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Abstract

Juggler’s exclusion process describes a system of particles on the positive integers
where particles drift down to zero at unit speed. After a particle hits zero, it jumps
into a randomly chosen unoccupied site. We model the system as a set-valued Markov
process and show that the process is ergodic if the family of jump height distributions
is uniformly integrable. In a special case where the particles jump according to a set-
avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom
time, and the equilibrium distribution can be represented as a Gibbs measure conforming
to a linear gravitational potential.
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1. Introduction

Juggler’s exclusion process (JEP) describes a system of n indistinguishable particles on the
positive integers Z+ = {0, 1, 2, . . . }, where particles drift down to zero at unit speed, and after a
particle hits zero, it jumps into a randomly chosen unoccupied site. Denote by Sn the countable
space of n-element subsets of Z+. A JEP is defined as a discrete-time Markov process in Sn
with transition probability matrix

P(A,B) =

⎧⎪⎨
⎪⎩

1 if 0 /∈ A,B = A− 1,

νA∗−1(y) if 0 ∈ A,B = (A∗ − 1) ∪ {y},
0 otherwise,

(1.1)

where A − 1 is the set obtained by shifting the elements of A down by one position, A∗ =
A \ {minA} is the set obtained by deleting the smallest element of A, and ν = (νB) is a family
of probability measures on Z+ indexed by B ∈ Sn−1, satisfying∑

y∈B
νB(y) = 0 for all B ∈ Sn−1. (1.2)

In general, a set A ∈ Sn describes the heights of the particles in the system. The probability
measure νB describes the height of a particle after a jump which occurred while the other
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Juggler’s exclusion process 267

n− 1 particles drifted down from configuration B + 1 into configuration B. Assumption (1.2)
guarantees that all particles jump into unoccupied sites, and, therefore, the number of particles
in the system remains fixed at each transition.

The name JEP is inspired by viewing the particles as balls that a juggler throws into a discrete
set of heights according to a random pattern. In this context condition (1.2) amounts to a so-
called siteswap juggling pattern where only one ball is allowed to be at hand (zero height) at
any time instant. Such patterns have been studied mostly in the deterministic periodic setting;
see, e.g. [5] and the references therein. In addition, Warrington [10] computed the equilibrium
distribution of a random siteswap pattern where throw heights are bounded and uniformly
distributed.

JEPs may be naturally encountered in various application areas, such as quantum physics
and engineering. For example, if particle heights are viewed as energy levels, a JEP can be
viewed as a system of n randomly excited particles subject to the condition that no two particles
may share the same energy level. Alternatively, a JEP may represent the residual job completion
times in a manufacturing system of n machines running in parallel, which is operated under
the condition that only one job may complete at any time instant. More generally, the particle
heights in a JEP may be viewed as residual lifetimes in a discrete-time point process which
may be regarded as a superposition of n coupled renewal processes.

A probability measure π on Sn is an equilibrium distribution of a JEP if and only if it satisfies
the balance equation πP = π , or, equivalently,

π(B) = π(B + 1)+
∑

A∈Sn−1
A⊂B

π((A+ 1) ∪ {0})νA(B \ A) (1.3)

for all B ∈ Sn. The following example illustrates the solution of (1.3) for one-particle systems.

Example 1.1. (One-particle JEP.) For n = 1, the family (νB) reduces to a single probability
measure ν∅. In this case the height of the unique particle in the system’s configuration is a
discrete-time Markov process on Z+ with transition probabilities

P(x, y) =

⎧⎪⎨
⎪⎩

1 if x > 0, y = x − 1,

ν∅(y) if x = 0, y ≥ 0,

0 otherwise.

This process may be identified as the residual lifetime of a discrete-time renewal process with
interevent distribution ν∅ (see, e.g. [1, Section I.2]). A direct computation shows that this
JEP has an equilibrium distribution if and only if m = ∑

x≥0 xν∅(x) < ∞, in which case the
equilibrium is unique and given by π(x) = m−1ν∅([x,∞)). We note that π = ν∅ in the
special case where ν∅ is geometric, a well-known fact in renewal theory.

In this paper we will show that a wide class of JEPs have a unique equilibrium distribution
(Theorem 2.1). However, finding an analytical formula for the equilibrium by solving (1.3) for
a general JEP with n ≥ 2 particles appears difficult if not impossible. We saw in Example 1.1
that, for a geometric jump height distribution, the equilibrium is also geometric. This suggests
that a closed-form analytical formula for many-particle systems might be available for some
special jump height distributions. The problem is that condition (1.2) rules out geometric height
distributions in the many-particle case. To get around this problem, we introduce the notion of
a memoryless distribution on a subset of integers, and show that when particles jump according
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to such a distribution, the equilibrium can be expressed as a Gibbs measure conforming to a
linear gravitational potential (Theorems 3.1 and 3.3). Such JEPs are shown to converge to
equilibrium ultrafast: in a finite nonrandom time (Theorem 3.2).

The model studied in this paper may be seen as a special instance of an exclusion process,
although most literature on exclusion processes is focused on continuous-time models with
infinitely many particles, especially the asymmetric simple exclusion process (ASEP) on the
doubly infinite integer lattice (see [3, Section 10.4] or [6, Section VIII] for a general overview,
and [7] for discrete-time ASEP models). To avoid confusion, we emphasize that as an exclusion
process, a JEP is very special because the movement of particles is deterministic, and the only
source of randomness is the jumps from the boundary.

The rest of this paper is organized as follows. In Section 2 we present a general theorem for
the existence of a unique equilibrium under natural integrability conditions on the jump height
distributions. In Section 3 we provide a detailed analysis of JEPs generated by memoryless jump
height distributions. In Section 4 we briefly discuss two models closely related to memoryless
JEPs, and Section 5 concludes the paper.

2. Existence of an equilibrium

The goal of this section is to study when the probability distribution of a JEP converges to a
unique equilibrium distribution, regardless of its initial state. To rule out Markov processes with
multiple recurrent classes and periodic dynamics, the following result gives a simple condition.

Lemma 2.1. Any JEP generated by a family (νB) such that

νB(min(Bc)) > 0 for all B ∈ Sn (2.1)

is aperiodic and has a unique recurrent class.

Proof. Denote by G = [0, n − 1] the ground state of Sn where the particles are located
as low as possible. Let us write A → B if P t(A,B) > 0 for some t ≥ 1, and define
Ḡ = {A ∈ Sn : G → A} as the set of configurations accessible from G. Using (2.1), it is not
hard to verify that A → G for any A ∈ Sn, which implies that Ḡ is the unique recurrent class
of the process. Assumption (2.1) further yields P(G,G) > 0, which implies that the process
is aperiodic.

Not all aperiodic JEPs converge to an equilibrium. For example, if each particle jumps to
a height twice the maximum height of the other particles, then such a process evidently drifts
to infinity. To rule out such nonphysical examples, we need to impose some conditions on the
jump height distributions. A family of probability measures (νB) on Z+ is called uniformly
integrable if

sup
B

∑
x>K

xνB(x) → 0 as K → ∞. (2.2)

The following result shows that a wide class of JEPs is stochastically stable in the sense
that, as time tends to ∞, the probability distribution of the particle configuration converges to
a unique equilibrium.

Theorem 2.1. Any JEP generated by a uniformly integrable family of distributions (νB) sat-
isfying (2.1) has a unique equilibrium distribution π , and the process started from any initial
configuration converges in total variation to π as time tends to ∞.
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Proof. Define the function V : Sn → R+ by V (A) = maxA, and let

PV (A) =
∑
B∈Sn

V (A)P (A,B),

where P(A,B) are the transition probabilities in (1.1). If 0 /∈ A then

PV (A)− V (A) = V (A− 1)− V (A) = −1. (2.3)

Assume next that 0 ∈ A. Then

PV (A) =
∑
y∈Z+

V ((A∗ − 1) ∪ {y})νA∗−1(y),

and because V ((A∗ − 1) ∪ {y}) = max(V (A)− 1, y), it follows that

PV (A) =
∑

y<V (A)

(V (A)− 1)νA∗−1(y)+
∑

y≥V (A)
yνA∗−1(y)

≤ V (A)− 1 + sup
B∈Sn−1

∑
y≥V (A)

yνB(y).

The uniform integrability of (νB) implies that the last term on the right-hand side above is
less than 1

2 whenever V (A) is large enough. After combining this observation with (2.3), we
conclude that there exists a number K > 0 such that

PV (A)− V (A) ≤ − 1
2 for all A ∈ Sn such that V (A) > K. (2.4)

The uniform integrability of (νB) also implies that PV (A) < ∞ for all A ∈ Sn. Because the
set {A ∈ Sn : V (A) ≤ K} is finite, we conclude that

sup
{A∈Sn : V (A)≤K}

PV (A) < ∞. (2.5)

Furthermore, Lemma 2.1 implies that the JEP is aperiodic and has a unique recurrent class Ḡ.
As a consequence, the process is ψ-recurrent (see [8, Section 4.2]), where the measure ψ
on the power set of Sn is defined by ψ(Ā) = |Ḡ ∩ Ā|. In light of the Foster–Lyapunov
drift bounds (2.4) and (2.5), the claim now follows by applying [8, Theorem 14.0.1] (with
f identically 1).

3. JEP with memoryless height distributions

3.1. Memoryless distribution on a subset of positive integers

This section is devoted to analyzing JEPs generated by height distributions

νB(y) =
{
(1 − α)αhB(y), y ∈ Bc,

0, y ∈ B, (3.1)

where hB(y) = |[0, y−1]\B| is the number of points inBc strictly less than y, and α ∈ (0, 1).
The probability measure defined by (3.1) will be called the memoryless distribution on Bc with
parameter α. This nomenclature is motivated by the following property, which states that if
ξB denotes a random variable with distribution νB then the conditional distribution of ξB given
that ξB ≥ s is the same as the distribution of the random variable s + ξB−s .
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Figure 1: The action of the A-avoiding shift for A = {0, 2, 3}.

Proposition 3.1. For all finite B ⊂ Z+, the probability measure νB defined by (3.1) satisfies

νB [t,∞) = νB [s,∞)νB−s[t − s,∞) for all s ≤ t. (3.2)

Proof. By applying the identity hB(s + t) = hB(s) + hB−s(t), we can check by a direct
computation that νB [t,∞) = αhB(t) and νB−s[t − s,∞) = αhB(t)−hB(s) for all positive integers
s and t such that s ≤ t .

Observe that, for B = ∅, (3.2) is the standard memoryless property on Z+, and the
memoryless distribution ν∅ on Bc = Z+ is the geometric distribution on Z+ with success
probability α.

The memoryless distribution onAc can be represented in terms of a geometrically distributed
random variable by using the following function. We define, for a given finite A ⊂ Z+, the
A-avoiding shift by

θA(x) = min{n ≥ 0 : |[0, n] \ A| ≥ x + 1}, x ∈ Z+. (3.3)

The A-avoiding shift is the natural bijection from Z+ onto the complement of A, and θA(x)
equals the (x + 1)th element of Ac (see Figure 1). Some basic technical facts about this map
that are needed in the sequel are listed in Appendix A.1.

Lemma 3.1. Let B be a finite subset of Z+, and let ξ be a geometric random variable on
Z+ with success probability α ∈ (0, 1). Then the random variable θB(ξ) has the memoryless
distribution (3.1) on Bc.

Proof. Because θB maps Z+ onto Bc, it is clear that P(θB(ξ) ∈ B) = 0. The claim thus
follows immediately after noting that θ−1

B (x) = hB(x) for x ∈ Bc by Lemma A.3.

3.2. Noncolliding union of geometric random variables

The noncolliding union of a finite (possibly empty) set A ⊂ Z+ and (possibly nondistinct)
points x1, . . . , xn ∈ Z+ is denoted by

U(A, x1, . . . , xn) (3.4)

and defined, using the A-avoiding shift (3.3), recursively by

U(A, x1) = A ∪ {θA(x1)},
U(A, x1, . . . , xk+1) = U(A, x1, . . . , xk) ∪ {θU(A,x1,...,xk)(xk+1)}.

The noncolliding union of points x1, . . . , xn ∈ Z+ is defined by substituting A = ∅ into (3.4),
and denoted by

U(x1, . . . , xn).
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By construction, U(A, x1, . . . , xn) is a set with |A| + n elements which contains A but
not necessarily x1, . . . , xn. Elementary properties of the noncolliding union are listed in
Appendix A.2.

Fix a parameter α ∈ (0, 1), and let ξ1, ξ2, . . . be independent random variables all having
the geometric distribution on Z+ with success probability α. We will denote the n-element
random set obtained as the noncolliding union of ξ1, . . . , ξn by

Gn = U(ξ1, . . . , ξn). (3.5)

In addition, the noncolliding union of a finite B ⊂ Z+ and ξ1, . . . , ξn will be denoted by

Gn(B) = U(B, ξ1, . . . , ξn). (3.6)

The following two lemmas extend well-known facts for geometric random variables to the
random sets Gn and Gn(B).

Lemma 3.2. For any finite (possibly empty) B ⊂ Z+ such that 0 /∈ B, the random set Gn(B)
defined by (3.6) satisfies

E{f (Gn(B)) | 0 /∈ Gn(B)} = E f (Gn(B − 1)+ 1)

for all bounded functions f on S|B|+n.

Proof. By Lemma A.4, 0 /∈ Gn(B) if and only if min{ξ1, . . . , ξn} > 0. Therefore,

E{f (Gn(B)) | 0 /∈ Gn(B)} = E{f (U(B, ξ1, . . . , ξn)) | ξ1 > 0, . . . , ξn > 0}.
Because the geometric random variable ξk , conditioned on being strictly positive, has the same
distribution as ξk + 1, and because ξ1, . . . , ξn are independent, it follows that

E{f (Gn(B)) | 0 /∈ Gn(B)} = E f (U(B, ξ1 + 1, . . . , ξn + 1)),

so the claim follows by Lemma A.5.

Lemma 3.3. For any finite (possibly empty) B ⊂ Z+ such that 0 /∈ B, the random set Gn(B)
defined by (3.6) satisfies

E{f (Gn(B)∗) | 0 ∈ Gn(B)} = E f (Gn−1(B − 1)+ 1)

for all bounded functions f on S|B|+n−1.

Proof. With the interpretation G0(B − 1) = B − 1, the claim makes sense also for n = 1.
In this case the claim follows by observing that G1(B)

∗ = B on the event that ξ1 = 0. To
proceed by induction, assume that the claim holds for some n. By definition, Gn+1(B) =
U(Gn(B), ξn+1), so we can split the event {0 ∈ Gn+1} into disjoint events

�1 = {0 /∈ Gn(B), ξn+1 = 0} and �2 = {0 ∈ Gn(B)}.
Let us first analyze the event �1. On this event, Gn+1(B)

∗ = Gn(B), so, by Theorem 3.2
and the independence of Gn(B) and ξn+1, we see that

E{f (Gn+1(B)
∗) | �1} = E{f (Gn(B)) | 0 /∈ Gn(B)}

= E f (Gn(B − 1)+ 1). (3.7)
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Let us next analyze the event �2. In light of Lemma A.6, we see that, on this event,

Gn+1(B)
∗ = U(Gn(B), ξn+1)

∗ = U(Gn(B)
∗, ξn+1 + 1).

Because Gn(B)∗ and ξn+1 are independent, by conditioning on ξn+1, applying the induction
assumption to the map A 
→ f (U(A, ξn+1 + 1)), and then using Lemma A.5, we obtain

E{f (Gn+1(B)
∗) | �2} = E{f (U(Gn(B)∗, ξn+1 + 1)) | 0 ∈ Gn(B)}

= E f (U(Gn−1(B − 1)+ 1, ξn+1 + 1))

= E f (U(Gn−1(B − 1), ξn+1)+ 1).

Note that
U(Gn−1(B − 1), ξn+1) =st U(Gn−1(B − 1), ξn) = Gn(B − 1),

because ξn and ξn+1 have the same distribution and both random variables are independent of
Gn−1(B − 1). (We use the notation X =st Y to mean that the random elements X and Y have
the same distribution.) This implies that

E{f (Gn+1(B)
∗) | �2} = E f (Gn(B − 1)+ 1). (3.8)

By combining (3.7) and (3.8), we conclude that the claim is true for n+ 1. This completes the
induction step, and thus also the proof.

3.3. One-step evolution

Assuming that the height distributions are memoryless as in (3.1), we see with the help of
Lemma 3.1 that the JEP may be constructed using the noncolliding union defined by (3.4)
according to

Xt+1 =
{
Xt − 1, 0 /∈ Xt,
U(X∗

t − 1, ξt+1), 0 ∈ Xt, (3.9)

where ξ1, ξ2, . . . are independent geometric random variables in Z+ with success probability
α, independent of the initial state X0.

The following key technical result describes the one-step evolution of the JEP with memory-
less height distributions, when started at a random initial state distributed according to Gk(B)
defined in (3.6).

Lemma 3.4. If X0 =st Gk(B) then the JEP with memoryless height distributions at time 1 is
distributed according to

X1 =st

{
Gk(B − 1), 0 /∈ B,
Gk+1(B

∗ − 1), 0 ∈ B.
Proof. Assume first that 0 /∈ B. Fix a bounded function f . Then, by first using (3.9) and

then Lemma 3.2, we find that

E{f (X1) | 0 /∈ X0} = E{f (Gk(B)− 1) | 0 /∈ Gk(B)} = E f (Gk(B − 1)).

Furthermore, because in (3.9) the random variables ξt+1 and X∗
t − 1 are independent,

E{f (X1) | 0 ∈ X0} = E{f (U(Gk(B)∗ − 1, ξk+1)) | 0 ∈ Gk(B)},
so, by Lemma 3.3 and independence,

E{f (X1) | 0 ∈ X0} = E f (U(Gk−1(B − 1), ξk+1)) = E f (Gk(B − 1)).

By combining these two observations, we conclude that the claim holds when 0 /∈ B.
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Let us next analyze the case where 0 ∈ B. Then with the help of Lemma A.6 we see that

X1 =st U(Gk(B)
∗ − 1, ξk+1)

= U(U(B∗, ξ1 + 1, . . . , ξk + 1)− 1, ξk+1)

= U(U(B∗ − 1, ξ1, . . . , ξk), ξk+1)

= Gk+1(B
∗ − 1).

3.4. Ultrafast convergence to equilibrium

By applying the key result, Lemma 3.4, we may identify the equilibrium of the memoryless
JEP.

Theorem 3.1. The JEP generated by the memoryless height distributions (3.1) has a unique
equilibrium which has the same distribution as the noncolliding union Gn = U(ξ1, . . . , ξn) of
n independent geometric random variables defined in (3.5).

Proof. Assume that the JEP is started at a random initial state distributed according to Gn.
Then, by Lemma 3.4 applied with B = ∅, it follows thatX1 =st Gn. By the Markov property,
it follows thatXt =st Gn for all t . The uniqueness of the equilibrium distribution follows from
Theorem 2.1.

Lemma 3.4 also allows us to make a stronger conclusion on the precise evolution of the JEP
started at an arbitrary nonrandom initial state. Consider a JEP started at a nonrandom initial
stateAwith n elements. We will denote byAk the set obtained by deleting k smallest elements
from A, and by τk the time instant when the kth smallest particle from the initial configuration
has just jumped, so that τ1 = minA + 1 and τk = minAk−1 + 1 for k = 2, . . . , n. The
following result shows that the memoryless JEP reaches its equilibrium at the nonrandom time
instant τn when all particles have jumped once.

Theorem 3.2. Let (Xt )t∈Z+ be a JEP generated by memoryless height distributions (3.1) and
started at a nonrandom initial stateA ∈ Sn. The distributionXt at any time t can be represented
by

Xt =st

⎧⎪⎨
⎪⎩
A− t for t < τ1,

U(Ak − t, ξ1, . . . , ξk) if τk ≤ t < τk+1 for some 1 ≤ k ≤ n− 1,

U(ξ1, . . . , ξn) for t ≥ τn.

Proof. First, Xt = A − t for t < τ1 by the definition of τ1. When t = τ1, we see using
representation (3.9) that Xt = U(A∗ − t, ξt ) =st U(A1 − t, ξ1). Thereafter, by repeatedly
applying Lemma 3.4, we have Xt = U(A1 − t, ξ1) for all τ1 ≤ t < τ2. Note that 0 ∈ A1 − t

for t = τ2 − 1. Therefore, again by Lemma 3.4, Xt =st U(A2 − t, ξ1, ξ2) for t = τ2. By
continuing the same way, we conclude that

Xt =st U(Ak − t, ξ1, . . . , ξk)

for all t such that τk ≤ t < τk+1 for some 1 ≤ k ≤ n−1. Finally, at the time instant t = τn−1,
Xt =st U(An−1 − t, ξ1, . . . , ξn−1), where the set An−1 − t only contains the zero element. By
one more iteration of Lemma 3.4, we conclude that Xτn =st U(ξ1, . . . , ξn). This distribution
remains invariant by Theorem 3.1.

3.5. Distribution of the equilibrium

Having found a stochastic representation for the equilibrium of the JEP with memoryless
height distributions as the noncolliding union of n independent geometric random variables,
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it is natural to ask whether there exists a nice formula for the distribution of this random set.
The following result provides an affirmative answer.

Theorem 3.3. The random set Gn = U(ξ1, . . . , ξn) defined by (3.5) is distributed according
to the Gibbs measure

µβ(B) = Z−1
n,βe−βH(B), B ∈ Sn, (3.10)

where β = − logα, the potential energy ofB is given byH(B) = ∑
x∈B x, and the normalizing

constant (a.k.a. partition function) is given by

Zn,β =
n∏
k=1

eβ

eβk − 1
. (3.11)

Proof. The claim follows by substituting A = ∅ into the more general Theorem 3.4 below.

Consequently, the memoryless JEP attains maximum entropy among all n-element random
sets with bounded expected sample mean (see, e.g. [2, Section 12.1]). As a byproduct,
Theorem 3.3 also provides a computationally efficient way to generate samples from dis-
tribution (3.10). A direct computation using (3.10) shows that, for the memoryless JEP in
equilibrium, the expected sample mean height of the particles is given by

E
H(Gn)

n
=

(
n−1

n∑
k=1

k

1 − αk

)
− 1,

the probability of the ground state by

P(Gn = [0, n− 1]) = αn(n+1)/2
n∏
k=1

1 − αk

αk
,

and the probability that zero is occupied by

P(0 ∈ Gn) = 1 − αn.

By Birkhoff’s ergodic theorem, the last formula is also equal to the long-run average jump rate
in the system—a simple way to prove the formula is to observe that the minimal element ofGn
is geometrically distributed with parameter αn due to Lemma A.4.

We will next state and prove a generalization of Theorem 3.3, which allows us to compute
the nonequilbrium distributions of a memoryless JEP started at an arbitrary nonrandom initial
state, as described in Theorem 3.2. Denote the family of supersets of a finite (possibly empty)
set A with |A| + n elements by

SA,n = {B ⊂ Z+ : B ⊃ A, |B \ A| = n}.
Theorem 3.4. The random set Gn(A) = U(A, ξ1, . . . , ξn) defined by (3.6) is distributed
according to the Gibbs measure

µA,β(B) = Z−1
n,βe−βHA(B), B ∈ SA,n,

where β = − logα, Zn,β is the constant defined by (3.11), and HA(B) = ∑
x∈B\A hA(x) is

the A-neglecting potential energy of B, where

hA(x) = |[0, x − 1] \ A| (3.12)

is the number of elements in Ac strictly less than x.
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Proof. Consider first the case n = 1. If B = A ∪ {x} for some x ∈ Ac then G1(A) = B if
and only if θA(ξ1) = x. The probability of this event is (1 − α)αhA(x) by Lemma 3.1. Because
HA(B) = hA(x) for such B, the claim follows for n = 1.

Assume next that the claim is true for some n ≥ 1. Fix a setB ⊃ A such that |B \A| = n+1.
Then

P(Gn+1(A) = B) =
∑
x∈B\A

P(Gn(A) = B \ {x}, θB\{x}(ξn+1) = x)

=
∑
x∈B\A

P(Gn(A) = B \ {x})P(θB\{x}(ξn+1) = x).

BecauseHA(B \ {x}) = HA(B)−hA(x) for all x ∈ Ac, it follows by the induction assumption
that

P(Gn(A) = B \ {x}) = Z−1
n,βα

HA(B)−hA(x).
Furthermore,

P(θB\{x}(ξn+1) = x) = (1 − α)αhB\{x}(x)

by Lemma 3.1. Note also that hB\{x}(x) = hB(x) and

hA(x) = hB(x)+ |[0, x − 1] ∩ (B \ A)|.
By combining these observations, we find that

P(Gn+1(A) = B) = (1 − α)Z−1
n,βα

HA(B)
∑
x∈B\A

α−|[0,x−1]∩(B\A)|. (3.13)

To compute the last sum, observe that |[0, x − 1] ∩ (B \ A)| equals k − 1 when x is the kth
smallest element in B \ A. Therefore,

∑
x∈B\A

α−|[0,x−1]∩(B\A)| =
n+1∑
k=1

α−(k−1) = 1 − α−n−1

1 − α−1 . (3.14)

By combining (3.13) and (3.14), we conclude that the claim is true for n+ 1.

4. Related models

4.1. Bounded JEP with uniform jumps

Consider the n-particle JEP where jump heights are bounded by a constant M ≥ n, and the
particles jump into unoccupied sites in [0,M−1] uniformly randomly. In this case Warrington
[10] showed that the equilibrium distribution is given by

µ(B) = Z−1
n,M

∏
x∈B

(1 + |[x + 1,M − 1] \ B|), (4.1)

where the normalization constant

Zn,M =
{

M + 1

M + 1 − n

}

is a Stirling number of the second kind (see [9, Corollary 2.4.2]). This equilibrium may also
be expressed as the Gibbs measure

µ(B) = Z−1
n,Me−βHM(B),
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where β = 1 and
HM(B) = −

∑
x∈B

log(1 + |[x + 1,M − 1] \ B|).

Recall that the memoryless JEP reaches its equilibrium when the initially highest particle jumps
for the first time. The same is not true for the bounded JEP with uniform jumps. To see this in
the one-particle case, observe that, for n = 1, the equilibrium distribution (4.1) reduces to

µ({x}) = Z−1
1,M(M − x), x ∈ [0,M − 1],

whereas just after each jump, the particle is uniformly distributed in [0,M − 1].
4.2. Finite ASEP with a reflecting boundary

Consider a continuous-time asymmetric simple exclusion process on Z+ consisting of n
identical particles, where each particle attempts a jump x 
→ x + 1 at rate λ and a jump
x 
→ x − 1 at rate η, independently of the other particles (see, e.g. [3, Section 10.4]). An
attempted jump takes place if the targeted site is unoccupied and belongs to Z+; otherwise the
attempt is suppressed.

Assume that 0 < λ < η, and let Y be the Markov jump process in the Weyl chamber
Wn = {x ∈ Z

n+ : x1 < x2 < · · · < xn} which keeps track of the particle locations. If Ỹ denotes
the corresponding free process in Z

n+ where particles are allowed to jump on top of each other,
then the components of Ỹ are independent M/M/1 queues, and so the equilibrium distribution
of Ỹ is a product of n independent geometric distributions on Z+ with success probability
λ/η. Furthermore, because Ỹ is reversible, we obtain the equilibrium of Y by truncating the
equilibrium of Ỹ to the Weyl chamberWn (see, e.g. [4, Corollary 1.10]). As a consequence, we
see that the equilibrium of the corresponding set-valued process inSn is the Gibbs measure (3.10)
withβ = − log(λ/η). Thus, the memoryless JEP and the finiteASEP with a reflecting boundary
have the same equilibrium distribution.

5. Conclusions

In this paper we introduced a juggler’s exclusion process (JEP) as a special discrete-time
exclusion process on the positive integers, where the motion of particles is deterministic outside
the boundary, and particles hitting the boundary jump into random unoccupied sites. We showed
that a JEP is ergodic if the jump heights are uniformly integrable and satisfy a natural aperiodicity
condition. The main part of the analysis was devoted to JEPs where the jump distributions
satisfy a set-avoiding memoryless property. Such JEPs were shown to converge to equilibrium
in finite nonrandom time, where the equilibrium is a Gibbs measure corresponding to a linear
gravitational potential. The proof of this result was based on representing the time-dependent
system configuration in terms of independent geometric random variables. As a byproduct, the
proof yielded a fast computational way to generate samples from such Gibbs measures.

There are two open problems related to this model that we find particularly interesting.
First, do we obtain an ergodic JEP if we assume that jump distributions are bounded in L1 but
not uniformly integrable? Second, is it possible to write down an analytical formula for the
equilibrium of a general ergodic JEP using techniques from renewal theory, as in the special
case of the one-particle JEP? The model analyzed in this paper also leaves room for many
generalizations. For example, one might consider analogous models with a continuous-time
parameter and fully random particle motion as in asymmetric simple exclusion process models.
Another interesting direction is to look for continuous-time processes where particles move in
continuum and jump into random locations not too close from the other particles.
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Appendix A. Technical details

A.1. Set-avoiding shift

Recall that θA is the A-avoiding shift defined by (3.3) in Section 3.1.

Lemma A.1. For all finite A ⊂ Z+ and all x ∈ Z+,

θA+1(x + 1) = θA(x)+ 1.

Proof. Because the equations

min{n ≥ 0 : |[0, n] \ A| ≥ x + 1} = min{n ≥ 0 : |[0, n+ 1] \ A| ≥ x + 1} + 1

and
|[0, n+ 1] \ (A+ 1)| = |[0, n] \ A| + 1

hold for all A ⊂ Z+ and all x ∈ Z+, we obtain

θA+1(x + 1) = min{n ≥ 0 : |[0, n] \ (A+ 1)| ≥ x + 2}
= min{n ≥ 0 : |[0, n+ 1] \ (A+ 1)| ≥ x + 2} + 1

= min{n ≥ 0 : |[0, n] \ A| ≥ x + 1} + 1

= θA(x)+ 1.

Lemma A.2. For any finite nonempty A ⊂ Z+ and any x ∈ Z+,

θA(x) =
{
x, x < minA,

θA∗(x + 1), x ≥ minA.

Proof. The first claim is that

min{n ≥ 0 : |[0, n] \ A| ≥ x + 1} = x

whenever [0, x] \ A = [0, x]. Because

|[0, n] \ A| ≥ x + 1 = |[0, x]| = |[0, x] \ A|
implies that n ≥ x, the claim follows.

The second claim is that

min{n ≥ 0 : |[0, n] \ A| ≥ x + 1} = min{n ≥ 0 : |[0, n] \ A∗| ≥ x + 2}
whenever x ≥ minA. Note that |[0, y] \ A| = |[0, y] \ A∗| − 1 whenever y ≥ minA. If

y ∈ {n ≥ 0 : |[0, n] \ A| ≥ x + 1}
then |[0, y] \ A| ≥ x + 1 = |[0, x]| ≥ |[0, x] \ A|, so y ≥ x ≥ minA. By the note above,
|[0, y] \ A| = |[0, y] \ A∗| − 1, i.e.

y ∈ {n ≥ 0 : |[0, n] \ A∗| ≥ x + 2}.
The other direction is similar, and the sets to be minimized are the same.
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Lemma A.3. For any finite A ⊂ Z+ and any x ∈ Ac,

θ−1
A (x) = hA(x),

where hA(x) = |[0, x − 1] \ A|.
Proof. Now the claim is that

min{n ≥ 0 : |[0, n] \ A| ≥ |[0, x − 1] \ A| + 1} = x

whenever x /∈ A. In this case |[0, x] \ A| = |[0, x − 1] \ A| + 1, so the claim reduces to

min{n ≥ 0 : |[0, n] \ A| ≥ |[0, x] \ A|} = x,

which is trivial.

A.2. Noncolliding union

In this section we summarize basic technical properties of the noncolliding union map
U(A, x1, . . . , xn) defined by (3.4) in Section 3.2.

Lemma A.4. For all finite A ⊂ Z+ and all x1, . . . , xn ∈ Z+,

minU(A, x1, . . . , xn) = min(A ∪ {x1, . . . , xn}).
Proof. Let us first prove the claim for n = 1. We may assume that A is nonempty,

because otherwise the claim is trivial. If x1 < min(A) then θA(x1) = x1, which implies
that minU(A, x1) = x1. If x1 ≥ min(A) then θA(x1) > min(A), which implies that
minU(A, x1) = min(A). Therefore, we conclude that the claim holds for n = 1. The
general case follows by induction, due to the recursive construction of U(A, x1, . . . , xn).

Lemma A.5. For all finite A ⊂ Z+ and all x1, . . . , xn ∈ Z+,

U(A+ 1, x1 + 1, . . . , xn + 1) = U(A, x1, . . . , xn)+ 1.

Proof. Note first that, by Lemma A.1,

U(B + 1, y + 1) = (B + 1) ∪ {θB+1(y + 1)}
= (B + 1) ∪ {θB(y)+ 1}
= U(B, y)+ 1

for all finite B ⊂ Z+ and all y ∈ Z+. Therefore, the claim is true whenever n = 1. If the claim
holds for some n ≥ 1 then, by the induction assumption,

U(A+ 1, x1 + 1, . . . , xn + 1) = U(U(A+ 1, x1 + 1, . . . , xn + 1), xn+1 + 1)

= U(B + 1, xn+1 + 1),

where B = U(A, x1, . . . , xn). The claim now follows by applying the property with n = 1.

Lemma A.6. For any finite nonempty A ⊂ Z+ and any x ∈ Z+,

U(A, x)∗ =
{
A, x < minA,

U(A∗, x + 1), x ≥ minA.

Proof. First, if x < minA then θA(x) = x by Lemma A.2. Therefore, U(A, x)∗ = (A ∪
{x})∗ = A. Next, if x ≥ minA then θA(x) = θA∗(x + 1) by Lemma A.2, and minU(A, x) =
minA. It follows that

U(A, x)∗ = A∗ ∪ {θA(x)} = A∗ ∪ {θA∗(x + 1)} = U(A∗, x + 1).
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