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In this work, we derive higher-order transport equations starting from the Boltzmann
equation using a second-order accurate distribution function within the 13-moment
framework. The equations are shown to be unconditionally linearly stable and consistent
with Onsager’s symmetry principle. We also show that the equations comply with the
second law of thermodynamics by establishing the non-negativity of the bulk entropy
generation rate using the linearised form of the proposed equations. The force-driven
Poiseuille flow problem, a standard benchmark problem, is selected to establish the validity
of the equations. A complete analytical solution for this problem is proposed and compared
against the Navier–Stokes, regularised 13, Grad 13 solutions and direct simulation Monte
Carlo data. The proposed solution captures key rarefaction effects, including the Knudsen
layer, non-uniform bimodal pressure profile, non-Fourier heat flux and the characteristic
temperature dip at the centre. The analytical solution for the field variables indicates that
the equations outperform the existing models in the slip- and transition-flow regimes for
the problem considered. These satisfactory results point to the accuracy and applicability
of the proposed equations, and the equations hold significant promise for rarefied gas
dynamics at large Knudsen numbers.

Key words: Navier–Stokes equations, non-continuum effects, rarefied gas flow

1. Introduction
The field of rarefied gas dynamics deals with flows where the molecular mean free
path (λ) of gas molecules is of the order of, or larger than, the characteristic length
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scale (H ) of the system. A critical parameter in this field is the Knudsen number
(Kn = λ/H ), which is used to classify different flow regimes. Of particular interest are
the slip-flow (10−3 < K n < 10−1) and transition-flow (10−1 < K n < 10) regimes, that are
commonly encountered in diverse applications such as spacecraft re-entry, high-altitude
flight, micro-electro-mechanical systems and advanced vacuum technologies (Cercignani
1975; Agrawal, Kushwaha & Jadhav 2020; García-Colín et al. 2008). Since the Navier–
Stokes (N–S) equations do not yield accurate results in the slip- and transition-flow
regimes, several approaches for deriving higher-order transport (HOT) equations have
been proposed in the literature; their advantages and limitations are briefly covered in
the ensuing paragraphs.

The development of HOT equations can be traced through three main approaches: the
Chapman–Enskog approach (Chapman 1916; Enskog 1917), the moment method (Grad
1949, 1958) and the recently proposed Onsager-consistent approach (Singh & Agrawal
2016; Singh, Jadhav & Agrawal 2017; Yadav et al. 2023, 2024). All these approaches shun
the traditional way of deriving the transport equations for a differential control volume;
rather, they start from the fundamental Boltzmann kinetic equation (Struchtrup 2005;
Agrawal et al. 2020). The Chapman–Enskog method expands the particle distribution
function around the Maxwell–Boltzmann equilibrium to derive fluid-dynamic equations
like the Euler, N–S, Burnett and super-Burnett equations (Burnett 1936; Shavaliyev 1993;
Balakrishnan, Agarwal & Yun 1999). However, at higher orders (second and above),
the Burnett and super-Burnett equations suffer from stability issues and are shown to
violate the second law of thermodynamics in some cases (Bobylev 1982; Shavaliyev 1993;
Uribe & Garcia 1999; García-Colín et al. 2008; Agrawal et al. 2020). To address these
limitations, several variants like the augmented (Zhong, MacCormack & Chapman 1993),
Bhatnagar–Gross–Krook-Burnett (Balakrishnan et al. 1999), regularised Burnett (Jin &
Slemrod 2001) and simplified Burnett (Zhao, Chen & Agarwal 2014) equations have been
proposed. These variants, however, often involve ad hoc modifications in the available
equations as opposed to being derived from sound physical principles. For example,
although the BGK-Burnett equations (Agarwal & Balakrishnan 1996; Balakrishnan 2004)
were shown to yield stable, H-theorem-consistent numerical solutions, this was at the
expense of assuming same relaxation times for momentum and energy, which corresponds
to a non-physical unit Prandtl number (Agarwal, Yun & Balakrishnan 2001). Apart from
the inherent limitations of Burnett-like equations, their most significant drawback is the
challenge of deriving additional boundary conditions, as most of these equations are of
third order. Despite substantial efforts since their introduction in 1936, a complete and
consistent set of boundary conditions still remains unavailable.

The moment method, developed by Grad (1949, 1958), is another powerful approach
that involves expanding the distribution function into a series of orthogonal Hermite
polynomials. While the moment equations offer improvements over the N–S equations
and can predict many rarefied flow phenomena (Reitebuch & Weiss 1999; Agrawal et al.
2020) they are not without limitations (Grad 1952; Weiss 1995). For example, the Grad
equations form a hyperbolic set of equations that give discontinuous shocks for Mach
number (Ma) > 1.65. Although we can stretch this critical Mach number limit by including
more moments, the improvement is rather marginal and difficult to justify for the additional
effort involved (Weiss 1995). Another drawback associated with the Gard 13 (G13)
equations is the unphysical negative values of the distribution function at higher Mach
numbers, as demonstrated in the planar shock wave problem (Torrilhon 2016). To mitigate
some of these issues, several variants have been proposed in the literature, for example,
regularised 13 (R13) (Struchtrup & Torrilhon 2003) and regularised 26 (R26) (Gu &
Emerson 2009). These equations were derived using the combined Chapman–Enskog
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and the Grad moment approach with an aim to bring the advantages of their underlying
methods. However, the R13 equations possess an intricate structure and are generally not
applicable at higher Mach and Knudsen numbers (Torrilhon 2016). Furthermore, the 26-
moment equations put forth by Gu & Emerson (2009) add another layer of complexity,
involving 26 independent variables and an even greater number of requisite boundary
conditions. Although these equations claim to improve upon the Grad moment equations,
they are inherently complex and require additional boundary conditions, thereby hindering
their applicability to realistic problems.

The principle of entropy maximisation in non-equilibrium systems has a long and
well-established history Kogan (1969), Dreyer (1987), Müller & Ruggeri (1993), and
in recent years, the maximum entropy moment closure has gained significant attention
due to its strong mathematical and physical foundations Öttinger (2010), McDonald &
Torrilhon (2013), Rana & Struchtrup (2016), Rana, Gupta & Struchtrup (2018), Brini &
Ruggeri (2020), Rana et al. (2021). A key aspect of Brini & Ruggeri (2020) is the
hyperbolicity of the governing equations, which is crucial for accurately modelling the
non-stationary phenomena and ensuring finite disturbance speeds. This is in contrast to
parabolic models, such as the Navier–Stokes–Fourier equations, which predict infinite
propagation speeds. The feasibility of using maximum entropy closure in rarefied gas
simulations has been well documented; see McDonald (2011) and McDonald & Groth
(2013). However, due to the high computational cost associated with this approach,
precomputed values and interpolation techniques are commonly employed to improve its
practicality in computational fluid dynamics McDonald & Torrilhon (2013). Furthermore,
Öttinger (2005) introduced a generalised Hamiltonian structure to impose constraints
on thermodynamic models, and later, Öttinger (2010) proposed modifying the 13-
moment theory by redefining the heat flux variable using the pressure tensor to enforce
thermodynamic admissibility. The critical review of different approaches indicates the
potential to develop better closure relations, which could broaden the Knudsen number
range and offer solutions extending into the mid- or late-transition regime. Any closure
relation should, however, be consistent with the second law of thermodynamics. In this
context, a novel approach known as the Onsager-consistent method (Singh & Agrawal
2016; Singh et al. 2017) has recently been proposed.

The Onsager-consistent method leverages the Onsager symmetry principle (OSP)
(Onsager 1931a,b) to derive Onsager-13 moment (Grad-like) (Singh & Agrawal 2016)
and Onsager–Burnett (Burnett-like) (Singh et al. 2017) equations. This approach can,
therefore, be regarded as the third independent method to solve the Boltzmann equation
and obtain HOT equations (Agrawal et al. 2020; Jadhav, Yadav & Agrawal 2023). Unlike
the Chapman–Enskog and moment methods, the distribution function in this approach
is expressed in terms of thermodynamic forces and fluxes. The resulting distribution
function is not only consistent with the second law of thermodynamics but also satisfies
the linearised Boltzmann equation and compatibility conditions. The Onsager–Burnett
(OBurnett) equations have shown promising results when applied to problems such as
force-driven Poiseuille flow (Jadhav, Singh & Agrawal 2017), Grad’s second problem
(Jadhav & Agrawal 2020a, 2021a), normal shock waves (Jadhav & Agrawal 2020b;
Jadhav, Gavasane & Agrawal 2021; Jadhav & Agrawal 2021b) and pressure-driven
Poiseuille flow (Yadav & Agrawal 2021; Jadhav et al. 2023). Notably, for normal shocks,
the OBurnett equations produced smooth shock structures across all Mach numbers with
a clear existence of heteroclinic trajectory. The equations were also shown to be consistent
with the second law of thermodynamics by ensuring positive entropy generation.

Building on this above-mentioned novel approach, Yadav, Jonnalagadda & Agrawal
(2023) recently derived an extended distribution function, incorporating additional terms
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by substituting the material derivatives with expressions from the N–S equations.
The extended-Onsager 13 (EO13) equations, derived from this distribution, have been
successfully applied to isothermal Poiseuille flow and Grad’s second problem (Yadav et al.
2023), with results showing excellent agreement with available direct simulation Monte
Carlo (DSMC) data. Furthermore, the complete analytical solution for cylindrical Couette
flow was obtained for the first time using the EO13 equations (Yadav & Agrawal 2024).
When compared with the N–S and G13 equations, the EO13 equations demonstrated
superior accuracy and quantitative agreement with DSMC data. Recently, the extended
distribution function from Yadav et al. (2023) was further refined by adding a term through
an iterative refinement technique, consistent with the Onsager-consistent approach (Yadav,
Jonnalagadda & Agrawal 2024). This refined distribution function was employed to derive
the extended-OBurnett and super-OBurnett equations, which were then validated for the
pressure-driven Poiseuille flow.

Despite significant advances in rarefied gas dynamics, existing moment equations
face notable shortcomings. Motivated by these limitations and by the recent success of
the Onsager-consistent approach, we propose a more generalised set of HOT equations.
This study is motivated by the following goals: (i) to ensure thermodynamic consistency
of the equations via the OSP; (ii) to overcome the limitations of the existing methods,
particularly their restricted validity at small Knudsen numbers; and (iii) to evaluate the
predictive performance of the proposed model in comparison with established Grad
moment-based formulations. The resulting set of equations should then extend the field
of continuum fluid mechanics into the early and mid-transition regime and capture the
non-equilibrium flow phenomena that are typically inaccessible to the N–S, G13 and
conventional Burnett-type models.

The paper is organised as follows. In § 2, we summarise the generalised distribution
function from Yadav et al. (2024). Next, in § 3, we introduce the third-order super-Onsager
13-moment (SO13) equations for Maxwellian molecules by combining the OSP with the
Grad moment method, which yields the correct Prandtl number for Maxwell molecules.
Section 4 examines the linear stability of the SO13 equations, while § 5 discusses their
consistency with the OSP. In § 6, we demonstrate their compliance with the second law
of thermodynamics. We then derive an analytical solution for force-driven Poiseuille
flow in § 7 and compare it with existing models and DSMC data. Section 8 provides a
comparative overview of the proposed and existing solutions, and § 9 summarises the
major contributions of the present work.

2. Single-particle distribution function
The Boltzmann equation provides the kinetic theory description of the evolution of
thermodynamic systems

∂ f

∂t
+ ∂

∂x
· (c f ) = J ( f, f ), (2.1)

where f = f (x, c, t) is the single-particle distribution function, J ( f, f ) is the
binary collision operator and x, c, t are the location vector, molecular velocity and
time, respectively. The solution of the Boltzmann equation (2.1) is the single-particle
distribution function which serves as the connecting link between the microscopic world
and the macroscopic world. Once the form of the distribution function is known on
solving the Boltzmann equation, the macroscopic field variables can be obtained by
taking the moments of the distribution function (Chapman & Cowling 1970; Cercignani
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1975; Sone 2000; Zohar et al. 2002; Agrawal 2011; Agrawal et al. 2020). The general
Onsager-consistent approach employed in the present work for evaluating an approximate
form of the distribution function is discussed in detail in Mahendra & Singh (2013),
Singh & Agrawal (2016), Yadav et al. (2023). Here, we provide only the key steps for
brevity in the present section.

With the help of Chapman–Enskog expansion, the zeroth-order Maxwellian ( f0) and
first-order ( f1) distribution function can be employed to derive the Euler and N–S
equations, respectively. The expressions for f0 and f1 are given as

f0(x, c, t) = ρ

m

(
β

π

)(3/2)

exp [−β(|c − u|)2], (2.2)

f1(x, c, t) = f0(x, c, t) −
∑

j

Υ j � X j ,

︸ ︷︷ ︸
f̄1

, (2.3)

where m is the molecular mass, β = 1/(2RT ), R and T (x, t) are the specific gas constant
and absolute temperature, respectively, and ρ(x, t) and u(x, t) are the bulk density and
velocity, respectively. The symbol � denotes a full tensorial contraction for tensors of the
same order. In (2.3), f1 is obtained using the iterative refinement technique (Mahendra &
Singh 2013), and is expressed in terms of thermodynamic forces X j and the corresponding
microscopic conjugate fluxes Υ j . Here, the subscript j = [τ, q], where τ represents
destabilising viscous processes and q denotes thermal non-equilibrium processes. It is
important to emphasise that these formulations of X j and Υ j are as per the OSP.

Similar to the first-order correction term ( f̄1) to the Maxwellian distribution function,
the second-order correction term ( f̄2) has been derived using the iterative refinement
technique in Yadav et al. (2023, 2024) as

f = f0 + f̄1 + (Υττ � Xτ ) � Xτ + (Υqq � Xq) � Xq︸ ︷︷ ︸
f̄2,1

+ Υτ � (Xττ � Xτ ) + Υq � (Xqq � Xq)︸ ︷︷ ︸
f̄2,2

, (2.4)

where the explicit expressions of f̄2,1 and f̄2,2 are documented in Yadav et al. (2023) and
Yadav et al. (2024), respectively, and which depend upon either the Euler or N–S equations
for substituting the material derivatives in terms of spatial derivatives. For completeness
and clarity, explicit expressions are presented in Appendix A, which serves as a direct
reference for the formulations discussed in this section. However, readers interested in a
comprehensive derivation and its relationship with Kn are encouraged to refer to the works
of Mahendra & Singh (2013), Singh & Agrawal (2016), Singh et al. (2017) and Yadav et al.
(2023, 2024), where these aspects are thoroughly detailed.

3. Generalised set of 13-moment equations
The generalised, three-dimensional, 13-moment transport equations are obtained
after evaluating the moments of the Boltzmann equation. Explicitly, this evalua-
tion, which involves computing 〈Ψ, (∂ f /∂t) + (∂/∂x) · (c f )〉 = 〈Ψ, J ( f, f )〉, where
Ψ = {1, ci , (C2

i /2), C〈i C j〉, Ci (C2
k /2)}, yields the following equations (Grad 1949):
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∂ρ

∂t
+ ∂ρuk

∂xk
= 0, (3.1)

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk
+ ∂p

∂xi
+ ∂σik

∂xk
= ρGi , (3.2)

ρ
∂ε

∂t
+ ρuk

∂ε

∂xk
+ ∂qk

∂xk
+ p

∂uk

∂xk
+ σij

∂ui

∂x j
= 0, (3.3)

∂σij

∂t
+ uk

∂σij

∂xk
+ 4

5
∂q〈i
∂x j〉

+ 2σk〈i
∂u j〉
∂xk

+ 2p
∂u〈i
∂x j〉

+ σij
∂uk

∂xk

+ ∂

∂xk

〈
C〈i C j Ck〉, f

〉 〈
C〈i C j〉, J ( f, f )

〉
, (3.4)

∂qi

∂t
+ uk

∂qi

∂xk
+ 5

2

(
p

ρ

∂p

∂xi
− p2

ρ2
∂ρ

∂xi

)
+ ∂

∂x j

1
2

〈|C |2C〈i C j〉, f
〉− 5

2
p

ρ

∂σik

∂xk

−σik

ρ

∂p

∂xk
+ 1

6
∂

∂xi

〈|C |4, ( f − f0)
〉− σij

ρ

∂σ jk

∂xk
+ 7

5
qk

∂ui

∂xk
+ 7

5
qi

∂uk

∂xk

+ 2
5

qk
∂uk

∂xi
+ ∂u j

∂xk

〈
C〈i C j Ck〉, f

〉=1
2

〈|C|2Ci , J ( f, f )
〉
. (3.5)

Here, Gi represents body force,qi denotes the heat flux and σij the stress tensor,
and C〈i C j Ck〉 is a third-order trace-free symmetric tensor, defined as (Struchtrup 2005;
Agrawal et al. 2020)

w〈i jk〉 = w(i jk) − 1
5

(
w(ill)δ jk + w( jll)δik + w(kll)δij

)
, (3.6)

where round brackets indicate the symmetric part of a tensor. Note that only the underlined
terms involving angular brackets with a comma denote moments, whereas angular brackets
with indices denote traceless symmetric tensors. Here, ε = (3/2)RT is the specific internal
energy per unit mass for a monatomic ideal gas, while p = ρRT is the thermodynamic
pressure as represented by the ideal gas law. Equations (3.1)–(3.3) are the three standard
hydrodynamic conservation equations. Note that the production terms in these equations,
〈{1, Ci , C2

i /2}, J ( f, f )〉, vanish in accordance with the principles of conservation
of mass, momentum and energy for particles undergoing elastic collisions. For (3.4)
and (3.5), which describe the evolution of the stress tensor and heat flux vector, the
production terms appear on the right-hand side. For Maxwell molecules, these production
terms obtained using the BGK collision model are given as (Truesdell & Muncaster 1980)

〈
C〈i C j〉, J ( f, f )

〉= − p

μ
σij, (3.7)

1
2

〈|C|2Ci , J ( f, f )
〉= −2

3
p

μ
qi , (3.8)

where σij and qi contain first- and second-order contributions. The dynamic viscosity and
thermal conductivity are temperature-dependent functions given by μ(T ) = μ0(T/T0)

ϕ

and κ(T ) = κ0(T/T0)
ϕ , where μ0 and κ0 correspond to their values at a reference

temperature T0, and ϕ represents the interaction potential between gaseous molecules.
The value of ϕ is unity for Maxwell molecules and 1/2 for hard-sphere molecules
(García-Colín et al. 2008). Equations (3.4) and (3.5) contain three unknown underlined
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higher-order moments (closure relations) that need to be computed to obtain a closed set
of 13 moment equations.

3.1. Closure relations
To achieve closure for (3.1)–(3.5), all three underlined closure relations have been
evaluated by substituting the derived distribution function (2.4) in 〈C〈i C j Ck〉, f 〉,
(1/2)〈|C |2C〈i C j〉, f 〉 and 〈|C |4, ( f − f0)〉, which requires integration with respect to
peculiar velocity (Ci ). By following Jin & Slemrod (2001) and Yadav et al. (2023), we,
in the first step, make it more compact using the ideal gas equation, the N–S, and Fourier
laws by replacing the N–S stress and heat flux terms present in the closure relations. In
the second step, we neglect the fourth-order term in Knudsen number from the closure
term to maintain the third-order accuracy of the governing set of SO13 equations since the
remaining terms are of third-order in Knudsen number (Timokhin et al. 2017; Jadhav &
Agrawal 2021a). Note that these fourth-order and third-order terms result from employing
the N–S and Euler equations-based distribution function terms to evaluate the closure
relations. After algebraic simplification, we obtain the following closure relationship:

〈
C〈i C j Ck〉, f2

〉= −6
pRT t2

r(τ )

ρ

∂ρ

∂x〈i
∂u j

∂xk〉
+tr(τ )

(
−2as RT

∂σ〈i j

∂xk〉
+2(8as−27)

15
q〈i

∂u j

∂xk〉

)
,

(3.9)〈
1
2

C2
k C〈i C j〉, f2

〉
= 7

2
p

ρ
σi j + tr(τ )

(
−24aqv

5
RT

∂q〈i
∂x j〉

+ 75
10

1
4

RT

μ
σk〈iσ j〉k

+ 145
10

1
2

RT σk〈i
∂u j

∂xk〉
− 1

2

[
49
3

− 14ϕ

3

]
RT σi j

∂ul

∂xl
+ 91

15
1
ρ

q〈i
∂p

∂x j〉

)

+ 56 − 64aqv

25
1
p

q〈i q j〉, (3.10)

〈
|C |4, ( f2 − f0)

〉
= tr(τ )

(
24aqs

5
RT

∂qk

∂xk
+ 12

qk

ρ

∂p

∂xk

)
+ 8

(
8aqs + 35

)
25

1
p

qkqk, (3.11)

where parameter tr(τ ) represents the relaxation time for momentum. Here, as = 1.61,
aqv = 1/2 and aqs = −5/2 satisfy the compatibility condition, which represent the additive
invariant property of kinetic theory (Balakrishnan et al. 1999; Agarwal et al. 2001) and
are independent of the Knudsen number (Kn). For more in-depth understanding, interested
readers are encouraged to refer to Balakrishnan et al. (1999), Yadav et al. (2023) and Yadav
et al. (2024). This leads to linear stability, OSP consistency, and compliance with the
second law of thermodynamics, as demonstrated later in the manuscript. Note that, despite
the above-mentioned modification, while deriving the final form of the closure reactions,
the accuracy level of these equations remain intact. However, the modification alters the
mathematical characteristics of (3.9)–(3.11), resulting in both linear and nonlinear forms of
the equations needing an equivalent number of boundary conditions. Equations (3.1)–(3.5)
along with the closure relations (3.9)–(3.11) form the closed set of HOT equations being
proposed in this work.

4. Linear stability analysis
In this section, we establish the one-dimensional stability of the linearised equations
presented in the previous section. For this purpose, we first represent relevant quantities in
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non-dimensional form as follows (Yadav et al. 2024):

ρ = ρo(1 + ρ̄), T = To(1 + T̄ ), p = po(1 + p̄), u1 =√RToū1, σ11 = ρo RToσ̄11,

q1 = ρo

(√
RTo

)3
q̄1, x = H x̄, t = H√

RTo
t̄ . (4.1)

The subscript ‘o’ indicates the variable at equilibrium state, the subscript ‘1’ indicates a
relevant quantity in the x-direction and H represents the characteristic length. Meanwhile,
the quantities with an overbar (·̄) represent small perturbations around the equilibrium or
rest state. Assuming that the perturbations are small, the analysis focuses only on linear
terms, significantly simplifying the calculations. As a result, a reduced set of linearised
and non-dimensionalised equations starting from (3.1)–(3.5), with closure relations given
by (3.9)–(3.10), are obtained as

∂ρ̄

∂ t̄
+ ∂ ū1

∂ x̄
= 0, (4.2a)

∂ ū1

∂ t̄
+ ∂ T̄

∂ x̄
+ ∂ρ̄

∂ x̄
+ ∂σ̄11

∂ x̄
= 0, (4.2b)

3
2

∂ T̄

∂ t̄
+ ∂ q̄1

∂ x̄
+ ∂ ū1

∂ x̄
= 0, (4.2c)

∂σ̄11

∂ t̄
− 483

250
K n

∂2σ̄11

∂ x̄2 + 8
15

∂ q̄1

∂ x̄
+ 4

3
∂ ū1

∂ x̄
+ σ̄11

K n
= 0, (4.2d)

∂ q̄1

∂ t̄
− 18

5
K n

∂2q̄1

∂ x̄2 + 5
2

∂ T̄

∂ x̄
+ ∂σ̄11

∂ x̄
+ 2q̄1

3K n
= 0. (4.2e)

Now, we employ the normal mode perturbation method and assume the solution of primary
variables to be of the form

ρ̄ = ρA exp (ωt̄ + iκ x̄), ū = u1A exp (ωt̄ + iκ x̄), T̄ = TA exp (ωt̄ + iκ x̄),

σ̄11 = σ̄11A exp (ωt̄ + iκ x̄), q̄1 = q̄1A exp (ωt̄ + iκ x̄). (4.3)

Here, the variables κ , ω and the subscript ‘A’ represent the wavenumber, wave
frequency and complex amplitude of the plane wave, respectively. By substituting these
solutions (4.3) into (4.2a)–(4.2e), a relationship between κ and ω is obtained. This
relationship, known as the dispersion relation, can be expressed as

−3ω5

2
+ ω4

(
−36κ2

5
− 5

2

)
+ ω3

(
−162κ4

25
− 72κ2

5
− 1
)

+ ω2
(

−111κ4

5
− 8κ2

)

+ ω

(
−54κ6

5
− 31κ4

2
− 5κ2

3

)
+
(

−3κ6 − 5κ4

2

)
= 0. (4.4)

Upon obtaining (4.4), we examine the roots of this fifth-order polynomial to analyse
the stability of the proposed equations. These roots, which can have both real and complex
parts, provide valuable insights into the system’s behaviour when subjected to disturbances
in space. As a result, we consider a real wavenumber and complex frequency represented
by ω = ωr (κ) + iωi (κ).

In order to ensure stability, it is essential to satisfy the condition ωr (κ) = Re(ω)� 0,
indicating that the real part, Re(ω), of the frequency is negative. This ensures that the local
amplitude of primary variables decreases over time in the presence of spatial disturbances.
The stability analysis is reinforced by the solutions obtained from (4.4), which yield five
roots for ω. These roots are shown in figure 1(a), clearly illustrating the stability criterion.
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Figure 1. (a) Stability curve of the SO13 equations due to spatial perturbations. (b) Variation of attenuation
coefficient with Knudsen number.

Further, variation of the attenuation coefficient (ωr (κ)) has been shown in figure 1(b),
in which K n (= μo

√
RTo/(po H)) ≈ κ is adopted for convenience, as demonstrated in

Balakrishnan et al. (1999). This assumption serves as an approximate representation of
the validity and stability range of the proposed equations. It is important to note that
the absence of this assumption does not affect the generality of the stability analysis of
the present equations. Figure 1(b) shows that all five roots are negative for any value of
the Knudsen number. Thus, the proposed SO13 moment equations are unconditionally
stable for small spatial disturbances and are therefore free from the Bobylev instability, a
well-known issue that plagues the Burnett and other HOT equations.

5. Compliance with Onsager symmetry principle
Here, we follow the procedure outlined by Romero & Velasco (1995) and express
the perturbed field variables (ρ̂, ûi , ε̂, σ̂ij, q̂i ) in terms of thermodynamic forces in
the corresponding hydrodynamic fields (Xρ, Xu,i , Xε, Xσij, Xqi ). The linearisation is
performed about a local equilibrium state using the following perturbation structure:
ρ = ρo + ρ̂, T = To + T̂ , p = po + p̂, ui = ûi , σij = σ̂ij, qi = q̂i , where the
subscript o denotes equilibrium values and variables with a hat ( ˆ ) represent small
deviations around the equilibrium state. Explicitly, these forces are given as (Singh &
Agrawal 2016)

Xρ = 1
ρoTo

p̂ − po

ρo
Xε, Xui = 1

To
ûi , Xε = 1

T 2
o

T̂ , Xσij = 1
2poTo

σ̂ij, Xqi = 2
5po RT 2

o
q̂i .

(5.1)

We further substitute the perturbed field variables and the closure relations given by
(3.9)–(3.10) in (3.1)–(3.5). Note that the ideal gas law is explicitly employed to express the
pressure in terms of density. The governing equations are then linearised after substitution,
which results in the following simplified SO13 equations containing both first- and
second-order derivative terms:

∂ρ̂

∂t
= −ρo

∂ ûk

∂xk
, (5.2)

ρo
∂ ûi

∂t
= − ∂ p̂

∂xi
− ∂σ̂ik

∂xk
, (5.3)
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ρo
∂ε̂

∂t
= −∂ q̂k

∂xk
− po

∂ ûk

∂xk
, (5.4)

∂σ̂ij

∂t
= 161RToμo

100po

∂

∂xk

∂σ̂〈i j

∂xk〉
− 4

5
∂ q̂〈i
∂x j〉

− 2po
∂ û〈i
∂x j〉

− po

μo
σ̂ij, (5.5)

∂ q̂i

∂t
= 1

2
RToμo

po

∂

∂x j

∂ q̂〈i
∂x j〉

− 5
12

RToμo

po

∂2q̂k

∂xi∂xk
− 5

2
Rpo

∂ T̂

∂xi
− po

ρo

∂σ̂ik

∂xk
− 2

3
po

μo
q̂i ,

(5.6)

where μo denotes equilibrium values. Finally, (5.1) is used to replace the perturbed
quantities present in the linearised moment equations (5.2)–(5.6), which yields

∂ρ̂

∂t
= −Toρo

∂ Xui

∂xi
, (5.7)

∂ ûi

∂t
= −To po

∂ Xε

∂xi
− 2To po

∂ Xσi j

∂x j
− Toρo

∂ Xρ

∂xi
, (5.8)

∂ε̂

∂t
= −5RT 2

o po

2
∂ Xqi

∂xi
− To po

∂ Xui

∂xi
, (5.9)

∂σ̂ij

∂t
= 161

50
RToμo

∂

∂xk

∂ Xσ〈i j

∂xk〉
− 2RT 2

o po
∂ Xq〈i
∂x j〉

− 2To p2
o

μo
Xσi j − 2To po

∂ Xu〈i
∂x j〉

, (5.10)

∂ q̂i

∂t
= 5

24
R2T 2

o μo
∂2 Xq〈i
∂x j∂x j〉

− 5RT 2
o p2

o

3μo
Xqi − 5RT 2

o po

2
∂ Xε

∂xi
− 2RT 2

o po
∂ Xσik

∂xk
. (5.11)

Further, (5.7)–(5.11) can be recast into a compact form as

∂αi

∂t
= −

∑
j

L ij X j , (5.12)

where X j is provided in (5.1), and αi represents all the primary variables present in the
proposed equations and the matrix of phenomenological coefficients, L ij, is given as

L ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −Toρo∇ 0 0 0
−Toρo∇ 0 −To po∇ −2To po∇ 0

0 −To po∇ 0 0 −5RT 2
o po∇
2

0 −2To po∇ 0 161RToμo∇2

50 − 2To p2
o

μo
−2RT 2

o po∇
0 0 −5RT 2

o po∇
2 −2RT 2

o po∇ 5R2T 2
o μo∇2

24 − 5RT 2
o p2

o
3μo

⎤
⎥⎥⎥⎥⎥⎥⎦.

(5.13)

Here, ∇ denotes the first-order spatial derivative operator (i.e. ∂/∂xi ), and ∇2 represents
the Laplacian operator. It is important to note that the matrix L ij does not contain any
terms involving the operator (∂2/∂xi∂xk).

A system of equations of the form of (5.12) is compliant with the OSP if the Hermitian
conjugate of the matrix of phenomenological coefficients, L†, satisfies the relation L† =
DL D (McLennan 1974; Romero & Velasco 1995). Here, D is a diagonal matrix with ele-
ments Dii = ∓1 based on the odd/even parity of the primary variables under time reversal.
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For (5.7)–(5.11), D is explicitly evaluated to be

D =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎦. (5.14)

For matrix L given in (5.13), L† is given as⎡
⎢⎢⎢⎢⎢⎢⎣

0 Toρo∇ 0 0 0
Toρo∇ 0 To po∇ 2To po∇ 0

0 To po∇ 0 0 5RT 2
o po∇
2

0 2To po∇ 0 161RToμo∇2

50 − 2To p2
o

μo
2RT 2

o po∇
0 0 5RT 2

o po∇
2 2RT 2

o po∇ 5R2T 2
o μo∇2

24 − 5RT 2
o p2

o
3μo

⎤
⎥⎥⎥⎥⎥⎥⎦, (5.15)

which can be trivially shown to satisfy L† = DL D, thus proving that (5.7)–(5.11) satisfy
the OSP. Most available HOT equations do not satisfy the OSP, and thus, the compliance
of the proposed model with the OSP highlights a significant theoretical contribution.

6. Compliance with second law of thermodynamics
From Struchtrup & Torrilhon (2007), the bulk entropy generation rate for the Grad
moment-based transport equations for the Maxwellian molecule is presented as

Σb = 1
2K n

σijσij + 2
5

Pr

K n
qi qi − 1

2
Aijk

∂σij

∂xk
− 9

20
Pr2 Bik

∂qi

∂xk
, (6.1)

where subscript b in Σb denotes the bulk variation of the entropy generation rate and
Pr is the Prandtl number. Here, the last two terms arise from the additional terms in the
closure expression compared with the G13 equations. Note that the tensors Aijk and Bik
represent only the linear terms in the closure expression. As a result, from (3.9)–(3.11), the
expression of Aijk and Bij are given as

Aijk = −2K nas
∂σ〈i j

∂xk〉
, Bij = −24

5
aqvK n

∂q〈i
∂x j〉

+ 8
5

K naqs
∂qk

∂xk
δij, (6.2)

where only linear terms are considered for simplicity and tensor Aijk represents the linear
terms from 3.9, while Bij corresponds to the sum of the linear terms from (3.10)–(3.11).
Here, the coefficients aα (α ∈ {s, qv, qs}) are already defined in § 3, where the first two
coefficients are positive while the last one is negative. For the Maxwell molecule, these
coefficients were obtained naturally from kinetic theory while following the compatibility
conditions. Unlike our closure, the standard Grad closure does not include terms associated
with aα ( α ∈ {s, qv, qs}), effectively neglecting certain dissipative effects. Hence, setting
aα = 0 in our closure equations does not directly recover the Grad 13-moment closure due
to the presence of additional nonlinear terms.

Here, Σb must remain non-negative, Σb � 0, for all variables such as ρ, ui , T, σij, qi .
This condition can be readily shown by substituting (6.2) in (6.1) and then by performing
algebraic operations. Consequently, we obtain the following simplified expression for
Σb as:
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Tw

H G

Tw

x
y

z

Figure 2. The diagram shows the compressible plane Poiseuille flow problem, driven by an external force
(G). The upper and lower plate temperatures are assumed to have the same temperature Tw .

Σb = 1
2K n

σijσij + 2
5

Pr

K n
qi qi + 1.61K n

∂σ〈i j

∂xk〉
∂σij

∂xk

+ 9
20

Pr2K n

(
12
5

∂q〈i
∂x j〉

+ 4
∂qk

∂xk
δij

)
∂qi

∂x j
. (6.3)

It is important to observe that cross-coupling terms are absent in (6.3) owing to the
restriction of (6.1) to the linearised form of the governing equations, as documented in
Struchtrup & Torrilhon (2007). Since the last two terms of (6.3) appear with the same
sign but with different coefficients, as in the case of the R13 equations presented in
Struchtrup & Torrilhon (2007), this ensures that Σb remains positive under all conditions.

7. Poiseuille flow
This section aims to analytically solve the two-dimensional compressible plane Poiseuille
flow problem driven by a streamwise external force (G) by employing the semi-
linearisation method (Yadav et al. 2023; Yadav & Agrawal 2024). Despite its simplicity,
planar Poiseuille flow serves as an ideal test case for validating the proposed equations due
to its distinct non-equilibrium behaviours. Extensive studies have shown that, under dilute
conditions, these flows exhibit phenomena beyond the predictive scope of the Navier–
Stokes–Fourier framework, including a flow-aligned heat flux without a temperature
gradient (Uribe & Garcia 1999; Aoki, Takata & Nakanishi 2002), a non-uniform pressure
profile (Tij & Santos 1994; Aoki et al. 2002) and a characteristic temperature depression
(Aoki et al. 2002; Zheng, Garcia & Alder 2002; Xu 2003). This will be followed by
comparing our analytical solution with different existing models and DSMC simulation
data to validate the analytical solution.

7.1. Analytical solution for Poiseuille flow
The schematic of the force-driven plane Poiseuille flow problem is presented in figure 2,
which has two parallel plates separated by a distance H , and the origin is located at the
centre of the channel’s entrance. The flow is driven by a body force (shown as ‘G’ in
the figure). To derive the solution for this problem, we simplify the problem depicted in
figure 2 by assuming that the flow remains steady and that all primary variables depend
only on the normal direction of the flow. In this analysis, we further assume that the
viscosity (μ) remains constant and independent of the temperature. Additionally, it should
be noted that the cross-stream velocity (v) is zero due to the presence of impermeable
bounding walls. By employing the assumptions mentioned above and simplifications for
this flow problem, we finally obtain the following variables:
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ui =
⎡
⎣u1(y)

0
0

⎤
⎦, σij =

⎡
⎣σ11(y) σ12(y) 0

σ12(y) σ22(y) 0
0 0 −σ11(y) − σ22(y)

⎤
⎦, qi =

⎡
⎣q1(y)

q2(y)

0

⎤
⎦. (7.1)

We introduce a set of dimensionless variables in (7.2), which allows further simplification
of (3.1)–(3.5)

ȳ = y

H
, ρ̄ = ρ − ρo

ρo
, T̄ = T − To

To
, Ḡ = H

RTo
G, ū1 = u1√

RTo
, σ̄ij = σij

ρo RTo
,

q̄1 = q1

ρo
√

RTo
3 . (7.2)

The substitution of (7.2) in (3.1)–(3.5) and considering the assumptions for the present
analysis, we obtain

x-Momentum equation : −Ḡ + dσ̄12

dȳ
= 0, (7.3a)

y-Momentum equation : dT̄

dȳ
+ dρ̄

dȳ
+ dσ̄22

dȳ
= 0, (7.3b)

Energy equation : σ̄12
dū1

dȳ
+ dq̄2

dȳ
= 0, (7.4)

Stress equation for σ̄11 : 1412K n2

1875
dσ̄12

dȳ

d2ū1

dȳ2 − 161K n

150
d2σ̄11

dȳ2 + 161K n

375
d2σ̄22

dȳ2

+ 4
3
σ̄12

dū1

dȳ
− 4

15
dq̄2

dȳ
+ 1

K n
σ̄11 = 0, (7.5a)

Stress equation for σ̄12 : −644K n

375
d2σ̄12

dȳ2 + 2
5

dq̄1

dȳ
+ dū1

dȳ
+ 1

K n
σ̄12 = 0, (7.5b)

Stress equation for σ̄22 : −353K n2

625
dσ̄12

dȳ

d2ū1

dȳ2 − 483K n

250
d2σ̄22

dȳ2 − 2
3
σ̄12

dū1

dȳ

+ 8
15

dq̄2

dȳ
+ 1

K n
σ̄22 = 0, (7.5c)

Heat flux equation for q̄1 : −6
5

K n
d2q̄1

dȳ2 + 1
2

dσ̄12

dȳ
+ 1

3K n
q̄1 = 0, (7.6a)

Heat flux equation for q̄2 : −29K n

12
σ̄12

d2ū1

dȳ2 − 18K n

5
d2q̄2

dȳ2 − 2067K n

500
dσ̄12

dȳ

dū1

dȳ

+ 2
5

q̄1
dū1

dȳ
+ 1

4
σ̄12

dσ̄12

dȳ
+ 5

2
dT̄

dȳ
+ dσ̄22

dȳ
+ 2

3K n
q̄2 = 0. (7.6b)

The above set of equations is expressed in terms of the Knudsen number
(Kn = μ0

√
RT0/(p0 H)), which characterises the degree of rarefaction. Note that the

Knudsen number is determined based on the equilibrium state ρ0, T0. In (7.3a)–(7.6b),
linear terms are retained along with key nonlinear contributions. Following Yadav
et al. (2023), the equations include nonlinear viscous heating terms, σ̄21(dū1/dȳ) and
q̄1(dū1/dȳ), as well as their combinations, which appear in the SO13 equation and higher-
order closure relations. These terms account for key phenomena, including viscous heating
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and non-hydrodynamic effects. Specifically, the first term in (7.6b), which is first-order in
Knudsen number, arises from this consideration.

Integration of (7.3a) results in

σ̄21 = Ḡ ȳ + Cσ21, (7.7)

where Cσ21 represents an integration constant (appropriate subscripts have been
added to the constants to indicate their origin). Subsequently, by solving the coupled
equations (7.6a) and (7.5b) while incorporating (7.7), we obtain the following simultaneous
solution:

q̄1 = Cq11 sinh (A) + Cq12 cosh (A) − 3Ḡ K n

2
, (7.8)

ū1 = Cu1 − Cσ21

K n
ȳ − 2Cq11

5
sinh (A) − 2Cq12

5
cosh (A) + 3Ḡ K n

5
− Ḡ

2K n
ȳ2, (7.9)

where A = (
√

5ȳ/3K n), the integration constants are represented by Cq11 , Cq12 and Cu1 .
Upon incorporating (7.7)–(7.9) into (7.4), we obtain the subsequent expression

q̄2 = Cq21 + 2Cq11Cσ21

5
sinh (A) − 6

√
5Cq11 Ḡ K n

25
cosh (A) + 2Cq11 Ḡ ȳ

5
sinh (A)

+ 2Cq12Cσ21

5
cosh (A) − 6

√
5Cq12 Ḡ K n

25
sinh (A) + 2Cq12 Ḡ ȳ

5
cosh (A) + C2

σ21

K n
ȳ

+ Cσ21 Ḡ

K n
ȳ2 + Ḡ2

3K n
ȳ3, (7.10)

where Cq21 is an integration constant. Thereafter, integrating (7.5a) and (7.5c) individually
yields the solution for the normal stresses (σ̄11, and σ̄22) as follows:

σ̄11 = Cσ111 sinh (C) + Cσ112 cosh (C) + 8C2
σ21

5

− 912
√

5Cq11Cσ21

1199
cosh (A) + 10580600056Cq11 Ḡ K n

107820075
sinh (A)

− 912
√

5Cq11 Ḡ

1199
ȳ cosh (A) − 912

√
5Cq12Cσ21

1199
sinh (A)

+ 10580600056Cq12 Ḡ K n

107820075
cosh (A) − 912

√
5Cq12 Ḡ

1199
ȳ sinh (A)

+ 16Cσ21 Ḡ

5
ȳ − Cσ221

2
sinh (B) − Cσ222

2
cosh (B) + 9784Ḡ2K n2

1875
+ 8Ḡ2

5
ȳ2,

(7.11a)

σ̄22 = Cσ221 sinh (B) + Cσ222 cosh (B) − 3251Ḡ2K n2

625
+ 24

√
5Cq11Cσ21

11
cosh (A)

− 1723268Cq11 Ḡ K n

9075
sinh (A) + 24

√
5Cq11 Ḡ

11
ȳ cosh (A) + 24

√
5Cq12Cσ21

11
sinh (A)

− 1723268Cq12 Ḡ K n

9075
cosh (A) + 24

√
5Cq12 Ḡ

11
ȳ sinh (A) − 6C2

σ21

5
− 12Cσ21 Ḡ

5
ȳ

− 6Ḡ2

5
ȳ2, (7.11b)
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where B = (5
√

4830ȳ/483K n), C = (5
√

966ȳ/161K n), while Cσ111 , Cσ112 , Cσ221 and
Cσ222 are integration constants. Finally, thermodynamic variables (T , and p) are obtained
after integrating (7.6b) and (7.3b) individually as

T̄ = CT + 4C2
q11

125
cosh2 (A) + 8Cq11Cq12

125
sinh (A) cosh (A) − 9623

√
5Cq11Cσ21

12375
cosh (A)

+ 85851704Cq11 Ḡ K n

1134375
sinh(A) − 9623

√
5Cq11 Ḡ

12375
ȳ cosh(A) + 4C2

q12

125
cosh2(A)

− 9623
√

5Cq12Cσ21

12375
sinh(A)+85851704Cq12 Ḡ K n

1134375
cosh(A)−9623

√
5Cq12Ḡ

12375
ȳ sinh(A)

− 2C2
σ21

15K n2 ȳ2 + 3299Cσ21 Ḡ

3750
ȳ − 4Cσ21 Ḡ

45K n2 ȳ3 − 2Cσ221

5
sinh(B) − 2Cσ222

5
cosh(B)

− 4Cq21

15K n
ȳ + 3299Ḡ2

7500
ȳ2 − Ḡ2

45K n2 ȳ4, (7.12a)

p̄ = C p−24
√

5Cq11Cσ21

11
cosh (A)+1723268Cq11 Ḡ K n

9075
sinh (A)−24

√
5Cq11 Ḡ

11
ȳ cosh (A)

− 24
√

5Cq12Cσ21

11
sinh (A) + 1723268Cq12 Ḡ K n

9075
cosh (A) − 24

√
5Cq12 Ḡ

11
ȳ sinh (A)

+ 6C2
σ21

5
+ 12Cσ21 Ḡ

5
ȳ − Cσ221 sinh (B) − Cσ222 cosh (B) + 3251Ḡ2K n2

625
+ 6Ḡ2

5
ȳ2,

(7.12b)

where CT and C p are integration constants.
It is important to highlight that the N–S equations predict zero streamwise heat

flux, while the G13 equations predict a constant streamwise heat flux. Note that the
velocity (ū1), heat flux (q̄1, q̄2) and shear stress component (σ̄21) explicitly depend
on the forcing term (Ḡ), whereas other physical quantities (T̄ , p̄) and the normal
stress components (σ̄11, σ̄22) become non-zero due to their coupling with the previously
mentioned parameters.

Note that the expression for density (ρ̄) is derived from pressure and temperature, as it
is a dependent variable. Hence, it is not presented here for brevity. Within this context, it is
crucial to note that the integration constants Cσ21 , Cq11 , Cσ221 and Cq21 , which are present
in (7.7)–(7.10), become zero due to the symmetry displayed by the streamwise velocity
and temperature. Incorporating these results into (7.10)–(7.12b) results in the following
analytical solution of various quantities for the problem:

σ̄21 = Ḡ ȳ, (7.13a)

q̄1 = Cq12 cosh (A) − 3Ḡ K n

2
, (7.13b)

ū1 = Cu1 − Ḡ ȳ2

2K n
− 2Cq12

5
cosh (A) + 3Ḡ K n

5
, (7.13c)

q̄2 = −6
√

5Cq12 Ḡ K n

25
sinh (A) + 2Cq12 Ḡ

5
ȳ cosh (A) + Ḡ2

3K n
ȳ3, (7.13d)

σ̄11 = Cσ111 sinh (C) + Cσ112 cosh (C) − Cσ221

2
sinh (B) − 912

√
5Cq12 Ḡ

1199
ȳ sinh (A)
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+ 10580600056Cq12 Ḡ K n

107820075
cosh (A) − Cσ222

2
cosh (B) + 9784Ḡ2 K n2

1875
+ 8Ḡ2

5
ȳ2,

(7.13e)

σ̄22 = −1723268Cq12 Ḡ K n

9075
cosh(A) + 24

√
5Cq12 Ḡ

11
ȳ sinh(A)

+ Cσ221 sinh(B) + Cσ222 cosh(B) − 3251Ḡ2K n2

625
−6Ḡ2

5
ȳ2, (7.13f )

T̄ = CT − Ḡ2

45K n2 ȳ4+3299Ḡ2

7500
ȳ2+4C2

q12

125
cosh2(A) + 85851704Cq12 Ḡ K n

1134375
cosh(A)

− 9623
√

5Cq12 Ḡ

12375
ȳ sinh(A) − 4Cq21

15K n
ȳ − 2Cσ221

5
sinh(B) − 2Cσ222

5
cosh(B),

(7.13g)

p̄ = Cp + 1723268Cq12 Ḡ K n

9075
cosh (A) − 24

√
5Cq12 Ḡ

11
ȳ sinh (A) − Cσ221 sinh (B)

− Cσ222 cosh (B) + 3251Ḡ2K n2

625
+ 6Ḡ2

5
ȳ2. (7.13h)

The underlined terms in (7.13) represent the specific components that arise from the
solution derived by employing the N–S equations for the present problem. We also
compare our solution with that of the G13 equations in § 8. All the other terms, including
the hyperbolic cosine and sine, are the result of the Knudsen layer responsible for
rarefaction effects. The solutions obtained for the force-driven plane Poiseuille flow
problem in (7.13) will be compared and validated against other model solutions and DSMC
data in the subsequent subsection.

7.2. Validation
In this subsection, we compare the solution obtained from the simplified form of SO13
equations (7.13) with the N–S, G13, R13 equations and DSMC data reported in Zheng
et al. (2002, 2003). This comparison requires evaluating the integration constants in
the solution using accurate boundary conditions, which are crucial for determining
these constants. However, note that extended models beyond the Navier–Stokes–Fourier
framework require additional boundary conditions: the Burnett equations necessitate
higher-order gradients, while Grad-type methods involve prescribing conditions for
higher-order moments. Since ill-posed boundary conditions can lead to unphysical results,
their careful formulation is essential. However, deriving precise boundary conditions
remains an active research area for most HOT equations. It should be noted that deriving
boundary conditions for the proposed equations is beyond the scope of this work. While
we plan to address this issue in future work, as done in Rana & Struchtrup (2016) and
Rana et al. (2021), we choose to proceed without being hindered by the lack of boundary
conditions. Therefore, we adopt the approach suggested in Uribe & Garcia (1999),
García-Colín et al. (2008), Yadav & Agrawal (2024) and Yadav et al. (2024). Accordingly,
we use data from DSMC simulations to evaluate the integration constants and thereby
obtain a complete solution for all the variables.

In the simplified solution of (7.13), five integration constants require five boundary
conditions for the corresponding variables at one wall, as listed in table 1, while symmetry
determines those at the other. It implies that the integration constants are evaluated by
matching the analytical solutions with DSMC data at the wall. Note that in classical
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Variables N–S G13 R13 SO13

Cq12 0 0 3.94 × 10−4 3.94 × 10−4

Cu1 0.577 0.577 0.580 0.580
Cσ222 0 0 6.03 × 10−5 1.37 × 10−3

CT 1.047 1.040 1.038 1.044
C p 1.047 1.033 1.037 1.037

Table 1. Integration coefficients for various models based on DSMC data at the wall.

hydrodynamics, where Knudsen boundary layers are absent, integration constants linked
to it vanish.

As discussed above, we utilise the DSMC data reported in Zheng et al. (2002, 2003) to
evaluate the boundary conditions at ȳ = ±0.5 for all the primary variables. In a similar
manner, we also apply this step to every result presented in the current work for other
equations, namely, the N–S, G13 and R13 equations, to make the comparisons on a
common ground. Note that the DSMC simulation was conducted for a non-dimensional
force of Ḡ = 0.2355 and a Knudsen number of Kn = 0.072, with the Knudsen number
adjusted to match the definition used in the present study. In addition to these non-
dimensional parameters, the boundary values of the primary variables obtained from
the DSMC data are employed to evaluate the integration constants and their values are
summarised in table 1. These values are subsequently used to obtain their profiles across
the channel in the following section.

Figure 3 presents a comprehensive comparison of the results from the derived analytical
solution of the proposed SO13, other (N–S, G13, R13) equations and DSMC data for
the problem considered under the above-mentioned conditions. As discussed above, the
remaining integration constants (Cq12 and Cu1), which arise after applying the symmetry
conditions in (7.7)–(7.13d), are evaluated using the available DSMC data.

Figure 3(a) focuses on the variation of shear stress (σ̄21), which exhibits a linear profile.
Notably, the profiles derived from the SO13 and other equations are indistinguishable and
show good agreement with the DSMC data. Similarly, the streamwise heat fluxes (q̄1)
obtained from the SO13 and R13 equations overlap (figure 3b) and align well with the
DSMC data, in which the profile transitions from negative in the bulk region to positive
near the wall boundaries. The change in sign indicates that the tangential heat flux is in the
opposite direction to the flow direction in the bulk region. Also, we observe steep variation
near the walls while the heat flux remains constant in the bulk region. The solution of the
N–S equations gives zero tangential heat flux, while the G13 equations yield a constant
value, which matches the solution of the SO13 equations at the centre of the microchannel.
For streamwise velocity (ū1) and cross-stream heat flux (q̄2), as shown in figures 3(c)
and 3(d), respectively, the results of all equations set are indistinguishable and consistent
with the DSMC data.

In figure 4, we compare the analytical solutions for normal stress (σ̄22), pressure ( p̄),
temperature (T̄ ) and density (ρ̄) as obtained using the SO13 equations with those of the
N–S, G13, R13 equations and benchmark with the DSMC data. The variation of σ̄22 across
the microchannel (figure 4a) is better captured with the SO13 equations as compared with
the N–S, G13 and R13 solutions. In particular, the N–S equations essentially give zero
stresses, while the G13 equations fail to capture the bi-modal profile. The non-uniform
pressure profile across the microchannel is accurately captured with the SO13 equations
(figure 4b), with the N–S equations predicting a constant pressure profile.
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Figure 3. Cross-stream variation of (a) shear stress (σ̄21), (b) streamwise heat flux (q̄1), (c) streamwise velocity
(ū1) and (d) cross-stream heat flux (q̄2). The solution is compared with the corresponding results from the
N–S, G13 and R13 equations and the DSMC data (reported by Zheng et al. 2002, 2003) for Kn = 0.072 and
Ḡ = 0.2355.
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Figure 4. Cross-stream variation of (a) normal stress (σ̄22), (b) pressure ( p̄), (c) temperature (T̄ ) and (d) density
(ρ). The solution is also compared with the corresponding results from the N–S, G13 and R13 equations and
the DSMC data (reported by Zheng et al. 2002, 2003) for Kn = 0.072 and Ḡ = 0.2355.
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The results for temperature are particularly interesting, with the DSMC simulations
showing a characteristic temperature dip at the centre. As shown in figure 4(c), the
N–S equations fail to capture this dip while the results of the SO13 equations are in better
agreement with the DSMC data as compared with those of the G13 and R13 equations.
Figure 4(d) compares the normalised density across the channel height. The results of
the SO13 equations match closely with the DSMC data, thereby again establishing the
superiority of the SO13 equations.

8. Discussion
In this section, we aim to touch upon the three important aspects: (i) comparison of the
SO13 equations with the existing equations, (ii) provide new insights by pointing out
the significance and novelty of the present work and (iii) the rigorous verification of the
proposed theory with previous analytical and simulation results.

8.1. Comparison with the N–S, G13 and R13 equations
In this paper, we utilise the second-order OSP-consistent distribution function (Yadav et al.
2024) to derive closure relations for the Grad moment-based SO13 equations. Unlike the
G13 equations (Grad 1949), these closure relations (3.9)–(3.11) for the SO13 incorporate
several additional linear and nonlinear third-order terms in Knudsen number. As a
result, the proposed SO13 equations align with the super-Burnett equations. Moreover,
as compared with the N–S and G13 equations, these additional terms ensure the wider
applicability of the SO13 equations in terms of Knudsen number. We compare the present
closure relationships (8.1)–(8.3) with the corresponding ones from the G13 and R13
equations. Specifically, only the first term on the right-hand side of (8.2) is identical to
the corresponding closure in the G13 equations. Similarly, all terms in (8.1), except the
first, all terms in (8.2), except the fifth and seventh, and all terms in (8.3), except the
last, are present in the R13 equation variant presented in Struchtrup (2004). Apart from
this, stability issue of the equations is a well-known challenge when working with HOT
equations, primarily due to the inclusion of additional linear terms (Struchtrup 2004).
Therefore, building on the works of Singh & Agrawal (2016) and Yadav et al. (2023), we
assessed the linear stability of the SO13 equations in spatial domains. The findings affirm
that the proposed equations are linearly stable, a critical characteristic needed for their
successful numerical implementation. The additional terms in the Burnett equations may
be a source of inconsistency with the second law of thermodynamics (García-Colín et al.
2008). However, in the proposed SO13 theory, the additional terms does not violate the
second law of thermodynamics, as demonstrated in § 6. It is important to note that, while
the choice of Maxwellian molecules simplifies the derivation (particularly the collision
integrals appearing in the transport equations for stress tensor and heat flux vector), the
framework can be adapted to more realistic intermolecular potentials, such as Lennard–
Jones or ab initio, by modifying the transport coefficients (Torrilhon & Struchtrup 2004).
Future work will focus on extending this approach to enhance its applicability to real gas
behaviours

〈
C〈i C j Ck〉, f2

〉= −6
pRT t2

r(τ )

ρ

∂ρ

∂x〈i
∂u j

∂xk〉

+ tr(τ )

(
−2as RT

∂σ〈i j

∂xk〉
+ 2(8as − 27)

15
q〈i

∂u j

∂xk〉

)
, (8.1)
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1
2

C2
k C〈i C j〉, f2

〉
=7

2
p

ρ
σi j + tr(τ )

(
−24aqv

5
RT

∂q〈i
∂x j〉

+ 75
10

1
4

RT

μ
σk〈iσ j〉k

+ 145
10

1
2

RT σk〈i
∂u j

∂xk〉
− 1

2

[
49
3

− 14ϕ

3

]
RT σi j

∂ul

∂xl
+ 91

15
1
ρ

q〈i
∂p

∂x j〉

)

+ 56 − 64aqv

25
1
p

q〈i q j〉, (8.2)

〈|C |4, ( f2 − f0)
〉= tr(τ )

(
24aqs

5
RT

∂qk

∂xk
+ 12

qk

ρ

∂p

∂xk

)
+ 8(8aqs + 35)

25
1
p

qkqk . (8.3)

8.2. Significance, novelty and advantages of the present work
The closure of the N–S and G13 equations consists solely of linear terms, which are
sufficient to capture the rarefied flow dynamics within the equilibrium regime. However,
to accurately model the flow phenomena away from equilibrium, additional nonlinear
terms are necessary. These terms are essential for capturing the non-equilibrium processes
in rarefied flows, particularly the Knudsen layer near boundaries, which the N–S and
G13 equations cannot effectively represent. With the inclusion of these additional terms
(3.9)–(3.11), the SO13 equations extend the capabilities of the G13 equations, offering
greater accuracy in capturing the rarefied phenomena and with a broader applicability
over a wider range of Knudsen numbers. This claim is supported by the SO13 equations
capability in capturing non-uniform pressure profile (Uribe & Garcia 1999; Zheng et al.
2002; Rana et al. 2016), the temperature dip at the flow centre (Tibbs, Baras & Garcia 1997;
Uribe & Garcia 1999; Aoki et al. 2002; Xu 2003; Taheri, Torrilhon & Struchtrup 2009;
Myong 2011) and the presence of a tangential heat flux without a temperature gradient
(Mansour, Baras & Garcia 1997; Todd & Evans 1997; Uribe & Garcia 1999; Zheng et al.
2002, 2003; Taheri et al. 2009; Myong 2011), as shown in the present work.

Previously, the consistency of the OSP was tested for the Burnett equations (McLennan
1974; Romero & Velasco 1995) and more recently for the Onsager-13-moment equation
(Singh & Agrawal 2016). McLennan (1974) and Romero & Velasco (1995) identified that
the inclusion of higher-order (third-order) linear derivative terms leads to OSP violations
in the Burnett equations due to initial slip. In contrast, the G13 equations contain only
first-order linear derivative terms, and as a result, previous studies did not consider second-
order linear derivatives when analysing OSP consistency for G13-like equations. In this
work, however, we demonstrate that our proposed equations are fully compliant with the
OSP, even when second-order linear derivative terms are included. This is established by
proving L† = DL D in (5.15). Unlike earlier approaches, we impose no restrictions on the
order of the derivatives when selecting the linear terms, allowing these terms to appear as
diagonal elements in the matrix. This approach is essential for testing the limits of OSP,
which is typically applied to second-order differential operators, thus making our work
novel in its methodology. In addition, we demonstrate that the linear form of the proposed
equations is consistent with the second law of thermodynamics. This consistency provides
some indication that the analysis could be relevant beyond the specific case examined here,
although further studies would be needed to assess its broader applicability.

As shown in table 2, the analytical solution for the G13 equations has been derived using
the semi-linear method. As a result, the temperature expression for the G13 equations con-
tains additional terms compared with the N–S equations. Consequently, the G13 equations
are capable of qualitatively capturing the third-order temperature dip effect at the centre
of the microchannel, a phenomenon not previously reported in the literature, to the best of
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Variable G13 equations N–S equations SO13 equations R13 equations

q̄1 − 3Ḡ K n
2 0 (7.13b) Equation (35) (Taheri et al. 2009)

ū1 Cu1 + 3Ḡ K n
5 − Ḡ ȳ2

2K n Cu1 − Ḡ ȳ2

2K n (7.13c) Equation (35) (Taheri et al. 2009)

q̄2
Ḡ2 ȳ3

3K n
Ḡ2 ȳ3

3K n (7.13d) Equation (36) (Taheri et al. 2009)

σ̄22 − 6Ḡ2 ȳ2

5 0 (7.13f ) Equation (36) (Taheri et al. 2009)

T̄ CT + 14Ḡ2 ȳ2

25 − Ḡ2 ȳ4

45K n2 CT − Ḡ2 ȳ4

45K n2 (7.13g) Equation (36) (Taheri et al. 2009)

p̄ C p + 6Ḡ2 ȳ2

5 C p (7.13h) No explicit expression for p is
given in Taheriet al. (2009); p is
obtained using T and σ22.

Table 2. Comparison of primary variable solutions derived from the G13, N–S, R13 and SO13 equations.

the authors’ knowledge. This result suggests that the temperature dip effect at the centre
may also be a nonlinear phenomenon. Furthermore, the solution and behaviour of the
G13 equations have not been reported in the literature previously (Uribe & Garcia 1999;
Xu 2003). Table 2 demonstrates that q̄2 is only a first-order effect, while q̄1 and σ̄11 are
second-order effects and lie beyond the scope of the N–S equations. In this context, first-
order and second-order effects correspond to the first and second powers of Knudsen num-
ber. Furthermore, a comparison of the solutions for T̄ reveals that the N–S equations pre-
dict a local maximum, whereas the G13 equations predict a local minimum at the centre of
the channel. This local minimum is also observed in the DSMC data and is accurately cap-
tured by the proposed SO13 equations. Apart from this, the results presented in figures 3
and 4 show that the accuracy of the SO13 equations is better than the available equations.
Therefore, this comparison signifies the consistency of OSP and the second law of ther-
modynamics and enhances our faith in its applicability at a higher Knudsen number.

The inclusion of additional linear and nonlinear terms involving qi enables the SO13
equations to be applied to phonon hydrodynamics (Guyer & Krumhansl 1966; Guo, Jou &
Wang 2016), which is crucial for thermal management in the semiconductor industry. This
novel approach unifies rarefied gas dynamics and phonon hydrodynamics, suggesting that
a single set of equations can serve both these applications. A key advantage of this method
is that, unlike other phonon hydrodynamics models, it does not rely on any free parameters.
The additional nonlinear terms (q〈i q j〉 and qkqk) are expected to play a significant role
in heat conduction at small scales, where large temperature gradients are particularly
important, especially in semiconductor applications.

8.3. Comparison and validation of analytical solution
To validate the SO13 equations, we analytically solve the force-driven Poiseuille flow using
the semi-linearisation method, as applied in Yadav et al. (2023), Yadav & Agrawal (2024).
This method accounts for several nonlinear terms in the SO13 equations compared with the
G13 and N–S equations, as shown in table 2. While the solution for q̄2 remains identical
in N–S and G13 equations, differences in ū1 and T̄ arise due to additional terms in G13,
which are crucial for capturing Knudsen layer effects near boundaries.

A key observation is that the analytical solutions of the SO13 and R13 equations
coincide for σ̄21, q̄1, q̄2 and ū1 (figures 3a and 4d). As a result, their plots overlap
and show an excellent agreement with DSMC data, outperforming the N–S and G13
equations. However, significant discrepancies appear in figures 4(a)–4(d), where the
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N–S equations predict zero σ̄22 and constant pressure, while the G13 equations fail to
provide qualitative accuracy. From figure 4(b), we would like to emphasise that the same
DSMC data have been used to determine the boundary conditions for the N–S, G13, R13
and SO13 equations. Despite this, the N–S, G13 and R13 equations fail to accurately
capture the pressure variation near the wall, whereas the SO13 equations more accurately
align with the DSMC results. This suggests that the improved accuracy of the SO13
equations is due to their inherent higher-order modelling rather than a mere dependence
on the boundary conditions. Moreover, as shown in figure 4(c), the N–S solution does not
capture the temperature dip at the channel centre, a third-order effect previously reported in
Uribe & Garcia (1999), Xu (2003). Interestingly, despite being second-order accurate, the
G13 equations qualitatively capture this dip, outperforming the R13 equations at the centre.
However, capturing the temperature profile accurately requires the additional hyperbolic
terms in the SO13 equations, significantly differentiating their performance from G13,
as demonstrated in figure 4(c). The discrepancies in figure 4(d) primarily stem from the
constant pressure assumption in the N–S and under-predicted temperature in the R13
equations. Previous studies (Uribe & Garcia 1999) highlighted the challenges in capturing
pressure curvature near walls using the conventional Burnett equations without DSMC fine
tuning. In contrast, the SO13 solutions naturally follow the pressure variation, reinforcing
confidence in their application to rarefied gas problems.

The SO13 equations are found to be the most accurate when compared with the N–S,
G13 and R13 equations. It is important to note that the variation of ρ̄ in the case of the
N–S equations is not constant, even though the pressure remains constant, due to the non-
uniform nature of the temperature across the channel. Some discrepancies between our
analytical results and DSMC data may be due to the assumption of constant viscosity in
our approach, which excludes temperature-dependent nonlinear effects. The assumption of
constant viscosity, adopted for analytical simplicity as in Taheri et al. (2009), is justified
by the minimal temperature variation in this study, with figure 4(c) showing approximately
1 % for ((Tmax − Tmin)/Tmax) × 100.

In summary, the present study advances the field of continuum fluid mechanics
by developing the SO13 equations, a higher-order moment-based transport model
that systematically bridges the kinetic theory and continuum formulations through
thermodynamically consistent corrections. In the case of force-driven Poiseuille flow,
the SO13 equations demonstrate improved accuracy in capturing several non-equilibrium
features as compared with the existing continuum models. Notably, while the G13
equations surprisingly capture the central temperature dip qualitatively despite being
second-order, the SO13 model offers quantitatively superior predictions in line with
DSMC data. Furthermore, the SO13 framework is likely to provide a unified and
parameter-free basis to describe both the rarefied gas dynamics and phonon-mediated
thermal transport in semiconductors.

9. Conclusions
In this study, we derived generalised third-order SO13 equations for rarefied gas
dynamics, which are linearly stable, consistent with the OSP and with the second law of
thermodynamics. These equations incorporate additional higher-order linear and nonlinear
terms, which are not present in the G13 equations. This enables our equations to accurately
capture non-equilibrium phenomena such as the Knudsen layer. To validate the model,
we analytically solved the force-driven Poiseuille flow problem and compared the results
with DSMC data for both conserved and non-conserved variables. We evaluated the
performance of the derived equations against the G13 equations, as well as the reported
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solutions of the N–S and R13 equations. Our results show that, surprisingly, the second-
order G13 equations qualitatively capture the temperature dip at the microchannel centre,
a third-order effect well known in the literature. However, the results of the proposed SO13
equations indicate that they perform better compared with other theories in capturing
critical rarefied phenomena qualitatively and quantitatively, including a non-uniform
pressure profile, the central temperature dip and a tangential heat flux. The consistency
of the SO13 equations with the second law of thermodynamics, along with their improved
performance in the present benchmark case, suggests their potential applicability to a
broader class of rarefied gas dynamics problems. However, further benchmark tests are
needed in order to fully establish the validity and accuracy of the proposed equations,
which we intend to present in future work.
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gratefully acknowledges SERB for the JC Bose National Fellowship. These financial grants were crucial for
undertaking this study.
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Appendix A. Expansion of single-particle distribution
Simplifying (2.3) yields (Yadav et al. 2024)

Υi = − f0 tr(i) Ῡi , (A1a)

where

Ῡτ = −
[

C ⊗ C − 1
3
|C|2δ

]
, (A1b)

Ῡq = −
(

5
2β

− |C|2
)

C, (A1c)

and

Xτ = β[∇ ⊗ u + (∇ ⊗ u)T ], (A1d)
Xq = ∇β. (A1e)

The quantity δ and symbol ⊗ denote the Kronecker delta and the outer product,
respectively. The peculiar velocity is defined as C = (c − u). We highlight the use of
distinct relaxation times for momentum (tr(τ ) = μ/p) and energy transport (tr(q) = κ(γ −
1)/(Rγ p) = tr(τ )/Pr ), which not only separate viscous and thermal time scales but also
ensure the correct Prandtl number Pr for gases. The quantities γ and p in tr(q) denote the
adiabatic index and thermodynamic pressure, respectively.

In the above paragraph, the relationship between relaxation time and transport properties
is provided based on Struchtrup & Torrilhon (2003) and Singh & Agrawal (2016).
Furthermore, the dependence of viscosity on the Knudsen number is discussed in § 4.
Together, these relations support the interpretation that higher-order corrections (first and
second orders) in relaxation time correspond to an expansion in the Knudsen number,
thereby systematically capturing rarefaction effects.
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In (2.4), the terms Υττ � Xτ and Υqq � Xq are, respectively, defined as (Yadav et al.
2024)

Υττ � Xτ = t2
r(τ ) f0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Cl

[
Ci

∂u j

∂xl
+
(

C j
∂ui

∂xl

)T
]

︸ ︷︷ ︸
ω1

+ 1
2β

[
Ci

∂g

∂x j
+
(

C j
∂g

∂xi

)T
]

︸ ︷︷ ︸
ω2

−

⎡
⎢⎢⎢⎣ 1

3β
Ck

∂g

∂xk︸ ︷︷ ︸
ω3

− 1
3β

(C ⊗ C) : Xτ︸ ︷︷ ︸
ω4

⎤
⎥⎥⎥⎦ δij + Ῡτ

[
Ῡτ : Xτ︸ ︷︷ ︸

ω5

+ Ῡq · Xq︸ ︷︷ ︸
ω6

]

+ Ῡτ

⎡
⎢⎢⎢⎣2ϕ − 5

3
∂ul

∂xl︸ ︷︷ ︸
ω7

+ ϕ

β
Cl

∂β

∂xl︸ ︷︷ ︸
ω8

+ Cl
∂g

∂xl︸ ︷︷ ︸
ω9

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(A2a)
and

Υqq � Xq = t2
r(q) fo

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ῡq
[
Ῡτ : Xτ + Ῡq · Xq

]︸ ︷︷ ︸
ξ1

−Ci

⎡
⎢⎢⎢⎣ 1

β
Cl

∂g

∂xl︸ ︷︷ ︸
ξ2

− 1
β

(C ⊗ C) : Xτ︸ ︷︷ ︸
ξ3

⎤
⎥⎥⎥⎦

− Ci

⎡
⎢⎢⎢⎣ 5

3β

∂uk

∂xk︸ ︷︷ ︸
ξ4

+ 5
2β2 Cl

∂β

∂xl︸ ︷︷ ︸
ξ5

⎤
⎥⎥⎥⎦+

(
5

2β
− |C |2

)⎡⎢⎢⎢⎣ 1
2β

∂g

∂xi︸ ︷︷ ︸
ξ6

− Cl
∂ui

∂xl︸ ︷︷ ︸
ξ7

⎤
⎥⎥⎥⎦

+ Ῡq

⎡
⎢⎢⎢⎣2ϕ − 5

3
∂ul

∂xl︸ ︷︷ ︸
ξ8

+ ϕ

β
Cl

∂β

∂xl︸ ︷︷ ︸
ξ9

+ Cl
∂g

∂xl︸ ︷︷ ︸
ξ10

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(A2b)
where g = ln(ρ/β). The remaining terms, Xττ � Xτ and Xqq � Xq , in the same equation
are defined as follows (Yadav et al. 2024):

Xττ � Xτ = tr(τ )

⎛
⎜⎜⎜⎝
[

1
β

∂β

∂x j

∂g

∂xi
− ∂

∂x j

∂g

∂xi

]
︸ ︷︷ ︸

ω10

−2β
∂ui

∂xk

∂uk

∂x j︸ ︷︷ ︸
ω11

+ 4
3
β

∂ul

∂xl

∂ui

∂x j︸ ︷︷ ︸
ω12

+ Cl

[
2β

∂

∂xl

∂ui

∂x j
+ 2

∂β

∂xl

∂ui

∂x j

]
︸ ︷︷ ︸

ω13

⎞
⎟⎟⎟⎠, (A3)
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and

Xqq � Xq = tr(q)

⎛
⎜⎜⎜⎝2

3

[
∂β

∂xi

∂ul

∂xl
+ β

∂

∂xi

∂ul

∂xl

]
︸ ︷︷ ︸

ξ11

− ∂β

∂xk

∂uk

∂xi︸ ︷︷ ︸
ξ12

+ Cl

[
∂

∂xl

∂β

∂xi

]
︸ ︷︷ ︸

ξ13

⎞
⎟⎟⎟⎠. (A4)
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