rj are finite unions of affine ^-dimensional
proper subspaces of Euclidean space intersected with S. Suppose each j e J has a
positive weight \J}. The sets Rj are called resonant sets and their common dimension
d will be written dim 3?, and their codimension dim S — dim & written codim !%. Let
((p(q):q = 1, 2, . . . ) be a decreasing sequence with cp(q) -> 0 as q —> oo. The
lim-sup set

(5) A(^P; <p) = {co e 5:dist(<w, Rj) < <p(UJ) for infinitely many j e J},

where dist(o), A) is the distance of a) e S from the set A in the sup norm, consists of
points in S which are V-aPProximable' by £% in the sup norm. A lower bound for the
Hausdorff dimension of such sets can be obtained when the family 3% of resonant sets
is ubiquitous in the following sense. Let p: H —>• R+ be a function converging to 0 at
infinity. Then Si is ubiquitous with respect to p if

\S\{JUS<NB(RJ;P(N))\^0 as N^oo,
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where for any subset A, B{A ; 8) = [co e S: dis^o) , A) < 8}. This formulation is
equivalent for affine spaces to the more general definition in [8]. It is shown there that
if S% is ubiquitous with respect to p, then

(6) dim A (^?; ip) > dim & + y codim ^?,

where

y = mm 11, hm sup \.

To apply this result to V(f), take S = ft = /mn x /", J = 1m \ {0}, ; = q,
VQ\ = I? I and take the resonant sets Rq to be given by (3), that is,

Rq = {(X, a) e ft: (9 X - a) = 0}.

Thus the resonant sets have dimension mn and codimension n. With these choices, the
set A(^; <p) of points (X, a) e ft such that dist((X, a ) , /?,) < <p(\q\) for infinitely
many q €lm becomes

;p) = r | (J fl(J?,;
A f = l | , | = J V

Now (see (3)), Rq = {jr Rqr where the union is over those re (q Imn) D Z" (recall
that /m" is identified with Mmxn(/)). Each /?,,,. = {(X, a) e Q:qX - a = r] =
(/?,,r,,...,/f,,rJ, where

and ar(;) is the j'th column of X.
Let q = (q, — 1) and let X denote the {m + 1) x n matrix given by X with a added

as the (m + l)th row. Write the jth column of X as x0>. When q ^ 0,

(X, Rq) = minldistoo (X, Rq,r):r€ (qImn) 0 1"}

= minr{min{dist00 (x
0>, Rqrj): 1 < j < n}}

and for some j 0 , 1 < jo < n and y lying in Rqr (so that q • y = ry0)

|(?X)| = max{|(9 . ^ J l : 1 < j < n) = \(q-xw)\ = |« • (xM -y)\.

Suppose dis^(X, Rq) < 8/(m + l)\q\. Then

\{qX)\ < (m + 1) |«| |?u<)) -y\ < (m + 1
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If \(q X)| < 8, then

, Rq) < minrmin {dist2(jt
u>, /?,,0): 1 < j < n)

= minrmin [\q -xU) - rj\/\q\2: 1 < j < n)

Thus when q ^ 0, the neighbourhoods Bs(Rq) and B(Rq; S) satisfy

B(Rq; S/(m + l)\q\) c Bs(Rq) C

But gr ^ 0 implies that \q\ = \q\, whence for q ^ 0

(7) B (/?,; S/(m + l)\q\) C B,(/?,) C B (/?,;

By (2) and (5), it follows that A(M, cp) c V{f) when (p(q) = f(q)/(m + l)q. As
well, the family ££ of resonant sets is ubiquitous with respect to the function p given
by

(8) p(N) = N-l-m/n log N,

as is now shown.

LEMMA 3. The family M = [Rq:q € Tm \ {0}} of resonant sets Rq is ubiquitous
with respect to the function p given by (8).

PROOF. It has to be shown that

PW))\^0 as A ^ o o .

For each q and iV, let p(q) = p(N)\q\. By (7), Bm(Rq) c B(Rq; p(N)), and so it
suffices to show that

(9) \Q \ Ui<i,,< A ) ( * * ) l -+ 0 as N -»• oo.

Now let
vw(X, a ) = £1<|,|<A,X(-/5(,),/i(,))»((0X - a » .

Thus vN(X, a ) is the number of resonant sets Rq, 1 < \q\ < N such that the point
(X, a) lies in the neighbourhood Bp(q)(Rq) of Rq. Further, v^'(0) is the set of points
(X, a ) e Q such that

\(qX-a)\>p(q)

holds for all q € I!" with \ <\q\<N, that is,
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Now let fiN be the mean of vN. Then by (4),

HN= I vN(X,oc)dXda= f [ J2 XBm(R,)(X,a)dXda
\<\q\<

\B-p{q){Rq)\ = 2n

\<\q\<N

= 2"p(NT £ q"
\<t)<N \q\=q

x p(N)nNm+" - • oo

as JV —> oo by (8) (a x b when a <K b <K a). The variance cr̂  of fiN is given by

a^ = f(vN(X, a) - ixN)2dXdct = [ vN(X, afdXda - / 4

= J2 J2 XBm(R,)(X,a)xBMr)(Rr)(X><x)dXda-fj,2N

[<\q\<N l<|r|<A"'f2

\<\q\<N

by Lemma 1 and since

But

o2
N > f (VN (X, a) - iinfdX doc =

JvN
l(O)

whence, since p(N) = N-X~mln logN,

(10)

so that \vN (0)| —> 0 as N —> oo. Moreover

y-'(0) = n \ | J Bm(Rq) 2 « \ U B(^,; p(N)),

whence by (10), (9) holds and so the family M is ubiquitous with respect to p(A0 =
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The ubiquity of the Rq with respect to p can be interpreted as a 'weak' Dirichlet's
theorem, in the sense that given any positive integer N, for all but a set of points
(X, a ) of measure O(log N)~n there exists a non-zero q e Tm such that \q\ < N and

\{qX -a)\ < p(N) = \q\N-l-m/"logN < N~m/nlogN.

LEMMA 4. Let ^ be a decreasing positive function and suppose X > m/n where A.
is the lower order ofl/x/r. Then

m + n
(11) dimV(xls) >mn-\ .

A + 1

For by (6), dim V(f) > dim A{M; <p) > dim^? + y codim^1, where dim^? = mn,
codim Si = n and

. L ,. logpCAOl . L l+m/n\
y = mm \ 1, hmsup — | = nun \ 1, | ,

I N^OO log<p(N)\ [ 1 + A J
since <p(q) = \jf(q)/(m + l)q. The lemma and the theorem now follow.

By modifying the arguments in [4,6], it might be possible to show that the Hausdorff
dimension of the set of points X e Km" satisfying (1) for a given additional a 6 K"
is (m - l)n + (m + n)/(k + 1) when X > m/n.

Denominators of the form e2jukx — 1, where k e Z\ {0}, occur in Fourier series
arising in the study of the rotation number (see [1, §12]). Such expressions become
very small for certain k, and for certain exceptional sets of 'near-resonant' x, they
can get extremely small, causing problems with the convergence of the series. The
above theorem with m = n = 1 would apply to the corresponding exceptional sets
associated with denominators involving expressions of the form e

2l"(kx~a) — 1.
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