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On Fuchs’ relation for linear differential systems

Eduardo Corel

ABSTRACT

In this paper, we give a formal algebraic notion of exponents for linear differential systems
at any singularity as eigenvalues of the residue of a regular connection on a maximal lattice
(that we call ‘Levelt’s lattice’). This allows us to establish upper and lower bounds for
the sum of these exponents for differential systems on P!(C).

Introduction

Exponents are well known for homogeneous linear differential equations at a regular singularity
since the classical works of Fuchs and Frobenius. Let L € C(z)[d/dz]| be a differential operator of
order n with coefficients in C(z). When the differential equation Ly = 0 has regular singularities
over P1(C), its exponents (€$);=1, , for all s € P1(C) obey Fuchs’ relation [Poo60, ch. V, § 20,
p. 77]:

Yo D (@ (i-1)=-n(n-1).

seP1(C) i=1
Bertrand and Laumon (see [Ber98], also [BB85]) extended this definition in 1985 at an irregular

singularity. For any linear differential equation Ly = 0, the exponents e; that they define satisfy
the generalized Fuchs’ relation

3 (zn:(ef (i = 1)) ~ 5 irny(Fnd V)> — —n(n 1),

sePL(C) =1
where irrg(End V) denotes the Malgrange irregularity at s of the natural connection End V of
Endg(.) C(2)[d/dz] induced by the operator L.

In 1961, Levelt [Lev61]| defined exponents for linear differential systems at a regular singular
point. We extend the notion of exponents for systems at an irregular singularity (cf. Definitions 15
and 16). The main result of this paper is the following.

THEOREM 1 (Fuchs’ relation). Let dX/dz = AX be a meromorphic differential system of order n
on PY(C). The exponents €5, ..., e5 attached to this system at all points s € P*(C) satisfy

_wh@q) < Z (ief — %irrs(EndV)> < —h(A) + h(Tr A).

sePL(C) i=1

The height h(A) of the system is given by the formula
h(A) = Z sup(0, —vsAdz — 1),
seP1(C)

where vg is the valuation of a meromorphic function at s € P(C) extended to n x n matrices.
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Remark 1. The sum of exponents also satisfies

Z iefgo.

sePL(C) i=1
Therefore, the upper bound given in Theorem 1 is not optimal in some important cases, which we
discuss in § 5.3.

Remark 2. When all the singularities of the system dX/dz = AX are regular, we get the relation
n(n—1)

—— 5 MA) < Y Y e < —h(4)

seP1(C) i=1
that we proved in [Cor99al, as well as Bolibrukh’s estimate [Bol95, Proposition 1.2.3, p. 24]

Z Zn:ef < 0.

sePL(C) i=1

The results of this paper are a slight improvement on those which have been announced in
[Cor01b]. A French translation of the initial version of this paper can be obtained as [Cor0lc].

1. Local connections

Let K be a local valued field, complete with respect to its discrete valuation v. Denote by O its
valuation ring. An element ¢ € K is called a uniformizing parameter if it satisfies v(t) = 1. Let € be
a free O-module of rank one and d : O — ) be a derivation such that there exists a uniformizing
parameter ¢ whose derivation dt is an O-basis of 2 (cf. [Del70]). We will usually call © the module
of differential 1-forms. Define furthermore Q* to be the O-dual of €2, and let their respective vector
spaces be Qx = Q ®p K, the K-vector space of differential 1-forms, and 2} = Q* ®o K. For any
T € ), denote with 9, the map

o, K — K
[ A{df,7).
Given a uniformizing parameter ¢, there exists for any f € K a unique ay € K such that
df = aydt.

The mapping f —— ay is a derivation of K. We will thus write ay = df/dt and Oy = d/dt.
Denote with D = K d/dt the K-vector space of such derivations of K. There is a natural valuation,
also denoted by v, on all these spaces.

Let V be a K-vector space of finite dimension n. A linear connection on V' is an additive map
ViV —=VegQx

satisfying Leibniz’s rule

V(fv)=v® df + fVv forall fe€ K and all v e V.
For any derivation 9 € Dk, one defines a map Vg : V — V by composing V with

Vok Qg —V
VR wr— (w,0)v = w(d)v.

The additive map Vy is a differential operator on V': it satisfies the relation

Va(fv) =0(f)v+ fVs(v) forall fe K andallvelV.
1368
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For a given choice of a uniformizing parameter ¢, we will mainly work with the derivations d/dt and
0; = td/dt. When no confusion can arise we will simply write 6.

A vector v € V is said to be horizontal for the connection V if it satisfies V(v) = 0, which
amounts to asking that Vy(v) = 0 for every derivation 0 € Dg.

For any basis (e) of V, denote with e; the ith vector of (e). The matriz Mat(Vy, (e)) of the
differential operator ¥y in the basis (e) is defined as the matrix A = (4;5) € M,,(K) such that

Valej) = — ZAijei forall j=1,...,n.
i=1

Let X = %(z1,...,2,) be the vector of components of v € V in the basis (e). The vector of
components of Vy(v) in (e) is then 0X — AX. The differential system 0X = AX and the equation
Va(v) = 0 are therefore equivalent via the choice of a basis.

Let (¢) be a basis of V and let P € GL,(K) be the matrix of the basis change from (e)
to (). The components of v in (¢) are then given by Y = %(y1,...,9,) where X = PY, and the
components of the vector Vy(v) by 9Y — A(p)Y, where the matrix Ap) is given by the so-called
gauge transformation (with respect to the derivation 0)

Apy=P 'AP - P7'OP. (1)
Until § 3 we shall consider a fixed uniformizing parameter ¢ of K.

1.1 Connections and constructions

The constructions of a vector space endowed with a connection (V,V) are the spaces obtained by
any finite succession of duality and quotient operations as well as tensor, exterior or symmetrical
products. Any construction C' (V') of (V, V) is endowed with a natural connection C' (V') (cf. [Man65]).
We will mainly be concerned with the following three constructions.

The connection V* induced by V on the K-dual V* of V is given for any 0 € Dk by
Vao(f)(w) =0(f(v)) = f(Va(v)) forany f € V" and any v € V. (2)

Let (e) be a basis of V and A = Mat(Vp, (e)) be the matrix of Vg in (e). The matrix of V} in the
dual basis (e*) is then

Mat(V3, (e*)) = — *A.
The induced connection on End V' =V &) V* is given by
EndVa(f)(v) = Va(f(v)) — f(Va(v)) for any f € EndV and any v € V.
The matrix of End Vj in the basis (e ® e*) then satisfies

Mat(End Vy, (e @ e*)) = A® [ — I ® ‘A.

The maximal exterior power A" V is endowed with the connection defined by

A\ Vo(vr Av- Avn) =Va(v1) Ao Aoy + -+ o1 A= A V(vy)

for any (v1,...,v,) € V™. The corresponding matrix is the scalar

Mat</\Va,el/\~'/\en> = Tr A.
1369
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2. Lattices of vector spaces endowed with a connection

For any free O-module of finite type M of V, define the rank of M as the minimum number rk M
of generators for M.

DEFINITION 1. Let V be a K-vector space of dimension n. We say that M is:

1) a lattice of V if M is a free O-module of rank n of V;
2) a sublattice of a lattice A if M is a lattice of V included in A;

3) a partial lattice of V if M is a free O-module of finite type (generally of rank < n) of V, and
a partial sublattice of A if it is a partial lattice included in A;

4) the free O-module of rank r spanned by (e) if M = @;_, Oe;. We write then M = L(e) and
say that (e) is a (O-)basis of M.

We denote with £ the set of lattices of V.
LEMMA 2.1. Let A be a lattice of V.

i) For any r-dimensional vector subspace W of V, the O-module M = ANW is a lattice of W
and a partial sublattice of A.

ii) Let ¢ be a K-automorphism of V. The image @(A) of A is a lattice, and ¢(A) C A
(respectively p(A) = A) if and only if there exists a basis (e) of A such that Mat(yp, (€)) €
M,,(O) (respectively Mat(y, (e)) € GL,(O)). This last condition then holds for any basis (e)
of A.

DEFINITION 2. The connection V is said to be regular if there exists a lattice of V' which is stable
under Vy. The connection is said to be irregular otherwise.

2.1 Valuation defined by a lattice
Let A be a lattice of V. We define a valuation vy on V by letting

va(z) =sup{k € Z|z € t*A} for any z € V.
For any lattice M of V', and more generally for any non-empty subset M of a lattice, we put
vpA(M) = xiélj‘%v/\(m),
agreeing that v (M) = oo if M = (0).
LEMMA 2.2. Let A be a lattice of V.
i) va(x 4+ Z) = min(vp(z),vA(Z)) holds for all z,z € V.

ii) Let W be a vector subspace of V, and M C ANW a partial sublattice of A. Then the inequality
vap () < vpa(z) holds for any x € W.

iii) Let M and M be two partial sublattices of A. Then we have
vA(M + M) = min(vp (M), vp (M)).

Proof. Consider z and Z in V. One has
min(va (z),vA (%)) = sup{k € Z |z € t*A and & € t*A}
<sup{k € Z|x + & € t*A} = vp(x + ),
hence part i follows. Let € W. If & € t*M, then x € t*A, and thus we get
vy (x) = sup{k € Z|z € t* M} <sup{k € Z |z € t*A} = vp (),
1370
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and so part ii is proved. Let M and M be two partial sublattices of A. According to part i, we have

vAMJ+JW):r€E£MvAm)>Imn@AM4)uﬂﬂﬂ)

On the other hand, since M C M+ M, we get vp (M) < vp(M + M). The same result holds with M,
and hence part iii follows. O

2.2 Lattice invariants

The theorem of elementary divisors holds in the principal domain O. For any lattice A of V', and
any free O-submodule M of rank r of A, there exists a unique increasing sequence of integers
ky <--- <k, and an O-basis (eq,...,e,) of A such that (t*1ey,... t*re,) is a basis of M.

In the general case, the partial lattice t=s() AT s a submodule of A. A partial lattice of V thus
always has such a basis.

DEFINITION 3. Let A be a lattice of V. For any free O-module M of rank r of V, we give the
following definitions.

i) We call elementary divisors of M in A the integers

key = 0 + v (M), .. ky = €+ vp (M)

where t“1, ...t are the elementary divisors of =D AT in A in the usual sense.
ii) We call Smith basis of A for M any basis (e) of A such that (t*e,... t"e,) form a basis
of M.

We will write the elementary divisors of M in A as k; o(M) to specify if necessary the respective
O-modules, and let

EANM) = (kia(M),... k. a(M)).

PROPOSITION 2.1. Let N C M be two lattices of V, and A be any lattice of V. The respective
elementary divisors of M and N in A satisfy

kian(M) < kia(N) foranyi=1,...,n.

Proof. Let P be the matrix of the basis change from a Smith basis for M to a Smith basis for N
in A. The matrix ¢t—8(M) ptEa(N) ig the matrix of the basis change from a basis of M to a basis
of N. Accordingly, Lemma 2.1, part ii yields

U(Pijtkj’A(N)_ki’A(M)) >0 foranyl<i,j<n.

Since P € GL,(0), there exists a permutation o such that v(Pi,;)) = 0 for all i = 1,...,n. The
relation kg(; A (N) = kia(M) follows. The two sequences increase, hence we have

kia(N) = kin(M). O
The index of a sublattice M in the lattice A is defined as the (finite) length
[A = M) = x(A/M)
of the quotient module A/M (cf. [Ser68, Part III, § 1, p. 58]).

LEMMA 2.3. Let A D M be two lattices of V. Then the following hold:
i) [A:M] =371 kia(M) = wv(det P) for any gauge matrix P from A to M.
ii) If N is a sublattice of M, we have [A: N| = [A: M]+ [M : NJ.

1371
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COROLLARY 2.1. Let W and~V~V be two supplementary subspaces of~V Oli respective dimensions
m =dimg W and p = dimg W. Let A D M be two lattices of W and A D M be two lattices of W.

Then
P

ADA: Mo M = iki,A(M) + )k g (M),
=1 =1

The Poincaré rank of a system dX/dt = AX is the integer —v(A) — 1. Since it is invariant under
gauge transformations in GL,,(O), it is an invariant of the spanned lattice.

DEFINITION 4. We call Poincaré rank of the connection V on the lattice A the integer
pA(V) = —va(A + Vg(A)).

DEFINITION 5. We call, after Gérard and Levelt [GL73], order of the singularity of V the minimum
Poincaré rank

m(V) = min py (V)

of the connection V.
Remark 3. In the case where V is a regular connection, the order of the singularity is m(V) = 0.

DEFINITION 6. Let A be a lattice of V' and let p = pa(V) be the Poincaré rank of V on A. We call

polar map the map §A induced on A/tA by the operator t*Vy. If A is Vy-stable, we call VA the
residue RespV of V on the lattice A.

Even when the residue is not defined, its trace is well defined. We denote by 75 (V) the corre-
sponding invariant of the lattice A.

DEFINITION 7. We call residue trace of the connection V on the lattice A the complex number
A" A

(V) =AV

LEMMA 2.4. Let M C A be two lattices of V. The index of M in A satisfies
[A: M| =75A(V)—7mp(V).

Proof. Let (e) be a basis of A and () a basis of M. Let P € GL,,(K) be the gauge matrix from (e)
to (¢). Let A = Mat(Vg/q4, (e)) and B = Mat(Vy/4(¢)). The gauge equation d/dtP = AP — PB
implies that

d
E(det P)=(TrA— TrB)det P.
Taking residues at ¢ = 0 yields
v(det P) = Tr lt%_eOsA — Tr lt%_eos B. O

2.3 Subspaces and lattices
Let (Vi)i<ics be a family of K-vector subspaces of V' of respective dimensions n; = dimg V; such

that
V=@
i=1
1372
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The direct sum @;_; M NV; is a sublattice of M, but, according to the position of M with
respect to the Vj, one is not sure to recover the lattice M itself.

DEFINITION 8. A lattice M of V is said to be compatible with the direct sum @;_, V; if

M= é(M V).
1=1

PROPOSITION 2.2. Let M be a lattice of V. The lattice @;_,(M N'V;) is the largest sublattice of
M compatible with the direct sum @;_, V;.

Proof. The lattice @;_,(M N'V;) is compatible with the direct sum @;_; Vi according to its
construction. Let N be a lattice of V' compatible with the direct sum @;_; V; and satisfying
@B (M NV;) C N C M. Their restrictions to V; satisfy M NV; ¢ NNV, ¢ M NV, for all
i=1,...,n. Thus M NV; = NNV, and so the equality B;_ (M NV;) = @;_(NNV;) =N
follows. O

LEMMA 2.5. Let M and M be two lattices of V. The Poincaré rank of the connection V on M + M
satisfies

Parar (V) < max(par(V), p 3 (V)).
In particular, if M and M are Vg-stable, then the same holds for M + M.

Proof. By definition p,, (V) = —vM+M(M+M+V9(M+M)). According to Lemma 2.2, part iii,
one has

Unpant (M + M + Vo(M + M)) = min(vy, 5 (M + Vo(M)), vy, 7 (M + Vo(M))).
Since M C M + M, we get Uppnt (M + V(M) = vy (M + Vg(M)). Similarly, one has
Uppanr (M + Vo(M)) = vy (M + Vo(M)). 0

COROLLARY 2.2. Let m = m(V) be the order of the singularity of the connection V. For any k > m,
and any lattice A of V, there exists a unique maximal sublattice Ay, of A such that pj, (V) < k.

Proof. Let M be a lattice of V' such that py;(V) = m. The Poincaré rank of V on the lattice
t=AMM) VT s equal to P—onn (V) = m <k, thus the set £, of all sublattices of A of Poincaré
rank < k is non-empty. Since A is a module of finite type on the principal domain O, the sum of
all elements of Ly, is still a sublattice of A, and according to Lemma 2.5, the Poincaré rank on this
lattice is also <k. Hence

Ay= > M

MCA
P (V)<k

is the largest sublattice of A of Poincaré rank <k. O

Remark 4. In the case where V is a regular connection, the lattice Ay exists and is equal to the
Levelt lattice Ar, of A that we defined in [Cor99b].

Recall the construction of Gérard and Levelt [GL73] of a saturated lattice. Let A be a lattice of
V and ¥ € Dk be a derivation of K. One calls the kth saturated lattice of A with respect to ¥ the
lattice

FEA) =A+Vy(A)+---+VEA) for any k € N.
It is possible to determine the order of the singularity of V with these lattices by means of the
following result.
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THEOREM 2 (Gérard-Levelt). If the connection V has order of singularity m, then for every lattice A
of V, the (n — 1)th saturated lattice fﬁ;l(A) of A is t*Vg-stable, for any k > m.

Remark 5. After a remark of Marius van der Put, one sees that the (n — 1)th saturated lattice

f;gl(A) of A is the smallest lattice of V containing A which is t*Vg-stable.

3. Canonical decompositions of connections

Let us now consider complex analytic differential systems, and take z as the standard coordinate
of C. The classical local theory of irregular singularities (e.g. [Huk37], [Tur55], [Rob80], [Jur78])
asserts that there exists a fundamental matrix of formal solutions for the system zdY/dz = A(2)Y
satisfying ) = U(C)CpLeQ(l/C) where (P = z for some p € N, U is a square matrix of order n with
coefficients in C((X)), L is a constant matrix, and @ is a diagonal matrix of polynomials in X C[X].

Let us now denote with K = C((z)) the field of all formal meromorphic power series, with
O = C][z]] the valuation ring of K for its z-adic valuation v. One easily checks that the ordinary
differentiation

d: 0 — Qpe,
where Q](LD|<C is the O-module of formal holomorphic differential 1-forms over C, satisfies the assump-

tions of § 1 with z as uniformizing parameter. Denote further with Q}qc the K-vector space of

differential 1-forms over C and with Derc(K') the K-vector space of C-derivations of K. The space
Derc(K) is then the K-dual of Q}QC'
We consider all the definitions of § 2 in this setting.

3.1 Ramification

The occurrence of rational powers of the variable z in the formal solutions at an irregular singularity
is already mentioned in Fabry’s thesis in 1885 [Fab85]. It corresponds to finite algebraic extensions
of the field K, accounting for the ramification of the system. We call ramification order of the system
zdY/dz = A(2)Y the smallest integer p such that there exists a formal solution under the above
mentioned form. According to Levelt [Lev75], there is an a priori upper bound for p.

PrOPOSITION 3.1 (Levelt). The ramification order of a system of order n is smaller than
lem(1,2,...,n).

Let p € N. We denote with H the extension K[T']/(TP — z) of K. There exists a unique extension
of the differential d of K to H, that we also denote with d
d: H— Qpc = Qe ®x H.
We extend in a unique way the connection V to the space Vi =V @ H by letting
Ve =V®l+idy ®d.

We identify V' to the K-subspace V ® 1 of V.

By calling ¢ the class of T" in the field H we get a natural isomorphism H ~ C((¢)). The valuation
v of K extends in a unique way to a discrete valuation of H, that we also denote by v : H — (1/p)Z,
which satisfies v(¢) = 1/p. This valuation does not coincide with the (-adic valuation w on H which
takes its values in Z. The valuation ring Oy of H for these two valuations is the same, because
w = pv. For any lattice M of Vi, we denote with vy, the valuation induced by v and with wj; the
valuation induced by w on V7, which satisfies wy; = pvys. To every lattice A of V' there corresponds
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a lattice Ay = A ®o Oy of V. We shall identify A to the O-submodule A ® 1 of Ag. Through this
identification, the valuation vy, of Vg, restricted to V ® 1, coincides with v,.

Since ( is a uniformizing parameter of H, every notion defined in § 2 makes sense for the lattices
of (Vi, V). However, since the differential 1-form dz/z satisfies
dz  d(
z b ¢
and can be defined as an element of Q}ﬂc, the operator Vj thus also extends to an operator (V)
of V. One checks easily that (Vg)g = (Vi)g holds. We will frequently drop the index and write
simply V. The two derivations § = z d/dz and O =¢ d/d¢ of H satisty 0 = pf. Therefore, we have

V‘S'C ZpVQ.

Considering the two-foldedness of these definitions, we will write with a ¢ index every object
defined in § 2 with respect to ¢ as a uniformizing parameter.

LEMMA 3.1. Let A be a lattice of V and M be a lattice of V.

i) M is Vy-stable if and only if M is V. -stable.
ii) A is Vy-stable if and only if Ay is Vg-stable.
iii) If A is Vg-stable, the residue (Res¢)x, V induced by Vg, on Ay /CAy satisfies

Mat((Res¢)a, V, (e ® 1)) = pMat(ResaV, (€)) for any basis (e) of A,

where (€) denotes the quotient basis of A and (e ® 1) denotes the corresponding quotient basis

iv) The Poincaré rank (p¢)a, (V) = —wa, (Am + Vo (Am)) of V on the lattice Ay satisfies
(c)ay (V) = ppalV).

Proof. Let (e1,...,e,) be a basis on O of M. Since 6 = pf, the respective matrices of Vg and
V. in (g) satisfy

( Mat(Vy,, (€)) = pMat(Vy, (),
whence we get part i. Let (e) = (eq,...,e,) be an O-basis of A. From the equality

A = é Ope; ®1

i=1
we get Vg(e; @ 1) = Vp(e;) ® 1 +¢e; @ 0(1) = Vg(e;) ® 1 and part ii follows. One also has
Vo (i @1) =(V(e;) ®1+e;® d(1),0¢) = pVa(e;) @ 1.
The matrix of the connection Vy, in (e; ® 1) thus satisfies
Mat(Vy,, (e ® 1)) = pMat(Vy, (¢)),
which proves part iii. Write A = Mat(Vy, (e)). The Poincaré rank (pc)a, (V) satisfies
(po)ay (V) = Ilzl’ijnw(pAij) = Ilii]npv(pAij) =ppa(V),

which concludes the proof. O

We wish to extend the invariants defined on K to V. The former proof shows that we must
choose the valuation v and the derivation 6. However, the residue Res; for the connection Vpy
defined with respect to the uniformizing parameter ¢ is not consistent with this choice. In order to
obtain a definition compatible with the extensions, we set the following definitions.
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DEFINITION 9. Let M be a Vy-stable lattice of V. We call compatible residue of V on M the map
Res,;V of M/(M induced by the operator V.

If A is Vy-stable, the compatible residue of V on Ay satisfies
Mat(Res} , V, (e ® 1)) = Mat(Resp V, (€)),

for any basis (e) of A, with the notations of Lemma 3.1.

3.2 The associated regular connection and the determinant map
We show that a connection has the following canonical decomposition.

THEOREM 3. Let (V,V) be a K-vector space endowed with a connection. There exists a unique
regular connection V" : V. — V Q Q}q(c such that the following holds.

i) The map ¢ =V — V} of V is semi-simple, and its eigenvalues ¢; belong to (1/z'/P)C[1/z'/7]
for some p € N.
ii) The map (End V")p(¢) = [Vg, ] of V' commutes with .

The smallest such p € N is called the ramification order of the connection V. We denote with w
the K-linear map w =V -V":V — V®g Q}qc. We call V = V" +w the canonical decomposition
of the connection V.

Remark 6. This decomposition differs from the Jordan form given by Levelt in 1975 [Lev75, The-
orem I, p. 9], who writes the operator Vy as a unique sum of a commuting semi-simple differential
operator and nilpotent K-linear map.

The proof of Theorem 3 will be the subject of the following subsection (§ 3.3).

DEFINITION 10. We respectively call reqular connection associated to V and determinant endomor-
phism, the connection V" and the map ¢ = wy described in Theorem 3. We call w the determinant
map of V.

LEMMA 3.2. Let V be a connection on V and V = V" 4+ w be the canonical decomposition of the
connection V. Then:

i) V= (V) -
ii) End V =End V" + (v ® idy» — idy @w*);

i) A"V=A"V"+ Trw

are the canonical decompositions of the corresponding connections.

In the space Vi, endowed with the connection Vp, we denote with V; the eigenspaces of ¢ and
n; = dimp V; their respective dimensions for all i = 1,...,s. We denote with ¢; € (1/2%/P)C[1/2'/7]
the corresponding eigenvalues. We will call them attached eigenvalues of V, and call determinant
factors the primitives without constant term @; = [ ¢; dz/z of these eigenvalues.

DEFINITION 11. With the previous notations, we call Katz rank of the connection V the rational
number
1
k(V)=— min 9(yp;) € —-Z,
1=1,...,s P

where T(z) = min(v(z),0).

DEFINITION 12. We say that the vector space endowed with a connection (V,V) has only one
determinant factor if its determinant endomorphism has only one eigenvalue.
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COROLLARY 3.1. The vector space endowed with a connection (Vi, V) is a canonical direct sum
of subconnections having only one determinant factor. We call it the direct sum attached to the
connection V.

Proof. Denote with V; = (V) and V] the restrictions of Vi and (V")y to V;. Condition ii of
Theorem 3 implies that, for any derivation 0 of K, the subspace V; remains stable under (Vy)y for
all7=1,...,s. It is clear that

Vi=Vi+uw,
is the canonical decomposition of V;. Since ¢, 1s scalar, (Vi, Vi)i<ics is the claimed family of
subconnections of (Vy, V). O

3.3 Canonical forms of Babbitt—Varadarajan: proof of Theorem 3
Let us consider the derivation 6 = zd/dz. Let a formally meromorphic differential system

0X = AX (3)

be given.
The following proposition by Babbitt—Varadarajan [BV83, Var91]| explains which is the best
reduced form (in the sense of Turrittin, see [Turb5]) of this system.

PROPOSITION 3.2. For any matrix A € M,,(K), there exists an integer p € N and a gauge trans-
formation P € GL,,(C((2'/?))) such that

PlAP - P 9P =D, 2"+ -+ D, 2" +C
where:

i) 1 <--- <rg <0 are distinct rational numbers such that pr; € Z;
ii) any two matrices among D,,,...,D,_ ,C € M, (C) commute;
iii) Dyy,...,D,, are semi-simple;
iv) the eigenvalues of C' belong to the set {z € C|Re(z) € [0,1/p] }.
The matrix A is equivalent under gauge transformation in GL,,(C((2/?))) to a matrix
D'y 2"+ + D2+
satisfying conditions i to iv, if and only if there exists T' € GL,,(C) such that:
a) T7'CT = C';
b) T_lDT].T =D, for1 <j<s.

Such a matrix is called a p-reduced canonical form of the connection, and D, 2" +--- 4+ D, 2"
is called the irregular part of the canonical form. The rational number r; is then equal to the Katz
rank k(V) of the connection V.

Owing to the commutation condition ii, the system 0Z = Ap|(2)Z has the matrix Z =

2% exp( [ Dy 2" + -+ + D, 2" dz/z) as a fundamental matrix of formal solutions. We can also
write it under the following form

1 1
Y=PZ=P;""):Cexp | ——D, 2"+ + D, 2"
rp—1 rs —1

= P(¢)¢PCeRU/9),

According to Proposition 3.1, we only need to ramify up to the order lem(1,2,...,n). Let us
restate Proposition 3.2 as follows.
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PROPOSITION 3.3. Let V be a connection on V. Let p = lem(1,2,...,n) and H = K(z'/?). Let Vg
be the unique extension of V to the space Vg =V @k H. Choose a pth root ¢ of z. Let 0; be the
derivation ( d/d¢. Then there exists a regular connection V" on Vi, an H-linear map

w VH — VH Xy (Q}QC XK H)
and a basis (¢) of Vi such that the following four properties hold.

i) The matrix Mat( be> (¢)) is a constant matrix C' € M,,(C) whose eigenvalues belong to the set
{z € C|Re(z) € [0,1] }.
ii) The eigenvalues @; of the map ¢ = (w, ;) are elements of (1/¢)C[1/(] and ¢ is diagonal in the
basis ().
iii) The map v = Vi, © ¢ — oV satisfies [v,7] = 0.
iv) Vg =V" +w.
Proof. Let us show first of all that the result of Babbitt and Varadarajan implies Proposition 3.3.
Let (e) be a basis of V, and A = Mat(V, (e)). Let

A[p] = Dlerl —+ - —|—D7«SZTS +C

be a canonical form. Let us denote with (¢) the basis to which the gauge transformation P € GL,,(H)
sends the basis (e®1) of V. Define V" as the connection whose matrix in (¢) is C® dz/z and w as
the H-linear map whose matrix is (D, 2™ +--- + D, 2"*) ® dz/z in (). Since dz/z = pd(/(, one
finds that Mat( be> (€)) = pC, whose eigenvalues do belong to {z € C|Re(z) € [0,1[}. The y; are

the diagonal entries of D = pDy 2™ + -+ pD, z"s. Therefore, we get
Mat(y, (€)) = 0;D + [pC, D).
Thus the matrix of the map [y, ] satisfies
Mat([y,¢], (¢)) = [0:D, D] + [[pC, D], D] = [[pC, D], D].

Since the matrices C' and D_; commute for any j = 1,...,m, the statement [p,7] = 0 holds by
means of Lemma 3.3 stated below.

Conversely, let (V",w,e) be a triple satisfying conditions i to iv. Denote with
C = Mat (V. (2))

the matrix of the operator Vgg and with

D = Ma’t(<w79C>7 (6)) = diag(@lv s 7@”) = D—mC_m +-+ D—lC_l,

where the D; are constant diagonal matrices, the matrix of ¢ = (w, ¢) in the basis (¢). By assump-
tion, the equalities

Mat(Vy,, (£)) = D+ C
and
Ma‘t(ha 90]7 (E)) = [[07 D]7D] =0

hold. We want to show that (1/p)(D + C) is a canonical form of Babbitt—Varadarajan of V.
The second assumption yields

[[C, D], D] = (Cij(p; — ¢i)?) = 0.

Thus, whenever ¢; # ¢;, one has C;; = 0. Hence the matrices C' and D commute. But, because C
is a constant matrix, this implies that [C, D;] = 0 for all ¢, and thus (1/p)(D + C) is a canonical
form of Babbitt—Varadarajan of V. U

1378

https://doi.org/10.1112/50010437X04001046 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001046

ON FUCHS’ RELATION FOR LINEAR DIFFERENTIAL SYSTEMS

We will now show that the decomposition stated in Proposition 3.3 is unique, then we will prove
that this decomposition is in fact defined over the field K.

Let us work with a uniformizing parameter ¢ and denote with
D pt™ ™4+ Dt C

a canonical form. Let us start with three technical lemmas.

For a diagonal matrix D = (D;), denote with I(D) the set of indexes

I(D) ={(i,j) € {1,...,n}*| D; = D;}.

For an indexed matrix Py, we will denote its elements with (Pz(f)) If Dy, is diagonal, we will denote
its elements with (ng)).

Let Dy,..., D, be diagonal matrices of M, (C).

LEMMA 3.3. A matrix P € M,,(C) commutes with the matrices Dy, for all k =1, ..., p if and only if
p

Py # 0= (i,5) € [ | I(Dy).
k=0
Proof. Indeed, for any k, the entries of the commutator matrices satisfy [P, Di];; = Pij(DZ(k) — D§k))
forall 1 <,5 < n. O

We will denote with S(Dy, ..., D)) the system

[Do, Xo] = 0,
[Do, X1] + [D1, Xo] =0,

[DO’XP] +oet [DanO] =0

in the unknown matrices (Xo,...,X)).

LEMMA 3.4. If (X, ..., X)) satisfies the system S(Dy, ..., D,), then X;commutes with Dy, ..., D,_;
foralli=0,...,p.

Proof. The statement is obvious for p = 0, so let us proceed by induction on the integer p.
Assume that the statement is established for p—1. Let (X, ..., X}) be a p-tuple satisfying the system
S(Dy,...,D,). By definition, the (p —1)-tuple (Xo, ..., Xp—1) satisfies the system S(Dy, ..., Dp_1).
This assumption yields

(X0, Do] = -+ = [Xo,Dp-1] =0,
[X17D0] - = [XIJDP—Q] - 07
X,_1, Do] = 0.

Writing the last equation of the system S(Dy, ..., D,) elementwise, we get
0) r y(p) (P)y _ 1) -1 (r—1) (p) [ (0) (0)
Xij (Di _Dj )__Xij (Di _Dj )_"'_Xij (Di _Dj ). (4)

If (i,5) ¢ N2—y I(Dy), then Xi(](-)) = 0 according to Lemma 3.3. If however (i,7) € N2_y I(Dy)
but (i,j) ¢ I(D,), one has Di(k) = D](.k) for 1 <k <p-1and Dgp) # D](.p). Equation (4) then
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yields XZ-(](-]) = 0. We have thus

.. 0
(i.4) ¢ 1(Dy) = X} =0,
so the matrix Xy commutes with D).

The matrices (X1,...,X,) then satisfy the (p — 1)th-order system S(Dy,...,Dp_1). According
to the induction assumption, we get

[X1,Dp] =+ =[X1,Dp-1] =0,
(X2, Do) = -+ = [X2,Dp 2] =0,
[Xp—l7D0] = [Xp—l7D1] = 07
[Xp7 DO] =0,
which proves the statement at order p. O

LEMMA 3.5. Let B be a matrix of M, (C) commuting with the matrices Dy, for all k = 0,...,p.
Assume that there exists p + 1 matrices (Xo,...,X,) of M,,(C) such that

[Do, Xo] + - + [Dp, X,] = B.

Then B = 0.

Proof. Written elementwise, the equation becomes

0) 1 1(0) (0) () ( (P PN _ p..
Xz'j (D; _Dj )+"'+X¢j (D; _Dj ) = Bij.

If (i,) € (_; I(Dy), we have D\ = D) for all k = 1,...,p, hence By; = 0.1f (i, j) ¢ (V_, 1(Dx),

then B;; = 0, because B commutes with all the matrices Dy. Therefore B = 0. ]

LEMMA 3.6. Assume that (¢) and (€) are two bases of V' in which the connection V has the same
canonical form B = D_,,t "™ +---+D_1t~ ' +C. The gauge matrix P from (¢) to (¢) then commutes
with the irregular part of the canonical form B.

Proof. Assume that the gauge matrix P from (£) to (&) can be written as P = t“ P, where
P=Py+Pit+ -+ Pt .
The gauge equation
0,P —vP =BP - PB

gives rise to the following infinite system of matrix equations:

k
Z[D_ert, Pi_t] =0 (in degree —m + k) for 0 <k <m—1, (5)
t=0
m—1
[D—mits Ponik—t] = [Py, C] + (k — v) Py (in degree k)  for k > 0, (6)
t=0
1380

https://doi.org/10.1112/50010437X04001046 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001046

ON FUCHS’ RELATION FOR LINEAR DIFFERENTIAL SYSTEMS

which we rewrite in expanded form as
[D—m’ PO] =0,
[D_m,Pl] + [D—m-i-l)PO] = 07

[D—m)Pm—l] + -+ [D—I)PO] :07
[D—m)Pm]+"'+[D—1)P1] = [P(],O] _VPO)

[D—m, Pmk] + -+ [D-1, Pey1] = [P, C] + (k —v) P,

With the notations used in Lemma 3.4, the (m — 1)-tuple (FPy,...,Py,—_1) satisfies the system
S(D_p,...,D_1). By means of Lemma 3.4, we get

[PO’D—m] == [PO’D—I] =
[PI’D—m] == [Pl,D_Q] =

[Pm—Q,D—m] = [Pm—l’D—m—l—l] = 07
[Pm—ly D—m] = 0.

Consider the system (6). Let us prove by induction on k that if (Fp,...,P,_1) satisfies the
system (5), then [Py, C] + (k — v) P, = 0 holds for any k > 0.

The matrices Py and C' commute with Dy, for all k = —m, ..., —1. According to Jacobi’s identity,
the same holds for [Py, C]. Lemma 3.5 then yields [Py, C] — v Py = 0. Assume now that the equation
[P;,C] + (t — v)P, = 0 holds for any ¢ < k. Then for every t = —1,...,k — 1 the matrices

(Pit1, .-, Pntt) satisfy the equation

[D_p, Ppyt] + -+ [D_1, Py1] = 0.

We can put Dy = --- = Dy, = 0 because the matrix (0) is a diagonal matrix. The (m + k)-tuple
(Po, ..., Ppnik) then satisfies the system S(D_,,,..., D), hence, according to Lemma 3.4, we get
[Po, D] = -+ = [Py, D] = 0,
[PI)D—m] _ = [PlaDk—l] = 07

[Pm—i-k—l’ D—m] = [Pm-‘,-k’a D—m—i—l] = 07
[Pm+k7 D—m] = 0.

In particular, P, commutes with D_,,, ..., Dg. Thus the same holds for the matrix [Py, B]+(k—v)Px.
Therefore, we get [Py, B] + (k — v) P, = 0. System (6) now becomes

3

[D—m—i-t,Pm—l—k—t] = 0, for k > 0.
t

Il
o

Hence the matrices P, commute with D_,,,..., D_q for all £ > 0. O
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PROPOSITION 3.4. Let (¢) and (£) be two bases of V' where the connection V has canonical forms

B=D_,t7™+..-+D_1t7 4+ C in (e),
B=D_,t""4.---4+D_1t7' +C in (¢).
Let P be the gauge matrix from () to (¢). Then the following equalities hold:
Dpt™ 4.+ D it P =P Y D_pt 7™+ -+ D_1t P, (7)

C=r'cp-Pl4P. (8)

Proof. According to Proposition 3.2, there exists a matrix 7' € GL,(C) such that T = ¢
and T _1DjT = D;- for all 1 < j < s. The gauge P = PT preserves the matrix of the connection.
Therefore it satisfies the gauge equation

9,P = BP — PB.

Lemma 3.6 ensures that the matrix P commutes with the irregular part D_,,t ™™ + --- + D_qt L.
Hence,

D gt ™44+ D gtV =P(D_ppt ™+ +D_yt P!
=PT(D_jpt ™™+ -+ D_yt HyT P!
=P(D_pyt ™™+ -+ D_yt HP,
and so (7) is established. Accordingly, we get
9,P = CP — PC,
which yields (8). O

COROLLARY 3.2. If there exist two triples (V",w,¢) and (V",®,€) satisfying the four conditions of
Proposition 3.3, then one has V" = V" and w = @.

Proof. The operator Vg, has canonical form D_,, (™™ + .- + D_1("' + C in the basis (g), and
canonical form D_,,(”™™ +--- + D_1¢~' + C in the basis (€). Lemma 3.6, applied to Vi equipped

with the uniformizing parameter ¢, shows that

Mat (V5. (6)) = Mat(V}, . ())
and

Mat(¢, (€)) = P~ Mat (¢, (2)) P,

where P is the gauge matrix from () to (£). Hence we get V" = V" and thus w = &. O
We are now ready to prove Theorem 3.

Proof of Theorem 3. We now show that the decomposition stated above is in fact defined on the base
field K. Let H be the field K((). Let us denote with V', the regular connection associated to Vg,
and let wg = Vg — V7;. Let us choose a basis (e) of V over K, and put § = ¢*7/P. The element o
of the differential Galois group Gal(H/K) defined by putting o({) = £( is a generator of the
group. Choose a basis (¢o, (1, --.,(p—1) of H over K such that o((;) = (i+1 mod p holds. The family
(62' X Cj)lgign,Ogjgp—l is then a K-basis of V.

Denote with ¢; € (1/¢)C[1/¢] the eigenvalues of (wg,6¢). There exists a basis (¢) of Vg such
that:

i) Mat((Vig)a,, (¢)) = C € My (C);
i) wr(ei) = pigid¢/¢ for any i =1,...,n.
1382

https://doi.org/10.1112/50010437X04001046 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001046

ON FUCHS’ RELATION FOR LINEAR DIFFERENTIAL SYSTEMS

Consider the coordinate decomposition g; = 3 ik U;ke] ® (. with U ’k € K. The image of ¢; under o
is given by

o(e) = ZU(U;k) o(ej) ® o (Ck) Z kej ® Ck+1 mod p
= Z U;,k—l mod p €j @ (k-

The family (o(e1),...,0(ep)) is thus still a basis of V.
The map (V%)? = 0oV 00 ! is C-linear. For any a € H and any v € Vj, the following holds:
(Vi) (av) = o(Vi (0~ (av)))

= o(Vi(o (a))o ™ (v))
= o0 a)Vi (0™ (v) + o v @ d(o” (a)))
= ao(Vi (o™ (v)) + v @ a(d(o™ (a))).

Since o is a differential automorphism of H, it commutes with the differential d, hence
(V)7 (av) = a(V)7(v) + v ® da,

o (V%)? is indeed a connection on V. In the basis (o(¢)), we have

(Vi) (o)) =00 Voo™ (o(ei) = o(Viy(ei)

= O'<Zn:Cji€j>
j=1
= ZO’ C
Z 50 (€5)-

The connection V', has a simple pole in the basis (o(¢)); thus it is a regular connection.

The map w§ = ocowpy o o~ !is C-linear. For any a € H and any v € Vg, the following holds:

Wi (av) = o(w (0™ (av)))
=o(wr(o™ (a)o ™' (v)))
=o(0 " (a)wr (o7 (v)))
= awf(v).

Therefore w¢, is H-linear. On the other hand, we have

wh(o(e;)) =ocowg oo (o(e)) = olwr(s))

oo

o()o(e)o (‘%) .

Since the map o is an element of the Galois group, we get

- (%) _ d(o(Q) _ d(&C) _ d¢

¢ &€ ¢
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Accordingly,
o dg
wilo(e) = oli)ole) 2
holds. The collection of the vectors o(e;) forms a basis of eigenvectors of (w%,0¢). The eigenvalues
of (wf,0¢) are the images o(p;) of the ¢; who also belong to (1/¢)C[1/(].

The connection V is defined over K. It is thus invariant under the action of the Galois group
Gal(H/K) and so V satisfies

Vg = (VH)U = (VTH)U —l—w}'{.

The connection (V7;)? and the map w§, satisfy the conditions of Proposition 3.3 in the basis

(0(e1),...,0(en)). The uniqueness of the decomposition implies that (V%)? = V7% and thus
ooV’ = Vi o0 hold. Hence there exists a regular connection V" on V' satisfying the assumptions
of Theorem 3, such that Vi; = V" ® 1y +idy ® d. This connection is unique. The map w = V- V"
satisfying w ® 1 = wy is what we called the determinant map. ]

4. Levelt lattices and exponents

4.1 The unramified case

Let (V,V) be a finite-dimensional K-vector space endowed with a connection. Let V = V" + w be
the canonical decomposition of V. Assume in this subsection that the determinant endomorphism
of V has its eigenvalues in (1/2)C[1/z]. We will then say that V is unramified. Denote the attached
direct sum with V' = @;_; Vi. Let us consider a lattice A of V.

DEFINITION 13. A lattice is said to be compatible with the connection V if it is stable under Vj
and compatible with the direct sum @;_, V; attached to V.

PROPOSITION 4.1. The set of sublattices of A which are compatible with the connection V has a
unique maximal element.

Proof. The connection V" is regular. Thus there exists a Vj-stable lattice M of V. After Corol-
lary 2.2, there exists a largest Vj-stable sublattice N of A. Since the direct sum €;_, V; is stable
under the action of Vj, the lattice @;_; NNV is the largest sublattice of A compatible with V. O

DEFINITION 14. Let A be a lattice of V. We call Levelt lattice for the connection V attached to the
lattice A the largest sublattice Ar(V) of A compatible with the connection V.

DEFINITION 15. We call exponents of the connection V attached to the lattice A the eigen-
values (ef\(V))i:L“m of the residue of the associated regular connection V" with respect to the
lattice Az (V). We denote with N (V) the integer part of the real part of the exponents e (V), and
call them wvaluations of the connection V attached to the lattice A.

We sometimes write el (V) = NMNV) + éM(V). If so, we will call é}(V) the non-integer or
invariant part of (V).

Remark 7. These two definitions extend previous notions that we defined in the regular case
[Cor0la]. The exponents in the sense of Definition 15 extend the notion of exponents defined by
Levelt [Lev61] for analytic systems at a regular singularity.

The definition of the Levelt lattice easily yields the following result.
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LEMMA 4.1. Let A be a lattice of V.

i) If A C A is a sublattice of A, then A;, C A, holds.

ii) Let A; and Ay be two free O-submodules of V' such that A = A @ Ag. If the K-vector spaces
Vi=A®p K and Vo = Ay ®p K are stable under Vg, then the Levelt lattice Aj, of A satisfies

A = (Al)L D (AQ)L.

LeMMA 4.2. Let (V,V) be a vector space endowed with a connection and let P € (1/z)C[1/z].
The map V + Pidy ®dz/z is a connection on V, and

d
Ag <V + Pidy ®7Z> = A (V) holds for any lattice A of V.

Proof. If V.= V" 4+ w is the canonical decomposition of V, then
d d
V+Pidy = = V" + <w + Pidy ®—Z>
z z
is the corresponding canonical decomposition of V + Pidy ® dz/z. ]

LEMMA 4.3. If the connection V has only one determinant factor, then the following hold, for any
lattice A of V:

i) AL(V) = Ar(V7);
i) 0<pa(V") < pa(V).

Proof. Let ¢ = fidy be the determinant map of V. Statement i is a straightforward consequence

of Lemma, 4.2. Take v € A. We have
vA(Vi(v)) = va(Ve(v) — fv) Z min(va(Ve(v)), va(fv))
m

in(va(Vg(v)), v(f) + va(v)).

VoWV

Since vA (Vp(A)) = inf,en va(Vi(v)), we find that
va(Vg(A)) = min(ua(Ve(A)), v(f))-
But —u(f) = k(V) < pa(V) holds by definition. Thus we get
—ua(Vp(A)) < —oa(Vo(D)),

and statement ii follows. O

4.2 The ramified case

Assume here that the K-vector space endowed with a connection (V,V) has ramification order
p > 0. Let us take the notations of § 3.1. Denote with H = K[T'|/(T? — z) the minimal ramification
extension, with O the corresponding valuation ring, with Vi = V ® i H the vector space obtained
under extension of scalars and with Vg the unique extension of the connection V. Let V = V" +w
be the canonical decomposition of V, and Vi = @;_, V; the attached direct sum.

Let A be a lattice of V', and Ay = A ®o Op. Choose a pth root ¢ of z, and denote with 6 the
derivation ¢ d/dC.

LEMMA 4.4. Under the former assumptions, the following hold:

i) The sum Vg = (V")g +w ® 1 is the canonical decomposition of V.

ii) The connection V is unramified (with respect to ().
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DEFINITION 16. Let A be a lattice of V.

1) We call Levelt lattice for the connection V attached to the lattice A the Levelt lattice attached
to the lattice Ay for the connection V. One denotes it with Az (V), although usually it is
not defined over O.

2) We call exponents of the connection V attached to the lattice A the eigenvalues (eA(V))Z-:L,,m

K]
of the compatible residue ResiL(v)V% of the regular connection V7% attached to Vg with

respect to the lattice AL(V).
LEMMA 4.5. The Levelt lattice Ar,(V) is independent of the choice of the uniformizing parameter (.

Proof. Let us consider an automorphism o € Gal(H/K) acting on Vg as in the proof of
Theorem 3. The lattice o(AL(V)) is still (V})pn-stable, and it is compatible with the attached
direct sum @;_; V;. We have

O'(AL(V)) C O'(AH) = AH,

because A is the tensor extension of a lattice of V. Hence o(A(V)) C AL(V). The former reason-
ing also applies to o1, thus o(AL(V)) = Az(V). Therefore we proved that Ay (V) is independent
of the choice of (. O

Note that any ramification of order p’ divisible by p gives with this definition the same set of
exponents.

4.3 The Katz lattice

Assume in this subsection that the connection is unramified. The Katz rank (V) of V is then equal
to the minimal Poincaré rank of V on all lattices of V', that we called the order of the singularity
m(V). By means of Corollary 2.2 the following definition makes sense.

DEFINITION 17. We call the Katz lattice of V attached to the lattice A the largest sublattice Ax (V)
of A of minimal Poincaré rank.

LEMMA 4.6. Let A be a lattice of V.
i) If the connection V is regular, then Ax (V) = Ar(V) holds.

ii) If the polar map V" of the connection V is non-nilpotent, then the Katz lattice Ax (V) of A
satisfies
A (V) =A.

Ak (V)

iii) The polar map V is non-nilpotent.

Proof. The Katz rank of a regular connection is zero. The definitions of the Katz lattice and of the

Levelt lattice then coincide. In the unramified case, the map §A is non-nilpotent only if there exists
a determinant factor of degree equal to the Poincaré rank. Therefore condition iii holds. In this case,
pA(V) = k(V) also holds, hence A (V) = A. O

PROPOSITION 4.2. Let A be a lattice of V. Let Ax = Ag(V) be the attached Katz lattice and
Ern(Ak) = (k1,...,ky) the sequence of its elementary divisors in A. We denote with p = pa(V) the
Poincaré rank of V on A, and with k = k(V) the Katz rank of V. Then the following inequalities
hold:

max ki, — ki <p— kK < ky.
i=1,....n—1
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Proof. By definition, one has k < p. If p = 0, the connection is regular: in this case Ax = Ap = A,
and thus k1 = --- = k, = 0. Assume in the sequel that p > 0.

Let () be a Smith basis of A for Ax. We denote with X = (x1,...,2,) an n-tuple of integers,
with X the matrix

and with (2X¢) the family (z%1¢1,...,2%"¢,). Denoting with A = Mat(Vy, (¢)) the matrix of the
connection in the basis (¢) we have
Mat(V, (2%e)) = Alx) = (A 2" 7% = 6 ji)1<i j<n-
The Katz lattice Ax has Poincaré rank x. Call £ the sequence (ki,...,k,). The matrix Al.e) then
has its coefficients in z7"O. Therefore,
v(Ajj) —ki+kj > —r forall<ij<n. 9)
Since p = maxi<; j<n(—v(A;;)), the right-hand side of the proposition

e < ) —
P g k) =y
follows. On the other hand, the index [A: Ag] = "7 | k; is minimal among the indexes in A of all
sublattices of A of minimal Poincaré rank. For any T = (t1,...,t,) € Z" such that 0 < t; < --- <t
and YU t; < S ki, the lattice spanned by (27¢) has strictly larger Poincaré rank than k.
There exists thus a couple of indexes (i(7),j(r)) € {1,. .. ,n}? such that

V(Aierysiry) — tiy +tiry) < 5 (10)
Let ¢ be an index such that ks > 1. Let us show that kpy1 — kp < p — k. Let t; = k; for ¢ < £ and
t; = k; — 1 for i > £ + 1. Then there exists a pair (i,7) and e = —1,0 or 1 such that
—k>v(Ai) —ti+t; =v(Ay) —ki+kj+e>e—k.
Hence v(A;j) =k; —kjand i << 0+ 1< j, and so
kop1 — ke <kj—ki=—v(A4;5) <p—~.
The left-hand side

max lki+1 —k<p-—=k

i=1,....n—

follows. O

COROLLARY 4.1. Let A be a lattice of V. Let p = pp(V) be the Poincaré rank on the lattice A and
k = Kk(V) be the Katz rank of the connection. The index of the Katz lattice Ax in A satisfies
n(n—1)

p—mg[A:AK]g 5

(p— k).

Proof. The estimate follows from Proposition 4.2, since [A : Ag| =" | k; holds. O

Note that Corollary 4.1 yields the following result, which we stated for the regular case in
[Cor99a).

COROLLARY 4.2. If the connection V is regular, then for any lattice A of V', the index of its Levelt
lattice satisfies
n(n —1)

pA(V) <[A:AL] < 5

pa(V).
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Proof. Indeed, in this case the Katz rank is zero, and the Katz lattice is equal to the Levelt
lattice. O

LEMMA 4.7. Let A be a lattice of V. The Katz lattice A = Ax (V) and the Levelt lattice
Ap =Ap(V)
attached to A satisfy
(Ag)L(V)=Ap.

Proof. The Poincaré rank on the Levelt lattice Ay, is equal to the Katz rank of the connection V.
Therefore, A;, C Ag. Since Ay is compatible with V, it follows that A; C (Ag)r(V). There is
no strictly larger lattice compatible with V than Ap. However Ak is a sublattice of A compatible
with V, whence (Ag)r(V) = Ap. O

4.4 Duality and special lattices
Let us now consider the dual connection V* induced by V on the K-dual V* of V.
Let M be a lattice of V' spanned over O by a basis (e) of V and let (e*) be the dual basis of (e).
Lattices are well behaved towards duality, i.e. one has
Hompg (M, O) = Homp (M, O) = L(€¥)

(cf. [Bou85, Part VII, § 4, no. 2, p. 243]). We denote with M* the dual lattice Homop (M, O) of M.
The Poincaré rank of the dual connection V* on the dual lattice M* satisfies pps+(V*) = par (V).
In a similar way as for Corollary 2.2, we have the following result.

LEMMA 4.8. Let V be a connection on V of order of singularity m = m(V). Then, for any k > m,
and any lattice A of V, there exists a unique minimal lattice A* containing A such that p,«(V) < k.

Since M is a sublattice of A implies that M* D A*, Remark 5 yields the following result.

COROLLARY 4.3. Let V be a connection on V. Let m be its order of singularity. Then, for any
k > m, and any lattice A of V', the saturated lattice ]::k_el (A*) of the dual lattice A* with respect
to the dual connection V* satisfies

FgH(A) = AL(V).

Remark 8. Since A (V) = Ag when V is regular, this result gives rise to an algorithm that computes
the Levelt lattice in the regular case, which differs from the algorithm given by Levelt [LevO01].
When the connection is unramified, we get an algorithm to compute the Katz lattice, since in that
case one has A (V) = A, if we denote with m the order of singularity of V. We shall give the
corresponding algorithm in the appendix.

5. Fuchs’ relation

In this section, we prove the results yielding the generalization of Fuchs’ relation. We shall need the
following classical result.

5.1 Sibuya’s lemma

Sibuya’s lemma (cf. [Lev75, p. 10]) is a fundamental result for formal reduction algorithms at an
irregular singularity.
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LEMMA 5.1. Let A be a lattice of V, let p = pp(V) > 0 be the Poincaré rank of the connection V

on A. Let 7 be the canonical projection of A on A = A/zA and let VA be the induced polar map on
A = A/zA. Assume that there exist two C-vector subspaces F} and Fy of A such that the following
conditions hold:

i) A=F @ Fy;
ii) F} and F, are stable under VA;
iii) the restrictions V. = 7‘/};1 and Vg = 7‘/};2 have no eigenvalue in common.
Then there exist two unique free zPVg-stable O-submodules A1 and Ay of A satisfying:
1) A=A @ Ay;
2) Fy =x(A1) and Fy = 7(A2).

5.2 Estimates for lattice invariants

PROPOSITION 5.1. Let V be an unramified connection on V and A be a lattice of V. Let p = pp (V)
be the Poincaré rank, and k = k(V) be the Katz rank of V on A. The Levelt lattice Ar(V) of A
satisfies the inequalities

n(n—1) 1.

—5 P35 irr(End V),

where irr(End V) denotes the Malgrange irregularity of the connection End V induced by V on
End V.

p—r<[A:ALV)] <

Recall that, if the vector space endowed with a connection (V,V) has determinant factors Q;
with multiplicity n;, the Malgrange irregularity index of End V is equal to

irr(End V) = -2 Z ninju(Q; — Qj) = —2 Z ninv(w; — ¢j)
1<i<j<s 1<i<j<s

(cf. [Ber98, p. 10]). The following lemma will be of use in the proof.

LEMMA 5.2. Let m < n two integers. The equality

mm—1) (n—m)(n—m-—1) n(n-1)

2 2 == —m-m)
holds.
Proof of Proposition 5.1. Corollary 4.1 yields
por<hAg(w) < MYy
Since we have
(A AL(V)] = [A: Ax(V)] + [Ax (V) : AL(V)], (11)

it is enough to estimate the index [Ax (V) : AL(V)]. We use induction on the number s of distinct
determinant factors of V.

Assume that the connection has only one determinant factor, denoted with Q. Then k = —v(Q)
and irr(End V) = 0 hold. According to Lemma 4.3, part i, the Levelt lattice of A satisfies the equality
AL (V) = Ap(V"). By means of Lemma 4.7 we get Ap(V) = (Ax(V))(V"). The connection V" is
regular and its Poincaré rank p = p,.(v)(V") on the Katz lattice Ax (V) satisfies

0<p <k
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After Corollary 4.2, the inequalities 0 < [Ax (V) : Az(V)] < 2n(n — 1)k hold. Hence we get

n(n —1) nn—1)  n(n-—1)
T(p—ﬁ)Jr g k=g P

The statement for s = 1 follows, since in that case irr(End V) = 0.

p—r<[AAL(V)] <

Let s > 2 be an integer. Assume that
n(n—1)
2

holds for any ¢ < s, for any vector space endowed with a connection (V,V) having ¢ distinct
determinant factors, and for any lattice A of V.

0 < [Ax(V) : AL(V)] < . % ie(End V)

Let (¢;)i=1,...,s be the distinct determinant factors of (V, V). The valuation of every ¢; is negative.
Assume the (p;) arranged by increasing valuation. Then v(y1) = —& holds. We shall say that ¢; and
@; are equivalent up to order k if v(¢; — ¢j) > —k +k+ 1. Let A be a lattice of V. Let us consider

the Katz lattice Ax(V). The eigenvalues of the polar map §AK(V) are equal to the coefficients of
valuation —x of the attached eigenvalues ¢; = 0Q);. Two situations may occur.

a) The polar map VAK(V) has at least two distinct eigenvalues. If so, one of them is not zero.
Let us call W the eigenspace of A/zA corresponding to a non-zero eigenvalue of VAK(V). Sibuya’s
lemma ensures then that there exist two free O-submodules A; (whose image in A/zA is W) and A’
of respective ranks my and m’, corresponding to subconnections (V4, V1) and (V/, V') of (V, V) and

such that Ag(V) =A; @ A’. Then we get
AL(V) = (Ax(V))L(V) = (A1) & (A)r.
The set of determinant factors of V is the disjoint reunion of the sets of determinant factors of Vi

and V’; note that all determinant factors of V; have valuation —&.

The connections V1 and V' have strictly less distinct determinant factors than V. The induction
assumption then yields

—1 1
0< [Ax(V): AL(V)] < %pm(vg ~ 5 ir(End V1)
Pl
+ Wp A (V) — %irr(End V).

According to the definition of the Katz lattice,

Pa(v) (V) = K = max(pa, (V1), par (V"))
holds. Therefore,

OQ[AK(V)AL(V)] < <m1(m1—1) m’(m’_1)>%

2 * 2
1, 1, /
-5 irr(End Vy) — 3 irr(End V7).
After Lemma 5.2, we have
Lma(my = 1)) + 30/ (m = 1)) = 3(n(n — 1)) = myn’
Hence, we get

n(n —1)
2

1 1
-3 irr(End Vy) — 3 irr(End V').

0<[Ax(V):AL(V)] < Kk —mim'k
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According to the assumption, the difference between a determinant factor ); of V1 and a determi-
nant factor @; of V' has valuation v(Q; — Q;) = —. Thus
mim’k + Lirr(End Vi) + 1 irr(End V') = £ irr(End V).

Hence, the following inequalities hold:

0<[Ax(V):AL(V)] < wﬁ — %irr(End V).
Relation (11) finally yields
pr<ih: A (@) < D)+ " Din(av)
< w;: - %irr(End V).

b) The map V x(V) has only one eigenvalue, which is non-zero according to condition iii of

Lemma 4.6. All the attached eigenvalues (and thus all determinant factors) are equivalent up to
order 0. Let k be the largest integer such that the ¢; are all equivalent up to order k. Let us call
P € (1/2)C[1/z] the polynomial of degree —k that is equivalent to all ¢; up to order k, and consider
the connection V' = V — Pidy ® dz/z. The connection V' satisfies the condition a, because its
determinant factors are not all equivalent. The Katz rank ' of the connection V' satisfies ¥’ < &,
thus the lattice Ax = Ag (V) does not have minimal Poincaré rank for V'. Consider the Katz lattice
Ag2 = (Ax)k(V'). According to Corollary 4.1, the corresponding index then satisfies

k—K <[Ar(V): Age] < w
We then consider the Levelt lattice (Ag2)r (V') of the lattice A2 for the connection V’. By means
of Lemmas 4.7 and 4.2 we get

(Ar2) (V') = (Ax)k (V) L(V) = (k)L (V')

(k — k).

= (Ax)(V)
=AL(V)
Accordingly, the index [Ag2 : (Ag2)r(V')] satisfies
0< [Ag2: (Ag2) (V)] < w# - %irr(Endvl).

Only differences between determinant factors occur in the Malgrange irregularity; hence we have
that irr(End V') = irr(End V). Thus,

0 < [Ak(V) 1 AL(V)] = [Ax(V) : Agc2] + [Agez : AL(V))]
< n(nz— 1) (56— i) + n(n2— 1)

-1 1
< n(n—1) )/@ — —irr(End V),
2 2
so our induction is complete. Relation (11) then yields
n(n —1)
2
< n(n —1)
2

K — % irr(End V')

n(n—1)
2

p— %irr(End V). O

p—r<[A:AL(V)] < (h—r)+ ﬂ—%irr(EndV)
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5.3 Fuchs’ inequalities

PRrROPOSITION 5.2. Let (V,V) be a K-vector space endowed with a connection, and A be a lattice
of V. Denote with p = pp (V) the Poincaré rank of the connection V on the lattice A, with A\"p the
Poincaré rank of \"V on \" A and with 7o(V) the trace of the residue of V on A. Then the sum
of all exponents e, ... ,e, of the connection V on the lattice A satisfies

n(n—1)

A (V) — 5

. 1
p < Zei - Eirr(EndV) <TA(V) —p+ A'p.
=1

Proof. Assume first that the connection is unramified. The n exponents e; are equal to the eigenval-
ues of the residue of the associated regular connection V" on the Levelt lattice of A. By Lemma 2.4
one has

Z ei =7a, (V") = 1A(V") — [A: AL(V)].
Since A"V =A"V"+ Trw is the canonical decomposition of A" V, the relation
1
TA(V") = 1A (V) — Rézs Tr P = A (V)

holds, because Tr(1/z)p C (1/22)C[1/z]. Accordingly, the sum of exponents satisfies

n

D e =7a(V) = [A: AL(V)]. (12)
=1

Denote with x the Katz rank of V. After Proposition 5.1, we get

—1 = 1 1
(V) = %p < Z;ei ~5 irr(End V) < 7A(V) —p+ K — 3 irr(End V).
Let o1, ..., ¢, be the attached eigenvalues of V, counted without respect to their multiplicities, and
assume that they are arranged by increasing valuation. Then k = —v(p1) and
irr(End V) = — Z min(v(g; — ¢;),0)
1<i,j<n

hold. The sum ¢; + -+ + ¢, = Tre is equal to the only eigenvalue attached to the connection
N\" V. The space A" V has dimension 1, and its Poincaré rank is

A"p = sup(0, —v(p1 + -+ + ¢n)).

Hence, we have

A" < K <P
If there exists i@ < j such that the equality —v(¢; — ¢;) = —v(¢1) holds, then we have xk —
+irr(End V) < 0. If instead £ — 3 irr(End V) > 0 holds, then we have v(p1) = -+ = v(pp) = —k,
and the coefficients of valuation —« of all the ¢; are equal, whence v(¢1+---+¢,) = —k. Therefrom,

one gets
—p+r—1irr(EndV) < —p+ A"p.
The statement of the proposition is then established for the unramified case.

Assume now that V is ramified of order p. Let us use the notations of § 3.1. The field H is here
assumed to be endowed with its natural (-adic valuation w, and the invariants of Vi are defined
with respect to the uniformizing parameter (. According to Proposition 5.1 and the proof of the
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unramified case just given, the following inequalities hold:

1 1.
(p)ay (Vu) —ke(VE) + 3 irre(End V) < [Ag : AL(V)]e + 3 irr¢(EndVy) <...

<D (o) (Vi)

With [Ag : AL(V)]c we denote the index as calculated in the ring C[[(]]. Recall from § 3.1 that
(re)ay (Vi) =ppa(V). One easily sees that the same holds for all the occurring invariants:

ke(Va) =pr(V), irre(EndVy) = pirr(End V),

(T)a (V) E) =pa(V7),  [Ag : AL(V)]e = p[A: AL(V)].

The definition of the exponents in the ramified case yields

= 1
Zei = TrRes}, v Vi = ETI (Res¢)a, (v)VH
i=1
]' T
= 5((T¢)AH((V i) — [A: AL(V)]e).
Replacing in the expression above finishes the proof. ]

Let us now consider the field C(z) of rational fractions, endowed at all points a € P!(C) with
the local valuation map v,. Denote with v, A = min;<; j<n Ve A;i; the order at a of a matrix A, and
with Res.—,f the residue of a function f(z) at the point z = a. At s € P!(C), the former local
definitions make sense by means of the change of local coordinate t = z — s if s € C and t = 1/z if
s = 0o0. We denote the Poincaré rank at s with ps.

DEFINITION 18. If the matrix A has coefficients in C(z), we call height of the system the integer

h(A) = Z sup(0, —v, Adz — 1).
a€P(C)

THEOREM 4 (Fuchs’ inequalities). Let dX/dz = AX be a meromorphic differential system on P1(C).
The exponents ef, ..., e; attached to this system at all points s € P1(C) satisfy

_whm) < Y (Zef - %irrs(EndV)> < —h(A) + h(Tr A) (13)

seP1(C) " i=1
and

> Zn:ef <0. (14)

seP1(C) i=1

Proof. We return to z = 0 by a change of local coordinate. The system dX/dz = AX defines a
connection V on K™. Attach to O™ its Levelt lattice (O™)r. According to Proposition 5.2, one has
the following local relation:

(n-1)

n " 1.
Res Tr A — ———=(po)or (V) < D_€] = S imp(End V) < ...

i=1
n

< Res e = (o (9)+ o)y o AV):
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On the other hand, according to relation (12), one has
n
D el < Res Tr A — [0" : (O")1).

We know that (po)pm on (A" V) = sup(0, —vo(Tr Adz) — 1). Adding together these inequalities at
every singularity one gets

Z RGS TI'A - Z ps X Z zn:ef - %il’l’s(EHdV) <

sEPl(C) sEPL(C) seP1(C) i=1
Z Res Tr A— Z ps + Z ps(TrA)
se]P’l = sePI(C)  sePl(C)
and
Z Z €; Z Res Tr A.
seP1(C) =1 sGIP’l((C)
Since }_ cpi(cy Ps = h(A), both results follow now from the residue theorem. O

Let A € M,,(C(2)) be a matrix of rational functions having poles in the set S = {s1,...,sp} C
PL(C). For every s € S, denote its Poincaré rank with p, = max(0, —vsAdz — 1), and its polar
matriz with the matrix

Ay =lim(z — s)P*TrA(2) if 5 # oo,

t—0

_ 1
A = —limtP>"14 (Z) for s = 0.
We say that s € S is a singularity of first kind if ps = 0, and of second kind if ps > 0.

DEFINITION 19. We say that the system dX/dz = AX is generic if for every singularity s of the
second kind of A the polar matrix As has n distinct eigenvalues.

COROLLARY 5.1. Let dX/dz = AX be a generic system over P'(C). The sum of its exponents
e5,...,e5 at all points s € P}(C) satisfies

Z Zn:ef:().

seP1(C) i=1

Proof. Let s be a singularity of the second kind. Let ¢7, ..., ¢} be the determinant factors attached
to the system at s. Since the system is generic, one has

vs(#7) = vs(f — 93) = —ps
for all 1 <7 # j < n. The local Malgrange irregularity index at s is then equal to
irrs(End V) = n(n — 1)ps.

If s is of the first kind, then it is a regular singularity and the same relation is satisfied. Hence one

has
) <zn:ef—%irrs(EndV> Z 3o - ia,

SePI(C) N i=1 SePI(C) i=1
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According to relation (13) of Theorem 4 we get

n
Z Zef}O.

sePI(C) i=1
Relation (14) of Theorem 4 then yields the result. O

Appendix

In this appendix, we describe the algorithm whose existence was mentioned in Remark 8. The
general idea is to compute an O-basis of the lattice A;(V) by using its description in terms of the
saturated Gérard—Levelt lattice given in Corollary 4.3. Note that if the connection V has matrix
representation A = Mat(Vy, (e)) in an O-basis (e) of A, then its saturated Gérard-Levelt lattice

.7-':[61(1\) is spanned by the columns of the n x n? matrix
Mp(V,(e) = M(ZFA) = (T AAy ... A,_1), (A1)
where
Ao =1 (A2)
Appr = 2P0A, + 2FAA;  for any t > 0. (A3)
Since

AR(V) = FL (A,
to the differential system

dXx
— = AX A4
- (A4)

we attach n column vectors spanning the same O-module as the n? columns of the matrix Mz (— f *A)
defined from the dual system dX/dz = —'AX, for some well-chosen f € K.

The following section describes the tools to perform this procedure.

Hermite normal form
Let FE be a euclidean ring, and let m,n € N be two integers. Denote with M,,«,,(E) the algebra of
n X m matrices with coefficients in £. Assume that n < m.

THEOREM 5 (Hermite normal form). Let M = (M;;) € My xm(E) an n x m matrix with coefficients
in E. Then there exists a matrix U € GL,,(E) such that MU has the following form:

0 ... 0 mi1 Ml ... Min
0O ... 0 0 moy ... Moy

MU = | . o _ . (A5)
0O ... 0 O 0 Mpn

Since U € GL,,(E), the n last columns of MU span the same E-module as the m columns of M.

This theorem holds for the ring of polynomials C[z] (see e.g. [Coh91, p. 69], or [Roc93, ch. VIJ).
One can moreover assume in this case that the polynomials m;; have leading coefficient for all
t=1,...,n and that d°m;; > d°m;; for all j > i.

Description of the algorithm

Let us consider a differential system dX/dz = AX with coefficients in the field K = C(z).
Let V. = K", and define V as the connection such that V;/4. has matrix A in the canonical
basis of V.
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For every pole z = a; of the matrix A, the localized ring R; = C[z](._,,) of C[z] at the principal
ideal (z — a;) is the valuation subring of K for the (z — a;)-adic valuation v;. Embed then K in the
field C((z — a;)) of all formal series in (z — a;) with coefficients in C. Denote with m; the order of
singularity of the pole a;. Finally set A; = (R;)" and denote with A} its dual.

Theorem 2 of Gérard and Levelt [GL73] ensures that
* —1 * —1 *
(z—a;)™i d/dz (fzz—ai)mi d/dz (AZ )) - ]:(Y;—ai)"w d/dz (AZ )
The lattice lez_—lw)mz- 4/ 5. (A7) is the Gérard-Levelt saturated lattice of A} of order m; with respect
to the uniformizing parameter t; = z — a;.

This process can be simultaneously performed at every finite singularity of the system.
Let S = {a1,...,ap} be the set of poles of the matrix A contained in C. Set f = (2 — a;)™
(2 —ag)™ - (z = ap)™.

PROPOSITION A.1. Let ¥ be the derivation ¢ = fd/dz of K. Then the following hold.

1) The lattice Fjy*(A})* is the largest (z — a;)"™V 4/4.-stable sublattice of A; for any i =1,...,p.

2) There exists a K-basis (e) of V such that the lattice Fy ' (A})* is spanned over R; by (e) for

any i =1,...,p.
Proof. The derivation ¢ satisfies = [, ,;,(z—a;)(2—a;) d/dz forall i = 1,.. ., p. Since [ [, ,(x—a;)
is invertible in R; for any i = 1,...,p, one has 7§ (M) = .7:@__21_) d/dZ(M) for any R;-lattice M of V.
This result also clearly holds for the dual. Since fg_l(Af) is the smallest (2 — a;)™V 4/ 4.-stable
lattice containing A7, its dual lattice fg_l (A7)* is the largest (2 —a;)™'V 4/4.-stable sublattice of A;.
Thus part 1 is proved.
The lattice Fj ' (A}) is spanned in the canonical basis of K™ by the columns of

M(—fA) =T AAy ... Ay1),
where
Ag=1
A1 = 9A, — fPAA;, for any k > 0,

for any i = 1,...,p. Since the columns of M(—f*A) are independent of 4, the statement for part 2
follows. O

The next step is to find the basis (e) of Proposition A.1. In order to perform Hermite’s reduction
on the matrix M(—f*'4) whose coefficients belong to C(z), consider ¢ € C[z] such that the matrix
M = gM(—f*A) is polynomial and of zero valuation. After Theorem 5, there exists U € GL,,2(C|z])
such that MU is of the form (A5). Let us denote with M the upper triangular matrix consisting of
the last n columns of MU:

mi1r ... min

M =
0 Mpn

The block matrix consisting of the~ﬁrst n columns of M is ¢I, so M has rank n over K. Hence,
according to Theorem 5, the matrix M has also rank n over K.

PROPOSITION A.2. If the system (A4) has only regular singularities over P1(C), the system

dX
E = A[t]\;jfl]X (A6)
has only simple poles over C, and these poles belong to S = {a1, ..., a,}. Moreover, the eigenvalues

of ReszzsA[tM_l} are the exponents of the system dX/dz = AX at any s € C.
1396

https://doi.org/10.1112/50010437X04001046 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001046

ON FUCHS’ RELATION FOR LINEAR DIFFERENTIAL SYSTEMS

Proof. Let us denote with (u) the canonical basis of V' = K™. The matrix M is the gauge matrix
from the dual basis (u*) of V* to a basis (a) of the saturated dual lattice 5~ *(Af). This basis spans
forany i =1,...,p the smallest (z—a;)"V 4/4.-stable superlattice (A})" (V) of A}. Accordingly, the
matrix 'M ! is a gauge matrix from (u) to the basis (a*) which spans the largest (z — a;)™V, Jdz-
stable sublattice of A; that we denoted with (A;),,, in § 2.3. The basis (a*) then satisfies the
conditions of the basis (e) of Proposition A.1.

The matrix U belongs to GL,,(R;) for any ¢ = 1,. .., p. Denote with H(s) evaluation at any point
z = s € C of a matrix function H € M, (C[z]). For s ¢ S, we have ¢(s) # 0, so M(s) € M,,,,2(C)
has rank n over C. According to Theorem 5, the matrix U(s) has rank n? over C. Hence the
matrix M (s) has also rank n over C, and thus the polynomial mj1ma2 - - - My, has no zero outside
of S. Therefore, A[t N1 does not bring any apparent singularity outside of S.

If s € C is a regular point for the system (A4), it is also regular for the system dX/dz =
A[thl}X' At a regular point, the exponents are all zero, and indeed one has ResZ:sA[tM,l} = 0.

The assumption that the system has only regular singularities over P!(C) means that m; = 0 for
all ¢ = 1,...,p. Therefore, the lattice (A;),,, spanned by (e) is the regular Levelt lattice of A;

for all i = 1,...,p such that a; € C, hence the eigenvalues of Resz:aiA[t Ni-1] are the exponents of
the system dX/dz = AX at a;. O
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