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Introduction. In a recent unified theory originated by Einstein and Straus [l], 
the gravitational and electromagnetic fields are represented by a single non-
symmetric tensor gy which is a function of four coordinates xr(r = 1, 2, 3, 4). 
In addition a non-symmetric linear connection Tjk* is assumed for the space 
and a Hamiltonian function is defined in terms of gij and r^*. By means 
of a variational principle in which the g# and Tjk% are allowed to vary 
independently the field equations are obtained and can be written 

(0.1) gik.a - gsk Tia
s - gis Tak8 = 0, 

(0.2) Tia
a - Tai

a = 0, 

(0.3) Rik = 0, 

(0.4) Rik,a + Rka,i + Rai,k = 0. 
V V V 

In the above equations the comma in gik,a or Rik,a denotes partial differen­
tiation with respect to xa. Further Rik stands for the Ricci tensor based on the 
linear connection Tjk1- The symbols Rik, Rik stand, respectively, for the 

— v 

symmetric and skew-symmetric parts of the tensor Rik and hence 

(0.5) Rik = \{Rik + Rki), 
(0.6) Rik = \{R%h ~ Rki)> 

V 

The same notation is used throughout to denote the symmetric and skew-
symmetric parts of other quantities entering into the new theory. 

In the linearized field equations corresponding to the rigorous field equations 
(0.1)-(0.4) it has been found that the linearized field equations for the skew-
symmetric part of the field are weaker than Maxwell's equations. It was 
pointed out that this in itself did not constitute a justified objection to the 
new theory as it was not known whether there were rigorous solutions of the 
field equations which were regular in all space and which would correspond to 
the solutions one could obtain for the linearized equations. For this reason 
it became important to determine rigorous solutions of equations (0.1)-(0.4). 

Recently Papapetrou1 has discussed the static spherically symmetric form 
of these equations and has discovered two rigorous solutions. The second 

Received September 4, 1949. 
^n [2] the field equations contain a cosmological constant X which is zero in the Einstein 

field equations. When using Papapetrou's results we shall always take X = 0. 
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solution is a very special case. In discussing his solutions Papapetrou points 
out that neither solution approaches asymptotically the corresponding solution 
obtained by means of the General Theory of Relativity. 

In the present paper we shall generalize Papapetrou's second solution and 
shall in addition discuss some of the difficulties presented by the new Unified 
Theory. 

1. Papapetrou's second case. Papapetrou took the static spherically sym­
metric tensor gik to have, in spherical polar coordinates, the form 

- a 0 0 w 
gik = | 0 - 0 r2v sin 0 0 

0 - r2v sin 0 - 0 sin2 0 0 
— w 0 0 7 

where a, p, 7, v> w are undetermined functions of r. For the case v = 0, 
w 9^ 0, the general solution of the field equations was found to be [2] 

a = (1 - 2m/r)~\ p = r2, 

y = (l + /4/r4) (! _ 2m/r), y = 0, w = ± Z2/r2, 

where m, / are constants of integration. For the second case v 9^ 0, w = 0 
Papapetrou was unable to find the general solution but found a special case 

7 = a - 1 = (1 — 2m/r)j (3 = r2, v = — cy w = 0y 

where m, c are constants of integration. We shall now proceed to find the 
general solution corresponding to this second case v ^ 0, w = 0. 

For the case v ^ 0, w = 0 Papapetrou has shown that the field equations 
reduce to 

(1.1) / = vr\ A = W +ff)/(f + /32), B = ( # ' - ^ / ' ) / ( f + ^2), 

(1.2) ^ ' + h{A> + B>) - U [(a'/a) + ( T ' / T ) ] = 0, 

(1.3) 7" - M ( a ' / a ) + (VA)] + ^ T ' = 0, 

(1.4) /?" - / ' 5 - ij8'[(a'/a) -(y'/y)] + 2a(2pfc - P+f)/(f+ P) = 0, 

(1.5) / " + pB - hf[W/a)-(7'MI" Mm + c(P-cf*)/(f + P) = 0, 

where the prime notation indicates differentiation with respect to r and c is 
an arbitrary constant of integration. In the above equations (1.1) is simply 
a definition of the symbols A, B and / while the remaining equations are the 
field equations for this particular case. 

Since A = — log (f2 + fi2)* equation (1.3) can be integrated to give 
dr 

(1.6) 7' = 2m[ay/(f + p)¥, 

where m is an arbitrary constant of integration. It has been taken in this 

https://doi.org/10.4153/CJM-1950-041-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-041-3


UNIFIED FIELD THEORY 429 

form as it will later be identified with the mass of the spherical body. We 
shall throughout the remainder of this section deal only with the case m 7e 0. 
When this is so y' 9e 0 and y is not a constant. 

Due to the tensorial character of gik one of a, /3, y can be chosen arbitrarily.2 

We shall find that the general solution is most easily obtained if we allow y to 
be the variable that has this arbitrary character. 

Concentrating our attention on equations (1.4) and (1.5) we find it advan­
tageous to replace these equations by two equivalent equations. Multiplying 
(1.4) by fi/{f + /52) and (1.5) by f/(f + (32) and adding the results we find 

(1.7) (W"+ff")/(f2+ /32) + B*-%A[(a'/a)-(y'/y)]+2a(cf-(3)/(f* + p) = 0. 

Since 

A'= (f tS"+//")/( /* + /32) + B* - A\ 

(1.7) can be written 

(1.8) A'+ A*-U[(a'/a) - ( T 7 T ) ] + 2a(cf - P)/(f + 02) = 0. 

Similarly by multiplying (1.4) by f/(f + P2) and (1.5) by p/(f + p2) and sub­
tracting the results we can obtain the equation 

(1.9) B'+ AB - hB[(a'/a)-(y'/y)] + 2<cp + / ) / ( / 2 + P2) = 0. 

Thus equations (1.8) and (1.9) are equivalent to (1.4) and (1.5). 
If we let i = (— 1)* and introduce the complex variable q = k + iu by 

means of the equation 

(1.10) f + ip = e*, 

we find that 

(1.11) A + iB = q'f 

and hence A = k', B = uf. Multiplying (1.9) by i and adding (1.8) one 
obtains the equation 

(1.12) q"+ [A - M(a 'A) " (7 ' /7 )}k '+ 2a(c + i)e*/(f + (?) = 0. 

Thus the single equation (1.12) in the complex variable q is equivalent to the 
two real equations (1.8) and (1.9). 

Since m was assumed to be non-zero we can solve (1.6) for a to obtain 

(1.13) a = ( Y W + /32)/4m2T. 

Substituting in (1.12) for a gives 

(1.14) q" - q'[(y"/y') - (Y'/Y)] + 7f2(c + i)e*/2m?y = 0. 
2Since we are excluding the case y — constant our phrase "chosen arbitrarily" excludes this 

choice of y for which the statement is not true. Certain differentiability conditions are also 
implied by the field equations. 
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From the fact that g' = ^ 7 ' and g" = ^ 7 ' 2 + — V , equation (1.14) can 
dy dy2 dy 

be written 

& * ) 
(1.15) ^ + ( ^ / T ) + (c + i)eV2m2T = 0. 

dy1 \dy 

The substitution 

(1.16) q = y - l o g 7, x = log7, 

reduces this equation to 

(1.17) ^ + [(c + i)eV2m2] = 0. 
dxl 

Equation (1.17) is easily integrated once to give 

(1.18) (^J + [(c + i)ey/rn>] = ft, 

where ft is an arbitrary complex constant of integration. In (1.18) we can 
separate the variables and then integrate to find 

(1.19) ey = [m2h sech2 (|ft*x + a)]/(c + i), 

where a is a second complex constant of integration. Returning to our original 
variable we find 

(1.20) «« = 4m2ft/[(ea7^1 + e~ay-^hyy{c + i)]. 

Thus far we have found the general solution of equations (1.3), (1.4) and 
(1.5) and so far no use has been made of equation (1.2). From the tensorial 
character of our equations and the arbitrary character of y we know that one 
of the equations (1.2), (1.3), (1.4) and (1.5) is redundant. It has however 
been shown by Papapetrou that this redundant equation is (1.5). We shall 
see that in order for our solution (1.20) to satisfy (1.2) the number of arbitrary 
constants in the solution is reduced by one. 

If we transform equation (1.18) back to the variables q and y by means of 
y = q + log 7, x = log 7 we find 

(1.21) ( 7 ^ + -1)2 + [(C + i)eQy/m^ = *• dy 

Since — = q'/y' this equation can be written 
dy 

(1.22) (q'Y+ (27'<z'/7) + [(c + i)e«y'*y<m>y\ = (ft - 1 ) 7
, 2 M 

Substituting q' = A + iB and eq = / + iff we can by equating real and 
imaginary parts of (1.22) obtain the equations 
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(1.23) A"- B2 + [2yfA/y] + (cf - f3)y'2/rn2y = (fto- 1 ) Y , 2 M 

(1.24) AB + (yfB/y) + [(cp + f)yf2/2m2y] = hiy
f'/2y\ 

where the complex constant h has been written ft = ft0 + ih\. If we multiply 
(1.23) by \ and subtract the result from (1.8) we have 

(1.25) A> + h(A2+B2) - U[(a.'/a) + (T ' /T ) ] = (1 - Âo)7,2/272. 

Hence (1.2) will be satisfied only if ft0 = 1. 
Thus for the case m ^ 0 the general solution of the field equations is 

(1.26) f + ip = 4m2h/[(eay^hh + e~ay^h')2y(c + i)] 

(1.27) a = y'2 (f + /32)/4m2
7 

where y can be chosen to be any arbitrary function of r that we please and / , p 
are obtained by equating real and imaginary parts of (1.26). It is well to 
note that m, c are real arbitrary constants, that h has the form h = 1 + ihu 
and a is an arbitrary complex constant of integration. 

Finally it is of interest to see that Papapetrou's special solutions result 
from the choice 7 = 1— 2m/V, hi — 0 and e2a = — 1. 

We should at this point go on to see how the boundary conditions at infinity 
allow us to evaluate the arbitrary constants of our solution. However since 
there is a difficulty in choosing suitable boundary conditions, which we would 
like to present in some detail, we shall postpone this discussion to a later 
section. 

2. Case m = 0. When the constant m is taken to be zero, equation (1.6) 
becomes y' = 0. Thus 7 is a constant and can be taken equal to one without 
loss of generality. Equation (1.12) is still valid and hence for yf = 0 becomes 

(2.1) g" + (A - § a''/a) q' + 2a(c + i)e«/(f2 + /32) = 0. 

Multiplying by (f2 + P2)qf/a we can immediately integrate once with respect 
to r to give 

(2.2) q'2 + Aa(c + i)e*/V* + P2) = 4 k / ( / 2 + 02), 

where h is an arbitrary complex constant of integration. From the tensorial 
character of gih we know that we can make any transformation of the form 
r = r(x) without destroying the relationship 7 = 1. Thus if we make the 
transformation 

(2.3) x = J[a/(f + P2)]Ur 

( dx\2 

— J and (2.2) can be written 

(2.4) p n 2 + 4(c + i)e* = 4ft. 
\dx/ 
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The solution of this equation is 

(2.5) e9 = [ft sech2(hk + a)]/(c + i) 

if h T^ 0, and is 

(2.6) «« = ( * - c)/[{â + 1)(* + af] 

if ft = 0. In either case a is an arbitrary complex constant of integration. At 
this stage we have not ensured that equation (1.2) is satisfied. By an analysis 
similar to that used in the previous section we find that this will be so only if 
the constant ft has the form ft = ih0. Thus the case m = 0 leads to the two 
possibilities 

f f + ip = [h sech2(ft*x + a)]/(c + i), 

7 = 1, 

.-o- + «(£)'. 
[ / + # = (* - c)/[(c2 + 1)(* + a)% 

(2.8) I 7 = 1, 

1 --cr+«(£)'• 
where in each case x can be any arbitrary function of r. 

We shall again leave the discussion of the implications of the boundary 
conditions to a later section. 

3. The metric of space-time. In the General Theory of Relativity we assume 
at the outset a four dimensional Riemannian space which of course implies the 
existence of a metric tensor which determines the properties of space-time. 
When the equations of motion of a particle are considered, the derivatives 
of the metric tensor aik enter in such a way that the components a^ appear 
as gravitational potentials. This dual character of the metric tensor arises 
quite naturally and leads to no ambiguity. In the new theory the point of 
view has been altered. We assume at the outset certain field quantities g#, 
Tjk% and then derive field equations which will determine these field quantities. 
If we interpret the tensor gij as a representation of the combined gravitational 
and electromagnetic fields the question arises as to how the results of the new 
theory compare with the corresponding results of the General Theory of 
Relativity. Before this question can be answered we must in some way in­
troduce a metric for space-time so that corresponding results can be compared. 

It is natural to assume that at any point in space the symmetric metric 
tensor a# will be completely determined by our field quantities. This im­
plies that the components acj will be certain functions of g#, Trf. We denote 
this functional relationship by 

(3.1) aij =fij{gr8, TrS
P)-

https://doi.org/10.4153/CJM-1950-041-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-041-3


UNIFIED FIELD THEORY 433 

The field equations determine the quantities Trs
p in terms of grs and their 

first derivatives. Thus the above assumption is equivalent to saying that the 
metric tensor becomes completely determined at any point in space by a 
knowledge of the grs and their first derivatives. 

The functional relationship of (3.1) is not quite arbitrary in that the com­
ponents dik must be the components of a tensor. It is not too difficult to 
show that the allowable functions / # must satisfy certain partial differential 
equations in order for this to be true. Since however the field quantities 
grsj -*- rs determine the tensors grs, grs, g—, gr*> Trs

p we can construct an infinity 
— v v 

of tensors of the form (3.1). 
The field equations of the Unified Theory reduce to those of General Rela­

tivity if gij = 0. Hence we shall make the requirement that 
V 

fijigrs, T r s ) = grs, if gij = 0 . 

At this stage of the theory there seems to be little to guide us in a suitable 
choice of metric tensor. However when one considers the equations of motion 
a strong argument can be advanced for a particular choice for the metric 
tensor. 

Since the linear connection Yj^ has been assumed to be the linear connection 
by means of which we define the parallel displacement of a vector it seems 
natural to require that the equations of motion of a free particle can be put 
into the form 

(3.2) * * + i y ^ « o , 
ds2 as as 

where 5 is a suitable parameter along the trajectory of motion. Because of 
â/'x? dx 

the symmetry of in the indices j , k the skew-symmetric part of the 
ds ds 

second term will cancel out and the equations of motion have the form 

(3.3) TT+^T-T -°-
ds2 — ds ds 

dxm 

Multiplying (3.3) by gim — and summing with respect to i we obtain 
— ds 
dxm d2xl , _ {dxj dxk dxm

 A 

(3-4) «*5rs? + g*rfia--sr *-"°-
This can be put into the form 

A ( d— ̂ -\ - do°j d%h d%m - o 
ds \ ~~* ds ds / — ds ds ds 

where gjk/m means the covariant derivative of gjk with respect to the sym­
metric linear connection Trf. Thus 

dxi dxm 

(3.6) gim — = constant 
— ds ds 
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will be an integral of (3.5) providing we can show that 

(3.7) gjk/m + gkm/j + gmjjk = 0. 

These relations, we shall show, are an immediate consequence of equations 
(1) given in the introduction of our paper. From equations (1) we have 

gik,a = UZskTia* + gisTak8 + gsiTka* + ghaTai') 

= gsklia T~ gsklia ~T gis±ak "T gis* ak y 

— — V V — — V V 

and hence 

(3.8) gik/a = gskTia8 + gisTak8-
— v v v v 

Applying two cyclic permutations to the indices i, k, a, and adding the results 
to (3.8) we immediately find 

(3.9) gik/a + gka/i + gai/k = 0. 

Equations (3.9) are of course equivalent to (3.7). 
Since the equations of motion (3.2) always have the quadratic expression 

(3.6) as an integral it seems natural to assume that the metric of space time 
is given by gij dxl dx3 and hence our choice of metric tensor would have to be 
dij = gij even though gij 5̂  0. Papapetrou has used the requirement a# — gij 
in connection with his solution of the field equations and has found the results 
of the new theory do not agree with those given by the General Theory of 
Relativity. He attributes this difficulty to the uncertainty in the physical 
identification of the tensor gij. While this may be true we feel that other 
possibilities exist. For example it might be that equations (3.2) are not the 
true equations of motion and that other equations will replace them. In this 
case it might be that the requirement a^ = g# is an approximation and that 
the true metric will involve all our fundamental field quantities. In order to 
show the possibilities that exist we will examine the physical consequences 
when a different choice of metric is made. 

Let us define two covariant vectors hi, m by means of 

(3.10) hi = gal g™T8i\ 
— v 

(3.11) Ui = hi/(grshrhs)t = hi/(gihrh8)*. 

In (3.3) if hi turns out to be a zero vector (i.e. hi = 0) we simply take m = 0. 
There is of course a possibility that grshrh8 = 0 with hi j* 0. We shall dis­
cuss this possibility at the end of this section. Finally we note that grshrh8 

could be negative and hence m would become an imaginary tensor. However 
(3.3) is only an intermediate step in our calculations and we shall see that this 
difficulty is removed with our final choice of metric. 

We define a third covariant vector Qi by means of 

V 
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and then choose the metric 

(3.12) ay = gij + Mi-

Referring back to Papapetrou's exact solution as given in §1 we have that the 
non-zero components of gij are 

gii = - [1 - (2mA)]-1, £22 = - r2, gzz = - r2 sin2 0, 

gu = [1 + ( W ] [ l - (2m/r)l gu = - gu = ± P/r8. 

From these we can calculate the non-zero components of g*J" to be g11 = —gu, 
g22 = _ 1 / f 2 f gZZ = _ 1 / f2 s in2 0 j g44 = _ g u > g14 = _ g41 = _ g u # T h e n 0 n -

vanishing components of Tjk% are 
V 

r42
2 = - i v = - w/rgu = r43

3 = - r34
3, i v = - r4l

x = - 2w/rgu. 
y v v v v y 

From these we can compute the components of h% to be [ —Z4/r5, 0, 0, 0]. 
Hence the components of Ui are [(g11)"", 0, 0, 0] and of <z* are [0, 0, 0, ««(g11)*/ 
(1 + gu2)^]- This finally gives the metric 

aij = giji if h j are not both equal to 4, 

au = gu + g4i2 g u / ( l + gi42)-

Substituting the values of the g's we find that the non-vanishing components 
of the metric tensor a^ are given by 

an = — (1 — 2rn/r)~"L, a22 = — r2, azz = — r2sin2 6, au = 1 — 2w/r. 

This is of course the Schwarzschild solution of General Relativity. 
We are not advocating the choice of metric (3.4) because it has been con­

structed in a very artificial manner. We use it to illustrate the importance of 
the choice of metric and to discuss several important points. If we assume 
that the metric of (3.4) is the true metric then we have seen the line element 
corresponding to Papapetrou's solution of the field equations is the Schwarzs­
child line element for a spherical mass with zero charge. Thus under this 
particular choice of metric we would have to say that Papapetrou's solution 
of the field equations is still a solution which corresponds to a pure gravita­
tional field even though a second constant of integration I appears in the 
solution. This constant completely disappears when the components of the 
metric tensor are evaluated. Since gij ^ 0 in Papapetrou's solution our choice 

V 

of metric also implies that gij cannot be interpreted in terms of the electro-
Y 

magnetic field alone or else there exist electromagnetic fields which do not 
influence our measurements of space-time. This latter conclusion seems 
hardly likely and hence our example would seem to strengthen Papapetrou's 
conclusion that the physical interpretation of gij is an open question. Finally 

Y 

we might point out that the disappearance of a constant of integration by 
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choice of metric may be connected with the fact that the linearized equations 
of the Unified Theory are weaker than Maxwell's equations. It might be 
possible that a choice of metric exists which make these weaker equations 
equivalent to Maxwell's equations. 

If we agree that Papapetrou's choice of metric aij = gij is at best an approxi­
mation to the true metric then of course the accuracy of this approximation 
must be discussed. It is not difficult to construct metrics in which this 
approximation is valid only up to and including terms of the order 1/r. Since 
it is the terms of order 1/r2 which measure the electromagnetic effect on space-
time we see, for such metrics, that Papapetrou's approximation is equivalent 
to assuming a zero electromagnetic field. This then would be the reason that 
Papapetrou's solution does not behave asymptotically in the same manner as 
the solution in General Relativity corresponding to a point charge in which 
the terms of order 1/r2 are retained. It is very easy to construct metrics which 
show the same asymptotic behaviour as the General Relativity solutions up 
to and including terms of order 1/r2. However our construction is still very 
artificial and we shall not include this work in this paper. 

In our derivation of the metric (3.4) we left in abeyance the possibility that 
grshrhs = 0 with hr 9^ 0. For the static case, in which there exists a coordinate 
system in which the grs are all independent of the time-like coordinate x4, it is 
possible to show, under suitable restrictions, that grshrhs = 0 implies hr = 0. 
We have not studied the non-static case in detail because we doubt very much 
that (3.4) will provide a suitable choice of metric. This section has been 
used only to show that a problem exists in the choice of a metric and that some 
logical physical reason should be advanced for the choice of metric for our 
new theory. 

To conclude this section of the paper we would like to anticipate one criti­
cism that might be made. It might be argued that the analogy from General 
Relativity would allow us to assume the dual nature of the tensor gij. By 
this I mean that the metric in space should be determined as a function of this 
tensor alone and would be independent of Trf. Although this may be true 
it still does not destroy the point that we have been trying to make in this 
section. Out of such a tensor an unlimited number of metric tensors can be 
constructed and we must still advance some reason for a particular choice. 
As an example ŵ e might choose a# = g— gim gjn> This particular metric 
turns out to be completely equivalent to Papapetrou's metric a%j = gij for 
Papapetrou's particular spherically symmetric solution. 

4. The boundary conditions. Since our field equations reduce to those of 
General Relativity if gij = 0 it is natural to assume that when g# = 0 our 

.y . . . . v 

field is purely gravitational. Thus as boundary conditions it is natural to 
assume, in the general case, that at large distances from matter or charge 
there will exist a coordinate system in which the components of the metric 
tensor approach the scheme given by 
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(4.1) ga = 

1 0 0 0 
0 - 1 0 0 
0 0 - 1 0 
0 0 0 1 

We shall denote the scheme of (4.1) by y# and as is usual we shall call this the 
Galilean tensor. In any other coordinate system the components of yij are 
of course obtained by the tensor law of transformation. We notice of course 
that yij provides an exact solution of our field equations in which Tjk1 = 0 in 
the coordinate system used for (4.1). This tensor is taken as the mathematical 
representation of the absence of both gravitational and electromagnetic fields. 
If we use the transformation 

x1 = r sin 6 cos </>, x2 = r sin 6 sin </>, xz = r cos 0, x4 = x4, 

the components jij of the Galilean tensor are given by 

(4.2) 7ij ~~ 

1 0 0 0 
0 - r 2 0 0 
0 0 - r2 sin2 0 0 
0 0 0 1 

It would be in keeping with the principle of relativity if the condition that 
gij —> jij in one coordinate system implied that this was true in every coordin­
ate system. Unfortunately this is not true and in fact it was used as a criti­
cism of General Relativity when that theory was first proposed. For the 
General Theory of Relativity this difficulty was, in a sense, resolved for 
spherically symmetric solutions of the field equations, by means of BirkhofFs 
Theorem. Since the approach of a tensor to its Galilean values is not an in­
variant condition we must then single out a particular coordinate system if 
this condition is to be used as a boundary condition. We shall show by using 
our second solution of the field equations that this singling out of a special 
coordinate system presents a real difficulty in our new theory. 

Papapetrou [2, p. 70] has shown that the general spherically symmetric form 
of gij in Cartesian coordinates is 

(4.3) ga = 

0 

y 
- V 

r 
w 

y 
- V 

r 

x 
- w 
r 

x 
— - V 

r 
y 

— - w 
r 

z 
r 

r 
z t 

r 

0 

w 

w 

where u, w are functions of r alone. Hence gij —>> 0 as r —» «> implies that 
y 

v —» 0 and w —» 0 as r —» °°. In spherical polar coordinates the components 
gij of this tensor are given by 
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0 0 0 w 
0 0 r2v sin 0 0 
0 — rH sin 0 0 0 
w 0 0 0 

(4.4) 

Hence the same conditions in this coordinate system imply r2v —» 0, w —» 0 as 
r —» oo. This of course is a much stronger condition than the corresponding 
condition in Cartesian coordinates. We shall now use our second solution to 
show that these conditions imply different solutions of the field equation. 

Returning to the solution given by (1.26), (1.27) our complete boundary 
conditions are 

or 

1, P —> r2, 7 —» 1, / = vr2 —» 0 as r • 

1, jS —» r2, y —» 1, A —» 0 as r 

depending on the coordinate system used. Since ft —-> <» as 7 —> 1 we must 
have from (1.26) that ea + e~a = 0. Thus e2a = - 1 and (1.26) can be 
written 

(4.5) / + ip = - 4m2/* 7 * * ~ 7 ( Y * * - I)2 (c + i). 

Moreover if we let 7 = 1 — x and expand (4.5) in terms of x we find 

/ + tf S 4 m ' ( i - C ) r ( ^ 1 
J (c2 + l)x2 L 12 J -

Remembering that h = 1 +ifei, we can equate real and imaginary parts to 
find 

= 4m2 _ J ! ^ 
(c2 + l)x2 3(c2 + 1 ) 

, A.m2c him2
 n , . 

{c2 + l)x2 3(c2 + 1) 

where we mean by 0(x) terms of the order x. As 7 —> 1, x—>0. Hence 
/ —> 0 as x —» 0 only if c = 0 and hi = 0. In this solution m = 0 is not possible. 
Since fei = 0 implies A = 1 we find (4.5) becomes 

(4.6) f + iP=+ 4m2i/(7 - l)2 . 

From the fact that the right side is a pure imaginary we can conclude that the 
strong boundary conditions result in / == 0 and hence g# = 0 and our resulting 
solution degenerates into the Schwarzschild solution. 

If we use the weaker boundary condition that v = f/r2—> 0 as r —•» 00, we 
still find that c = 0 but we no longer have the condition that hi = 0. Thus 
in our final solution two arbitrary constants m, hi remain which can be in­
terpreted as being determined by the mass and charge of the particle. Thus we 
see that the requirement that the tensor gij approach its Galilean values as 
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r —-> oo implies different solutions in the two coordinate systems. As a matter 
of preference I feel the stronger boundary conditions will prove correct and 
that the solution we have obtained degenerates into the Schwarzschild solu­
tion for a pure gravitational field. I feel that the physical problem of a charged 
particle will only be solved when the general field equations are solved under 
the more general conditions vw 9e 0. The main reason for this belief is that 
we have shown that the solution resulting from the assumption v = 0, w 9e 0 
can be interpreted under proper choice of metric, as being equivalent to the 
assumption v = w = 0. Similarly, under the strong boundary conditions, we 
have shown that the solution resulting from the assumption w = 0, v 9e 0 also 
degenerates to the case v = w = 0. For this reason it is possible that either 
of the restrictions imposed by Papapetrou, namely v = 0, w 9e 0, or v 9e 0, 
w = 0, may be equivalent to destroying the electromagnetic field. 

For our solution of the field equations corresponding to the case m = 0 we 
can by similar analysis to that used in the present section show that the strong 
boundary conditions reduce this solution to that for zero mass and zero charge. 

5. Conclusion. At the present stage our theory is still far from complete. 
A proper choice of metric has not been made nor have the equations of motion 
of a particle been defined. It seems necessary, therefore, to study the physi­
cal significance of our field quantities so that the present theory can be com­
pleted in a logical manner. When this is done it seems likely that the diffi­
culties raised in the present paper will be removed. 
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