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Abstract
We consider symmetry-protected topological phases with on-site finite group G symmetry 3 for two-dimensional
quantum spin systems. We show that they have H3(G, T)-valued invariant.
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1. Introduction

The notion of symmetry-protected topological phases was introduced by Gu and Wen [GW]. It is defined
as follows: We consider the set of all Hamiltonians with some symmetry which have a unique gapped
ground state in the bulk and can be smoothly deformed into a common trivial gapped Hamiltonian
without closing the gap. We say two such Hamiltonians are equivalent if they can be smoothly deformed
into each other without breaking the symmetry. We call an equivalence class of this classification
a symmetry-protected topological (SPT) phase. Based on tensor network or quantum field theory
analysis [CGLW, MGSC(], it is conjectured that SPT phases with on-site finite group G symmetry for

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fmp.2021.17 Published online by Cambridge University Press


doi:10.1017/fmp.2021.17
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2021.17&domain=pdf
https://doi.org/10.1017/fmp.2021.17
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v-dimensional quantum spin systems have an H**!(G, T)-valued invariant. We proved that conjecture
affirmatively in [O1] for v = 1. In this paper, we show that the conjecture is also true for v = 2.

We start by summarising the standard setup of 2-dimensional quantum spin systems on the
2-dimensional lattice Z> [BR1, BR2]. We will freely use the basic notation in Section A. Throughout
this paper, we fix some 2 < d € N. We denote the algebra of d X d matrices by My.

For each subset " of Z2, we denote the set of all finite subsets in [’ by Sr. We introduce the Euclidean
metric on Z2, inherited from R2. We denote by d(S1, S») the distance between S, S, C 72. For a subset
I of Z? and r € Rsg, I'(r) denotes all the points in R> whose distance from I" is less than or equal to .
We also set I'(r) := I'(r) N Z2. When we take a complement of I' C Z?, it means I'® := Z> \ I". For each
n € N, we denote [-n, n]?> N Z? by A,,.

For each z € Z2, let Az} be an isomorphic copy of Mg, and for any finite subset A C 77, we set
Ar = cen Afz)- For finite A, the algebra A, can be regarded as the set of all bounded operators
acting on the Hilbert space ® ZeA C4. We use this identification freely. If A C A, the algebra Ay, is
naturally embedded in A, by tensoring its elements with the identity. For an infinite subset I" c Z2,
Ar is given as the inductive limit of the algebras A, with A € Sr. We call Ar the quantum spin
system on I'. For simplicity, we denote the 2-dimensional quantum spin system Az by .A. We also
set Ajoc := Unes_, An- For asubset I'y of I' C 72, the algebra Ar, can be regarded as a subalgebra
of Ar. With this identification, for A € Ar, we occasionally use the same symbol A to denote A®I Anr, €
Ar. Similarly, an automorphism y on Ar, can be naturally regarded as an automorphism y ® id Anr,
on Ar. We use this identification freely, and with a slight abuse of notation we occasionally denote
v ®id A, by y. Similarly, for disjoint I'_, Ty ¢ Z? and @, € Aut Ar., we occasionally write a_ ® a,
to denote (- ® idre) (@4 ® idre ), under the given identification.

Throughout this paper we fix a finite group G and a unitary representation U on C¢. Let T" ¢ Z? be
a nonempty subset. For each g € G, there exists a unique automorphism Bg on Ar such that

X ue)
1

for any finite subset I of I". We call the group homomorphism A" : G — Aut Ar the on-site action of
G on Ar given by U. For simplicity, we denote ,8%2 by B,.

A mathematical model of a quantum spin system is fully specified by its interaction ®. A uniformly
bounded interaction on A is a map @ : S;2 — Ajo such that

By (A) = Ad (A), AcA g€, (1.1)

O(X)=0(X)" € Ax, X € Gp, (1.2)
and
sup [|®(X)|| < co. (1.3)
XEGZQ

It is of finite range, with interaction length less than or equal to R € N if ®(X) = 0 for any X € S
whose diameter is larger than R. An on-site interaction — that is, an interaction with ®(X) = 0 unless
X consists of a single point — is said to be trivial. An interaction @ is S-invariant if 8, (®(X)) = ®(X)
for any X € G5.. For a uniformly bounded and finite-range interaction ® and A € S;2, define the local

Hamiltonian
(Ho)p = ) ®(X) (1.4)
XcA
and denote the dynamics
tM®(4) = o Hon ge it (Ho)r 1 e R A€ A (1.5)
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By the uniform boundedness and finite-rangeness of @, for each A € A the following limit exists

Jlim) t™®(A)=:1®(A), teR, (1.6)

which defines the dynamics 7® on A [BR2]. For a uniformly bounded and finite-range interaction ®,
a state ¢ on A is called a 7®-ground state if the inequality —i ¢(A*6(A)) > 0 holds for any element
A in the domain D(64) of the generator dp. Let ¢ be a 7®-ground state, with a Gelfand—Naimark—
Segal (GNS) triple (Hy, 7y, Q). Then there exists a unique positive operator Hy, ¢ on H,, such that
eHeon  (A)Q, = 7y, (Té)(A)) Q, forall A € Aandt € R. We call this H, ¢ the bulk Hamiltonian
associated with ¢.

Definition 1.1. We say that an interaction ® has a unique gapped ground state if (i) the 7®-ground state,
which we denote as we, is unique and (ii) there exists ay > 0 such that o (H o) \ {0} C [y, o), where
o (H wq)’q)) is the spectrum of H,,, o. We denote by Py the set of all uniformly bounded finite-range
interactions with unique gapped ground state. We denote by Pygg the set of all uniformly bounded
finite-range S-invariant interactions with unique gapped ground state.

In this paper we consider a classification problem of a subset of Py g, models with short-range
entanglement. To describe the models with short-range entanglement, we need to explain the classifi-
cation problem of unique gapped ground-state phases without symmetry. For I' ¢ Z2, we denote by
I : A — Ar the conditional expectation with respect to the trace state. Let f : (0, 00) — (0, o) be a
continuous decreasing function with lim,_,, f(¢) = 0. For each A € A, define

1.7

14 - May (A
)

lAllf = llAll + sup (
N eN

We denote by Dy the set of all A € A such that [|Al|; < oo.
The classification of unique gapped ground-state phases Py without symmetry is the following:

Definition 1.2. Two interactions @y, ®; € Py are equivalent if there is a path of interactions @ :
[0, 1] — Py satisfying the following:

1. ®(0) = ®p and ®(1) = ;.

2. For each X € &, the map [0,1] > s — ®(X;s) € Ay is C'. We denote by ®(X;s) the
corresponding derivatives. The interaction obtained by differentiation is denoted by ®(s), for each
s € [0,1].

3. There is a number R € N such that X € S, and diam X > R imply ®(X;s) =0, forall s € [0, 1].
4. Interactions are bounded as follows:
Cr = sup sup (|@(X;9)|+][d(X;5)]|) < co. (1.8)
s€[0,1] X€&,n

5. Setting

D(Z;s) — D(Z;50)
S =50

- ®(Z;50)

b(g) := sup sup (1.9)

26, 5,50€[0,1],0<|s—so|<e&

for each € > 0, we have lim._,o b(&) = 0.
6. Thereexistsay > 0suchthato (de)(s)@(s)) \{0} C [y, o) foralls € [0, 1], where o (de)(s),q)(s))
is the spectrum of H ). 0(s)-
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7. There exists 0 < 17 < 1 satisfying the following: Set £() := e™*". Then for each A € Dy, Wa(s) (A)
is differentiable with respect to s, and there is a constant C such that

< C Al (1.10)

d
'%wd)(s) (A)

for any A € D,. (Recall definition (1.7)).

We write ®) ~ ®; if @y and ®; are equivalent. If @y, ®; € Pycp and we can take the path in
Pugp — that is, so that S, (P(X;s)) = P(X;s), g € G, forall s € [0, 1] — then we say @y and @; are
[B-equivalent and write @y ~g @y.

The reason we require these conditions is that we rely on the result in [MO]. The object we classify
in this paper is the following:

Definition 1.3. Fix a trivial interaction ®y € Py . We denote by Psrg the set of all ® € Pygg such
that ® ~ ®,. Connected components of Pgyg with respect to ~g are the SPT phases.

Because we have @y ~ @ for any trivial @, d) € Pyg, the set Py 1,3 does not depend on the choice
of CI)Q.

Remark 1.4. From the automorphic equivalence (Theorem 5.1), ® ~ @y means that the ground state of
® has a short-range entanglement. This is because the automorphisms in Theorem 5.1 can be regarded
as a version of a quantum circuit with finite depth, which is regarded as a quantum circuit that does not
create long-range entanglement [BL].

The main result of this paper is as follows:

Theorem 1.5. There is an H> (G, T)-valued index on Pg Lg> which is an invariant of the classification
~B OfPSLB~

The paper is organised as follows. In Section 2, we define the H>(G, T)-valued index for a class of
states which are created from a fixed product state via ‘factorisable’ automorphisms, satisfying some
additional condition. This additional condition is the existence of the set of automorphisms which (i)
do not move the state and (ii) are almost like B-action restricted to the upper half-plane, except for some
1-dimensional perturbation. In Section 3, we show that the existence of such set of automorphisms is
guaranteed in a suitable situation. Furthermore, in Section 4 we show the stability of the index — that is,
a suitably B-invariant automorphism does not change this index. Finally, in Section 5 we show our main
theorem, Theorem 1.5, and that in our setting of Theorem 1.5, all the conditions required in Sections
2, 3 and 4 are satisfied. Although the index is defined in terms of GNS representations, in some good
situation, we can calculate it without going through GNS representation; this is shown in Section 6.
Reviews of this article can be found in [O3, O4].

2. The H3(G, T)-valued index in 2-dimensional systems

In this section, we associate an H> (G, T)-index for some class of states. It will turn out later that this class
includes SPT phases. For a nontrivial example of this index, see [O3]. It is also shown there that if a state
is of product form of two states on half-planes, then our index is trivial. From the construction to follow,
one can easily see that the group structure of H>(G,T), which is a simple pointwise multiplication,
shows up when we tensor two systems.

2.1. An overview

We consider states of the form w = wg o @, where wy is a pure infinite tensor product state (see definition
(2.18)) and @ an automorphism satisfying some factorisation property (2.8). In equation (2.8), ar, ar
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are automorphisms localised to the left and right infinite planes Hy, Hg, and @ is localised in (Cy)€,
where Cy is defined by definition (2.2). We then have w =~ (wprap ® wrag) o O with pure states
wr, wr on the left and right infinite planes. We further assume that the effective excitation caused by
([5’;,])’I (see formula (2.5)) on w is localised around the x-axis, in the sense that for any 0 < 6§ < 7,
there are automorphisms ngj, ng localised in Cy N Hy,Cy N Hg such that w o (,Bg)‘1 is equivalent to
wo (Ué ® ng). This corresponds to thinking of 7(6, (Eg)) (definition (2.22)) and 1G(w, #) (definition
(2.24)). Setting yg = ngﬁgR,ygL = r]éﬁgL, with ﬁgR, gL in formula (2.5), the condition given is
w = wo (yL ®yk). Repeated use of this formula gives us w ~ w o (yéyﬁ(ygh)‘] ® ygy}’f(ygh)‘]).
Substituting the factorisation of w, we then have

- -1
(wrar ® wrag) 0O ~ (wpar ® Wrar) o O (VgL)’ﬁ ()’éh) ® 7’575 (7&) ) .

However, because conjugation by ﬁg does not change the support of automorphisms, we see that this
combination y Ry R ()/[fh)’l is localised in Cy N Hg. As aresult, yRy R (yifh)’l —and also 7457}%(75;!)71 -

commutes with ©. Letting them commute, we obtain
Lor(.L\! R.R(,R\™
wrar ® wrar = (wrar ® WRar) ° (vg vy (th) ® Vg Vi (ygh) ,

from which we can conclude wrag =~ wRaRygy;f(ygh)“. This means that aRygy;f(ygh)‘]a;el is
implementable by some unitary u(g, #) unitary in the GNS representation 7g of wg (equation (2.19);
see equation (2.27)). On the other hand, substituting the factorisation of w to w ~ wo (yé ® yf;) implies

(0L ® wrag) = (w101 ®wrag) 0O o (yE & yF) 007, @.1)

from which we can derive the implementability of @o (v} ®yX)o®~! in the representation 7o ® Trar
by some unitary W, (see equation (2.26)). Using the definitions of W, and u(g, ), we can see that
they satisfy some nontrivial relation (2.52), with some U(1)-phase cg(g, h.k). In fact, this is quite a
similar situation to that of cocycle actions [J]. As in [J], we can show that this U(1)-phase cr(g, h.k) is
a 3-cocycle and obtain an H3 (G, T)-index. The rest of this section is devoted to the proof that our index
is independent of the choice of objects we introduced to define it. All of them follow from the fact that
the difference of W, and u(g, /) caused by the different choice of objects can be implemented by some
unitary, and the proof is rather straightforward.

2.2. Definitions and the setting
For 0 < 6 < 7, a (double) cone Cy is defined by

Cy = {(x,y) eZ* | Iyl Stan0~|x|}. 2.2)
Note that it consists of the left part x < —1 and the right part 0 < x. For 0 < 6; < 6, < 7, we use the
notation C(g,,g,] := Cg, \ Cg, and C|o,¢9,] := Cg,. Left, right, upper and lower half-planes are denoted

by HL,HR,HU andHD:

Hp ={(x,y) € Z* |x < -1}, Hg :={(x,y) € Z* |0 < x}, (2.3)

Hy ={(x,y) € Z*| 0 < y}, Hp ={(x,y) €Z*|y < -1}. (2.4)
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We use the notation
Be=p7. BY = pliv, pRU = glx0tu LU ._ gHioHy 25)
For each subset S of Z2, we set
Se =SNHy, S;=SNH; Se¢=SNHyNH; o=LR {=UD. (26)
We occasionally write As, -, As.¢»As, o,z to denote As,, As, , As, . For an automorphism @ on A
and 0 < 0 < %, we denote by DY a set of all triples (ay, ag, ©) with
ap € Aut (Ap, ), ag € Aut(Apg), © € Aut(Ac,)) (2.7)
decomposing « as
a = (inner) o (ay ® aR) o O. (2.8)
For (ay,ag,®) € 505,6), we set
(2.9)

oy == ar, ® aR.

The class of automorphisms which allow such decompositions for any directions is denoted by
(2.10)

QAut (A) := {af € Aut(A) | DI # 0 forall0 < 6 < %}

The automorphism @ in equation (2.8) acts nontrivially only on Cg, the gray area.

Furthermore, for each
0<0pg<01<012<018<0,<0r2<0r3<03<03,< %, (2.11)

we consider decompositions of @ € Aut(A) such that

@ = (inner) o (0[0,91] ® @(g,,6,] @ X(6,,6,] ® a’(03,§]) ° (0(90.8’0142] ® (65,60, ® a,(9248,93.2]) >
(2.12)
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with
ax= Q) axor  eper= Q) wore e = Q) e
o=L.R, =D.,U o=L.R ¢=D.U
ax, o, € Aut (-ACXYU,{), ax o = ® ax,o,¢, ax,; = ® axX,o,05
¢=U.D o=L,R
[0,6,],00 € Aut (’Ac[o,eo],a) R 0(03’%]’4 € Aut (AC(”3*§]’§) >
(2.13)
for
X =(01,62], (62, 63], (B0.8,01.2], (61.8,022],(628,632], o=L,R, {=D,U. (2.14)

The class of automorphisms on A which allow such decompositions for any directions
0o.8,01,01.2,0138,02,022,023,03,603, (satisfying formula (2.11)) is denoted by SQAut(.4). Note that
SQAut(A) c QAut(A). The set of all @ € SQAut(A) with each of @; in the decompositions required
to commute with ,Bg, g € G, is denoted by GSQAut(.A):

GSQAut(.A)
for any 6.3, 01, 61.2, 01.8, 62, 622, 023, 63, 63 2 satisfying formula (2.11),
there is a decomposition (2.12), (2.13), (2.14) satisfying

= qa € SQAut(A) ay oﬂgzﬁgoal, g€q,

T
forall I = [0, 6], (61, 62], (62, 63], (03, 5] ,(00.8,01.2], (01.8,02.2], (02.3,63.2]
(2.15)

We also define

r
for any 0 < 8 < —, there exist @, € Aut (A ,o=L,R,
HAut (A) := { @ € Aut(A) 2 o A, ) . (2.16)

such that @ = (inner) o (a7, ® ag)

In Section 5, we will see that quasilocal automorphisms corresponding to paths in symmetric gapped
phases belong to the following set:

GUQAut (A) := {y € Aut (A) 2.17)

there are yy € HAut(A), yc € GSQAut(A),
such that y = yc o ygy '

We fix a reference state wy as follows: We fix a unit vector £, € C? and let p £, be the vector state on
My given by &,, for each x € Z2. Then our reference state wy is given by

wq = ®p§x. (2.18)

xez?

Throughout this section this wy is fixed. Let (Ho, 79, Qo) be a GNS triple of wg. Because of the product
structure of wy, it is decomposed as

Ho=Hr ® Hr, nmo=nrng, Qy=Q QQR, (2.19)
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where (Ho, 7o, Q0) is a GNS triple of wy = wola,, for o = L,R. As wola,, is pure, 7y is
irreducible. What we consider in this section is the set of states created via elements in QAut(.A) from
our reference state wy:

SL:={wpoa|aecQAut(A)}. (2.20)

Because any pure product states can be transformed to each other via an automorphism of product form
@ = ),z @, and @a belongs to QAut(A) for any & € QAut(A), SL does not depend on the choice
of wg. For each w € SL, we set

EAut(w) := {@ € QAut(A) | w = wp o a}. (2.21)

By the definition of SL, EAut(w) is not empty.

For 0 < 6 < 7 and a set of automorphisms (Be) C Aut(.A4), we introduce a set

geG

ng € Aut (Acy), )
T(0, (Be)) =3 0 dgeG. =1k | = (innen) o (i @ nk) 0 Y. 1. (222)
forallge G, o =L,R

In a word, it is a set of decompositions of,[?g o (ﬁg)‘l into tensors of Aut(Ac,), ), Aut(A(c,)z) modulo
inner automorphisms. For (¢ )geG, o=L.r € T(6, (Bg)), we set

Ng := r]é ® ng, g€G. (2.23)

The following set of automorphisms is the key ingredient for the definition of our index: For w € SL
and 0 < 6 < 7, we set

G (@,6) ) At(A)XGwOBg:wforallgeG (224
,0) = G € . .
¢ Pelsea € Au and T(6, () # 0
We also set
IG () = Up<p5 IG (,6) (2.25)

In this section we associate some third cohomology /(w) for each w € SL with IG(w) # 0.

2.3. Derivation of elements in Z* (G, T)

In this subsection, we derive 3-cocycles out of w, @, 6, (ﬁg), (ng), (aL,ar,©).

Lemma 2.1. Set w € SL,a € EAut(w),0 < 6 < 5.(B,) € IG(w,0).(n7) € T(6,(Be)).
(ar,agr,®) € D, Then the following hold:

(i) There are unitaries Wy, g € G, on Hy such that
Ad(W,) o mg =7rooa00(9077g,8£,] 0@7! 00/51, g€G, (2.26)

with the notation of definitions (2.9) and (2.23).
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(ii) There exists a unitary uy(g, h) on Hy, for each o = L, R and for g, h € G, such that

-1 -1
Ad (o (8. 1) 0 7 =7 0 onBEUnT (B7Y) (nG) oert @2
and
-1 _ _
Ad (uz (8, 1) ® ur(g, 1) mo = 7o 0 @g 0 neBYma (B ) (ngn) 005! (2:28)

Furthermore, u (g, h) commutes with any element of m, © @ (A((CQ)C)U).

Definition 2.2. For w € SL,a € EAut(w),0 < 6 < %,(Eg) € IG(w,0), (g )geG, =L,k €
T(0, (Be)) . (ar,ar, ®) € DE, we denote by

P (w, 0,0, (B). (1), (@1, 2z, ) (2.29)
the set of (Wg)geG, (o (8, 1))g,heG, o=L,r) With Wy € U(Ho) and u (g, h) € U (H ) satisfying
Ad(W,) o mg zﬂooaooG)ongﬁg 0@! oaal, g €qG, (2.30)

and

-1
Ad(uy(g,h)omy =g 0oy © ngﬁgun;lr ( ;ru) (ngah)*1 oa,!, g.heG,oc=LR. (231)

(Here we used the notation of definition (2.9) and (2.23).) By Lemma 2.1, it is nonempty.
Proof. For a GNS triple (Hg, 7o © @, Q) of w = wy o a, there are unitaries Wg on Hg such that
Ad (Wg)ompoa=mpoaof,, ge€G, (2.32)

because w o g = w.
Because (Tlg)gec, o=L,R € T(0,(Bg)) and (ar,ar,®) € EZ, there are unitaries vg, V € U (A) such
that

Bngd(vg)O(ngLébng)OBg, a=AdVoayo0. (2.33)
Substituting these, we have

Ad (Wgﬂo(V)) mpoayo®=myo Qﬁg =mpoaoAd (vg) o ngﬂg

U (2.34)
= Ad ((70 0 @(vg)) mo(V)) mo 0 @g 0 © 0 1o B, .
Therefore, setting W, := o (V)™ (7o o a(v;))Wgno(V) € U(Hyp), we obtain equation (2.26).
Using equation (2.26), we have
* U A A
Ad (WgWthh) o =7mo o @p o ®ongBynn (,Bg ) r]gh® a, - (2.35)
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Note that because conjugation by ,B(g] does not change the support of automorphisms, 77, ,Bg nn( ﬁ 17]; }1

belongs to Aut(.Ac,). On the other hand, ® belongs to Aut(.A(c,)<). Therefore, they commute and we
obtain

-1
Ad (WgWth*h) 7o = equation (2.35) = mp o @ o Ugﬁgﬂh (ﬂg) 77;;1,“61

oU _ o ! o - -1
® ﬂaoa(rongﬁg My ( g ) (r]gh) °Cy -

o=L,R

(2.36)

From this and the irreducibility of 7, we see that Ad(W, W), W; ;) gives rise to a *-isomorphism 7 on
B(HRg). It is implemented by some unitary ug (g, ) on Hg by the Wigner theorem, and we obtain

I, @ (Ad (ur (8, 1)) © 7R (A)) = Iy, © T (R (A)) = Ad (wgwhw;,,) (e, ® 7R (4))
4, (2.37)
=Ip, ®mroagr o Tlg RUUf ( RU) (’75;1) o ag (A),

for any A € Ap,. Hence we obtain equation (2.27) for o = R.
To see that ug(g,h) belongs to (mg o ar (A(cye),)) > set A € Ac,)),- Then because
ng A nf(ﬁ )_l(ngh)_l belongs to Aut (A(c,), ), we have

Ad (g 8. 1)) 7 (ar (A)) = mparknBEUnf (BV) " (n%,) " aflam(4) = mpam(a).  (238)

This proves that ug (g, h) belongs to (g o ag (A((CH)C)R))/' An analogous statement for uy (g, k) can
be shown exactly the same way. The last statement of (ii), equation (2.28), is trivial from equation
(2.27). m]

Lemma 2.3. Set w € SL,a € EAut(w),0 < 6 < %,(B,) € IG(w,0).(n7) € T8, (Be))

(L, agr,®) € DI. Let (Wy), (ur(g, h))) be an element of IP(w, a, 6, (ﬁg) (ng), (aL,ar,©)).
Then the followmg hold:

(i) Foranyg h.k €G,
Ad( o (I, ® ur(h, k) W ) o
— 700 (id Ay, ®arnFBE (ﬂh BRU R (/3 ) 1 (nfk)]) (ng RU ) aRl) (2.39)
(ii) Foranyg,h e G,
Ad (1 (g. h) ® ur(g. h)) Wen) = Ad (W, Wp) (2.40)

on B(Hyp).
(iii) Forany g, h,k € G,

Ad(Wg) (HHL ®ugr(h, k)) € Cly, ® B(HRr). (2.41)
(iv) Forany g,h. k, f € G,

Ad (WeWp) (I, ® ur(k, f)) = (Ad ((In, ® ur(g. 1)) Wen)) (I3, ® ur(k, f)) . (2.42)
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Proof. We use the notation from definitions (2.9) and (2.23).
(i) Substituting equations (2.30) and (2.31), we have

Ad( o (I, ® ug(h, k) *)oﬂo
-1
=mooapo® o 00 oag O(ldAH @ar o nikBRUnE (B ) (n) 0011_21)
-1
ocapo®o (Ug:BgU) ° @—1 o
U - RU, R R\ AN
= o000 @0 pY 007 o [ida,, @nafVnk (BRY) (nf) o 0o (nsY) 0@ oap.
(2.43)

Because nrARYnR(BRY) " (nR,)! belongs to Aut (A(c,),). it commutes with © € Aut (Ac,)e).
Hence we obtain

equation (2.43)
1 -1 -1
=790 a9 0 ® 0 gL o (HAHLmhﬁRUR(ﬁ ) () )o(ngﬂg) 007 oq;'

1 -1 1
=7T()0a/0060(1[AHL ®77§ OUhﬁRU R(,B ) (7751() (Ug 5”) )061 0061-
(2.44)

Again, the term in parentheses in the last line is localised at (Cy) g, and it commutes with ©. Therefore,
we have

Ad (Wg (L, ® ur(h, k) W, ) o g
e, son et o () () ) o) s

(ii) Again by equations (2.30) and (2.31), we have

-1

-1 o

Ad ((ur.(g.h) ® ur(g, h)) Wgn) © mo = 79 © g © ng By N (,32,]) (ngn)” 0@ ongnBy, 00" oay’
-1

-1 -

=mpoapo®o ngﬁgr]h (ﬁg) (Ugh) o nghﬁgh 0®!lo aol

U U -1 -1
:n'ooa/oo@ongﬁgr]hﬁh o® o a,

=Ad (WgWh) o 7.
(2.46)

Here, for the second equality we again used the commutativity of n7s and ®, due to their disjoint support.
Because 7 is irreducible, we obtain equation (2.40).

(iii) For any A € Ap, , we have
07 oay (4@1a,, ) =07 o (o7 (4) @1uy, ) € 07 (An, ©Clay, ) € Apyiies) s 247
because ® € Aut (A(Cg)c). Therefore, r]f; € Aut (A(cg) R) acts trivially on it and we have

(ﬁg)‘l (ng) " 0® oy’ (A ®]IAHR) € A, u(cs), - (2.48)
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As O preserves AHLU(Cg)R’

®o (ﬁg)_l (1) 0@ oay! (A®I[AHR) (2.49)

also belongs to AHLU(Cg)R' As aresult,

Ad (W;) (L(A) ® I1y,) = Mo 0 g 0 O 0 (ﬁg) (7)o@ oag! (A ® HAHR) (2.50)

belongs to 71 (Apn,) ® mr © ar(A(cg),), and hence commutes with Iy, ® ug(h, k). Hence

Ad(W,) (I, ® ug(h,k)) commutes with any elements in 77, (A ) ® Cly,. Because rry, is irreducible,
Ad(W,) (I, ® ug(h, k)) belongs to Cly, ® B(Hg).

(iv) By (iii), Ad (Wgh) (]IHL ® ug(k, f)) belongs to Cly;, ® B(Hg). Therefore, from (ii), we have
Ad (WgWh) (HHL ® MR(k,f)) = Ad ((uL(g, ]’l) ® uR(g, ]’l)) Wgh) (I[HL ® MR(k, f))
= Ad (I, ® ur(g, h)) Wen) (Ine, ® ur(k, f)), (2.51)
obtaining (iv). |
With this preparation, we may obtain some element of Z3(G, T) from ((Wy), (us(g, h))).

Lemma 24. Set w € SL,a € EAu(w),0 < 6 < 7, (Bg) € IC}(w, 0), (ng) € T, (,gg)),
(ar,ar,0) € DY. Let ((We), (us (g, h))) be an element of IP(w, @, 0, (Bg), (ng ), (ar, @r, ©)). Then
there is a cg € Z3(G, T) such that

T, ® ur (8, hur (gh, k) = cr(g, h, k) (W (e, ® ur(h, ) W) (e, ® ur(g, i), (2.52)
forall g,h, k € G.
Definition 2.5. We denote this 3-cocycle cg in Lemma 2.4 by
cr (0.0.6, (Be). (1) (L. @R, ©), (Wy), (uer(g. 1)) 2:53)

and its cohomology class by

B (w,,6, (Be), (1), (an, ar, ©), (W), (e (g, 1))

= [or (@.0.0. (Be), 1), (@ k. ©), (W), (s (8, 1)) ) | (2.54)

H3(G,T)

Proof. First we prove that there is a number cg(g, h, k) € T satisfying equation (2.52). From equation
(2.31), we have

-1
Ad (T3, ® ur(g, hugr(gh,k)) o = 711 ® 7R © ag © (Tlg §U) (775,35[]) (UfﬁfU) (nghkﬁif,%) g
(2.55)

On the other hand, using Lemma 2.3(i), we have that

Ad ((W{g (I, ® ur(h, k) W;) (s, ® ur(g. hk))) 7o (2.56)

is also equal to the right-hand side of equation (2.55). Because ny is irreducible, this means that there
is a number cg(g, h, k) € T satisfying equation (2.52).
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Now let us check that this cg is a 3-cocycle. For any g, h, k, f € G, by repeated use of equation
(2.52), we get

Tru, ® ur (g, Wur (gh, Kur(ghk. f) = [T, © ur (g, Wur(gh. k)] - (I, © ur(ghk. )
= (crlg h k) (We (e, © ur(h ) Wy) (I, © ur(g. 1)) - (T, © ur(ghk. )

= (cnle: 1 k) (We (e, ® un(h k) Wy )) - [T, ® un (e, hk)ur (ghk, £)]
= (crlg hk) (We (e, @ ur(h ) Wy )
(cr(g. ik ) (W (b, ® ur(ik, £)) Wy ) (T, ® ur (g, hk f)))

= cr(g. h k)R (8, 1k, f) (We [, @ ur (b, K)ug (hk, )] Wy ) - (b, © (g, hk )

=cr(8, h. k)cr (g, hk, f)cr(h, k, f)
W, (Wh (I’HL ® ug(k, f)) Wh (IHL ® ug(h, kf))) (I[?-LL ®MR(g,hkf))
= CR(g7 h’ k)CR(g7 hk’ f)CR(h? k’ f)

“WeWi, (I, ® ur(k, f)) WpWy - [( o (I, @ ur(h, kf)) W )1[7{, ®uR(g,hkf)]
= cr(g. h K)er (8, k. Per(h k. )o@ k) - (WeWi (e, © ur(k, £)) WyWs)}
(T, ® ur(g, Wur(gh, kf)) . (2.57)

Here and in the following, we apply equation (2.52) for terms in [-] to get the succeeding equality.
Applying Lemma 2.3(iv) to the {-} part of equation (2.57), we obtain

equation (2.57) = cg(g. h, k)cr(g, hk, fcr(h, k, f)c(g, h, kf)
(Ad (I, ® ur(g. h)) Wen)) (Ire, ® ur(k, f)) (Ir, ® ur(g. hur(gh.kf))
= cr(g. h. k)cr(g. hk., f)cr(h. k. f)c(g. h.kf)
(e, ® ur (8, 1)) [Wen (b, ® (s £)) Wy, (e, © ur(gh, k)]

= CR(gs h’ k)cR(g’ hk’ f)CR(h’ k? f)c(gs h’ kf)CR(gh’ k’ f)
(I, ® ur(g, Wugr(gh, k)ur(ghk, f)) .

(2.58)

Hence, we obtain

cr(g, h,k)cgr(g, hk, f)cr(h, k, f)c(g, h, kf)cr(gh,k, f) =1, forall g, h,k,feG. (2.59)

This means cg € Z3(G,T). m}

2.4. The H3(G,T)-valued index
From the previous subsection, we remark the following fact:

Lemma 2.6. For any w € SL withIG(w) # 0, there are

@ € EAut(w), 0<0< g (Be) €1G (0,0), (%) € T(6, Be)), (ar,ar,®) € DI,
y (2.60)
((We), (ur (. 1)) € TP (w,0,0. (B, (1), (@, 0%, 0))
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Proof. Because IG(w) # 0, there is some 0 < 6 < ¥ such that IG(w, ) # 0, and hence (B¢) € 1G(w, 6)
and (ng) € T(6, (B)) exist. Because w € SL, by definition there exists some & € EAut(w), and by
the definition of EAut(w), there is some (@, ag,®) € DY. The existence of ((Wy), (ur(g, h))) €
IP(w, a, 6, (Bg), (ng), (ar,ag,®)) is given by Lemma 2.1. O

By Lemma 2.4, for w € SL with IG(w) # 0 and each choice of (2.60), we can associate some
element of H3(G, T):

B (0,00, (B), 1), (ar,ar, ©), (We), (e (8, 1)) @.61)

In this subsection, we show that the third cohomology class does not depend on the choice of (2.60):

Theorem 2.7. For any w € SL with 1G(w) # 0,

B (w,,0, (Be), 1), (ar, ok, ©), (We), (e (g, 1))
is independent of the choice of
@, 0, (Bg), (ng), (ar, ar, ©), (W), (uc(g, h))).
Definition 2.8. Let w € SL with IG(w) # 0. We denote the third cohomology given in Theorem 2.7 by
W) = h D (w,,6, (Bo), (1), (oL, ar, ©), (We), (e (g, 1))

First we show the independence from ((Wy), (1 (g, ))).

Lemma 2.9. Set
we SL, a€EAut(w), 0<0< g (Be) €1G(w,8), (1Y) € T(6. (Be)), (ar.ar.©) € DY,
(2.62)
(W), (e (8, 1), ((We), (i (8, 1) € TP (@, 0,0, (B), (), (L. @k, ©)) . (263)
Then we have
W (0,0, (Be), (1), (@r, @k, ©), (W), (o (g, )

= bV (@,a,0, (Bo). (1), (ar, k. ©), (W), (@ (g, 1)) ) - (2.64)

Definition 2.10. From this lemma and because there is always ((Wg), (ur(g,h))) in
IP(w, @, 0, (By), (ng), (aL,agr,®)) by Lemma 2.1, we may define

W (@,a.6. (Be), (). (L. ar.©)) = ') (w,@.6. (Be). (). (. R, ©), (W), (e (. 1))
(2.65)

for any

w e SL, acEAut(w), 0<0 < g (Be) €1G(w,0), (1) € T(6,(By))» (ar,ar.®©) € DY,
(2.66)

independent of the choice of ((W,), (1o (g, h))).
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Proof. Because

Ad(Wg) omg=mpoago®o ngﬂg 0®lo aal = Ad (W,) o o, (2.67)

Ad (ur(g. 1)) o 7 = w0 o nfBRnf (B8Y) (%) o ! = Ad (m(e. 1) o e 268)
and g, g are irreducible, there are b(g), a(g, h) € T, g, h € G, such that
We=b(g)W,.  iir(g.h) = a(g. hug(g. h). (2.69)
Set
cr = cr (0.6, (Be). (1), (L, @R, ©), (Wo), (uer(g. 1))
e = cr (0,0, (B), ), (L. k. ©), (Wy), (s (8, 1)) (2.70)
Then from the definition of these values and equation (2.69), we have

a(g7h)a(gh7 k) (H’HL ® MR(g,h)MR(gh, k)) = ]IHL ® ﬁR(g7 h)ﬂR(gh’ k)
= Cr(: 1, k) (W (e, ® iR () Wy ) (T, © R (8, k)
= ¢r(g, b, kK)a(h, k)a(g,hk)( (Iyg, ® ur(h. k)W, )(HHL ® ug (g, hk))

= ER (g’ h’ k)a(h’ k)d(g, hk)CR(g’ h’ k) (I[’HL ® MR(g’ h)uR(gh’ k)) . (271)

Hence we have Cr(g, h, k) = cr(g,h,k)a(h,k)a(g, hk)a(g, h)a(gh, k), and we get [cr]p3 (g, T)
[€r]u3(G,T)» proving the claim.

Next we show the independence from «, (@, ag, ©):

Lemma 2.11. Set

weSL, ana €EAut(w), 0<6< g (Be) €1G(w,0), () € T(6,(B)),  (2.72)

(r1,r,1,0) € DZI, (L2, @R 2,02) € D?,z- (2.73)
Then we have

W (w,01,6, (Bo), (1) (L1, ar1,01)) = 5P (0,02,6, (Bo), (1), (12,002, ©2)) . 274)

Definition 2.12. From this lemma and because there are always @ € EAut(w) and (@, ag,®) € DY
for w € SC and 0 < 6 < 7 by the definition, we may define

h(3) (w’ 0’ (ﬁg)» (77;)) = h(Z) ((,U, a, 0’ (Bg)’ (Tlg)’ (a’L’ aR, 6)) (275)
for any
weSL, 0<6< g (Be) € 1G(w,6), () € T(6, (By)) (2.76)

independent of the choice of «, (ar, ag, ®).
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Proof. By Lemma 2.1, there are

(We1), (uo,1(g, h))) € IP (w,al, 0. (Bg). (). (a’L,l,a’R,l’Ql)) : (2.77)
For each i = 1, 2, we have ©; € Aut Acg and
a; = (inner) o e ; 0 ©;, (2.78)
setting

@o,i ‘=L, ® QRi- (2.79)

Because wg o a1 w = wq ° &z, we have wg o ap o “1_] = wy. Therefore, there is a unitary V on H, such

that ooz 0 @]” = Ad (V ( ) o mo. Substituting equation (2.78) into this, we see that there is a unitary V
on Hy satlsfylng

mp 0 ap,2 © @2 = Ad (V) o mp 0 ap,1 © O1. (2.80)
From this, we obtain

Ad (VW,1V*) o 7o
= Ad (VW;.1) 1o © a1 © @1 0 0" 0 agy

=Ad(V)ompoap o0 ongﬂg o @1_] o aa’ll oap,1 000 @ o a/ol2 (2.81)
-1

=7T()Oa/0’20®20®1_1 oaall oap,1 00 ongﬁg o®]_1 oa(;l] oap,1 © 0 °®51 o),
U -1 -1
=myoap2 o 0y °1gBqg 0@, o @p,2»

for all g € G. Furthermore, we have

Ad (V (Iy, ® ug,1(g, h)) V) omp=Ad (V (I, ® ur,1(g,h))) ompoap 0O o @51 o aa’lz
1 -1
=Ad(V)omo (idAHL ®CYR,1'7g Runf ( RU) (ngh) a';e{l) a@p,1 00 o @51 o a'aylz

1 -1
-1 -1 RU R ( pRU R -1 |
=g o g, 0 © 00] o (ld-AHL ®aR,177g n, ( ) (ngh) aR’l) oap,1 001006, °a;

-1 -1
=m0 200007 0 (idAHL ®ng B 1M ( gU) (ng,,) ) 00100 oag). (2.82)

1 -1
Now, because & BRY nf ( RU) (ngh) is an automorphism on A¢, and ©,007 ! is an automorphism

on Acg, they commute. Therefore, we have
Ad (V (I, ® ug,1(g, h)) V") omo
1 -1
= equation (2.83) =mp o agy (idAHL ®77g RUnf ( RU) (771;;,) ) ° aa’lz

1 -1 ~
=1L ® (nR o aR 277g I;Unff ( RU) (ngh) (Q'R,Z) 1) . (2.83)
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From this equality and the fact that 7, is irreducible, we see that V (]If;.[ L Qug.i(g, h)) V* is of the form
Iy, ® ugr,2(g, h) with some unitary ug (g, 1) on Hg. This ug (g, h) satisfies

-1 -1
-1
Ad (g 2 (8, 1)) 0 7 = 7 0 ar nRBRURK (BRV) " (n,) " (ara) ™ (2.84)
Analogously, we obtain a unitary uy, »(g, #) on H . such that

V (ur,1(8, 1) ®Ta) V' = ur2(8, h) @ Ty, (2.85)

Ad (w8 1)) o 1 = me o b BEUnf (857) (nh) " (ere) ™ (2.86)
From equations (2.81), (2.84) and (2.85), we see that
(VW 1V7), (ue2(g, b)) € 1P (w, @2.0, (Bg). 1), (L2, ar 2, @)) . (2.87)
Set
CR,1 '=CR (w, 1,0, (Bg), ) (L1, @r.1.01) . (We.1) » (ua',l(gah)))),
CR2 = CR (w, @2,0, (Be), 1), (@L.2, @R 2,02) , (VW1 V), (g 2(g, h))) . (2.88)
It suffices to show that cg,; = cg 2. This can be checked directly as follows:

V (I, ® ug,1(g, hug,1(gh, k) V' =1y, @ura(g, hura(gh, k)
=croa(g, h,k) (VWgJV* (]I”HL ® ugra(h, k)) VW;IV*) (I[HL Qural(g, hk))
=cRr2(8. h, k)V (Wg,l (I3, ® ur,1(h,k)) W;,l) (I3, ® ur.1(g, hk)) V*

=cro(g. h.k)cr,1(g, h,k)V (Ip, ® ur,1(g, h)ug,1(gh,k)) V*. (2.89)

Lemma 2.13. Set

weSL, 0<6< g (Be) € 1G(w,0), (1)), (ﬁg) e T(0. (By)) - (2.90)
Then we have
W (.6, (B, 1)) = 1 (w,6. (B, (7)) 2.91)
Definition 2.14. From this lemma and the definition of IG(w, 6), we may define
H (0.6 (B) = ™ (0.6, (Be). () (2.92)
for any
weSL, 0<6< g (Be) € 1G(w,0), () € T(6, (By)) (2.93)

independent of the choice of (77¢).
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Proof. Thereare a € EAut(w) and (ar,ag,®) € Dg for w € SL by the definition. We setag := ap Qagr
and g := ng; ® ng, g == ﬁg,‘ ® ﬁg. By Lemma 2.1, there is some

((We) » (e (g 1)) € TP (0,6, (Be)s (), (az @, ©)) (2.94)
Because (777 ), (ﬁg) € T(6, (B,)), we have

B = (inner) o (né ® ng) Oﬁg = (inner) o (ﬁg ® ﬁg) ° ,6’?. (2.95)

From this, we obtain

i o (nk )_1 @k o (if )_1 = (inner), (2.96)

hence there are unitaries v € Ay, 0 = L, R, such that

-1
i o (ng) =ad(vg). (2.97)
Because ﬁg,ng are automorphisms on Ac, o, vg belongs to Ac,.o. (See Lemma B.1.) Setting

Vg 1= vé ® vg, we obtain 7j, = Ad (vg) © 175.
Set

Wy = ((mrer (vE)) @ (mrar (v5))) We. (2.98)

is(g,h)=n, (a(,. (vg . (ng gU) (v;lf))) ‘uy (g, h) ms (a/g ((vgh)*)) , (2.99)
foreach g, h € G and o = L, R. We claim that
(W,) . (i (g, h))) € IP (w, .0, (By), (ﬁg) (L, g, @)) . (2.100)

First, we have

ﬂoOCUOOG)Oﬁg,Bg 0@ loay! =mpoayo®oAd(ve) ongﬂg 0@ log
=y o apoAd(vg) o @0y 0O oay' (2.101)

- (1)) o (rn 1)) oo 0t 0 ot = a5 o
For the first equality, we substituted 77, = Ad (vg) o 1, and for the second equality, we used the fact

that v¢” belongs to Acy,o» while @ is an automorphism on Ac,)< . The last equality follows from the
definition of W,. On the other hand, we have

1 -1
ﬂ(rOCZa-Oﬁgﬁo-Uﬁ]? (ﬁ;’”) (ﬁgh) oay

= oap 0 Ad () o ﬁ;:U Aaoi) ony (577)” o A ) oo

- Ad (,r(, oy ((v;’) ngBY )) T 0 aen? BUnS ( gy)_l (nG) ™" o ay! 0 Ad (a/o- (Vgh*))

=Ad (ng oy ((vg) ng By )) oAd (uys(g, h)) s o Ad (aa ( gh*)) =Ad(i,(g, h)ong,
(2.102)
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for all g,h € G. For the first equality, we substituted 7, = Ad (v¢) o 175. The third equality is the
definition of u(g, h). Hence we have proven formula (2.100).
Set

cr = cr (0.0,6, (Be) (), (L. @k, ©), (W), (s (8. 1))
er 1= cr (0,6, (Bo). (75 ) . (@1, @, ©), (W), (r (3, 1)) (2.103)

In order to show the statement of the lemma, it suffices to show that cg = ¢g. Substituting the definition
of iig, we obtain

iRr(g, h)ir(gh, k)
= 7R (aR (VE (ngﬂgU) (Vf))) ‘ug (g, h) - 7R (wR ((vg,,)))
R (aR (vgh (nghﬂgﬁ]) (Vf))) “ug (gh, k) - mg (aR ((vghk)))
= 7R (aR (Vﬁ (U?ﬁgu) (fo)))
: [MR (8, h) - R (aR ((nghﬂfﬁj) (Vf)))] ug (gh, k) tr (aR ((vf;,,k)*))
= 7R (aR (vg (ngﬁgu) (Vf)))
- [Ad (ur (2. ) (e (e ((n5,850) 0))) - e oo )| (g ) - (e ((5e) )
o ) )
(e oo st (85) ™ () o oo ({552 o))
ur (8, W) ur (gh, k) 7x (ar (R0 ) )

= i (i (v (nBBEY) O RV nEBRY (V) -k (8, 1) ke (g, k) - e (V) )
(2.104)

For the fourth equality, we used the definition of ug. From this equation, applying equation (2.52) to
the [-] part, we have

Ly, ® iiR(g, h)ir(gh, k)
=Ty, ® 7R (aR (V§ : (nffﬁf,f”) Vi) -ngﬂgUnﬁﬁﬁU(V§)))
Lur (g, ) ur (gh, )] (or ((v55) )
= e, k) (T, @ ma (e (vE - (nEBEY) () - nBBEUnEBRY (D)) ))
{We (e, ® ur(h, 1)) Wi} (e, ® ur (g, 1K) -7 (e ((v5) ) - (2.105)
Now from the definition of iig, the {-} part becomes
We (s, ® ug (h, k) W
= Ad(Wy) o mo o (idz @a (v - nf RV v5)) )

 Ad(Wy) (1, ® iR (h, K)) - (Ad(Wy)mo (idr @ar (v, ))) (2.106)
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Because vg belongs to Ac, r and nf; is an automorphism on Ac, g while © is an automorphism on
A(cyye and BY (Ac,.r) = Acy.r. We have

Ad(Wg) o mg o (idL ®aR ((vh nh,B U(v ))*))
=mpoapo®o ngﬂg 0o®7lo aral o (idL ®agr ((vh nhﬁhU(vf)) ))
= (1dL ®ag o ng RU (( VR nRBRU (VR )*)) , and
Ad(W) o o (idr g (v, )) = mo (idr, @k o nRBRY (v, )) - (2.107)
Substituting this into equation (2.106), we obtain
Wy (T3, ® ug(h, k)) Wy
=1 (1dL ®apg © r]g RU ((v;f . nfﬂfU(vf))*))
- Ad(Wy) (Ing, ® iig (. k) - 7o (ldL ®ag o nRpRY (vhk)) (2.108)
Substituting this to the {} part and the {-} part of equation (2.105), we obtain

Iy, ® (g, h)ir(gh, k)

= cr(g h k) (T, @ mr (ar (v - (1RBRY) ) - nRBRUnRBRY (0
o (idz @ak o npE (v - nEpEl o))
- Ad(Wy) (I, ® iig (h, k)) - (ldL ®ag o nRpRY (vifk))
o e o () )

= cr(g 1K) (T, ® i (e (vE))) Ad(Wy) (T, @ iR (h, ) - o (i @0k o nfBRY (vE,))
o s (2552 (1))

(bey ® g (8, 1K) ) o (2 @ar (v, ) or ((v5) )
= cr(g, b, k) Ad ((Iry, © 7k (aR (vg))) We) (bey ® R (h,K)) - (e, ® i (g, 1K)

= cr(g.h k) {Ad (e (0 (vf7) @ Ty )| Ad We (1, © (. )) | - (1, @ i (5.1))
(2.109)

Because of Lemma 2.3(iii), the {-} part of the last equation is equal to Ad Wg (I, ® iig(h, k)). Hence
we obtain

Iy, ®iir(g, h)ir(gh, k) = cr(g, h, k) AdWy (I, ® iig(h,k)) - (I3, ®iig (g, hk)). (2.110)
This proves cg = ¢r, completing the proof. O
Lemma 2.15. Set

weSL, 0<0< g (”i,”),( <2’) € IG(w, 6). 2.111)
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Then we have
W (w0, (8")) = 19 (w.0. (B7)) 2.112)
Definition 2.16. From this lemma we may define
1 (w,0) := hY (w,6, (B,)) (2.113)
for any

weSL, 0<6< g with IG(w, §) # 0, (2.114)

independent of the choice of ().

Proof. By the definition of IG(w, 0), there are
: A ~(i) )) . =
(ng”)gea, LR T(G, ( g )), fori=1.2. (2.115)

We set g ; i= né ®n§’i, fori = 1,2. There are @ € EAut(w) and (ar., ag,®) € DY for w € SL by the

1
definition. Setting aq := @y ® ag, we have a = (inner) o ag o ©. By Lemma 2.1, there is some

((Wg,l) , (ugp(g,h))) elp (w, @, 0, (jgl)) ’ (,7;1) , (aL,aR,Q)). (2.116)
Set

-1
K¢ =ng,0 (77;1) € Aut (Ac,,»), foroc=L,R, g€G, Ky = Ké ® Kg € Aut (Ac,) -

(2.117)
We claim that there are unitaries Vg‘r ,8€G, o=L,R,onH, such that
Ad (v;) Mo =My 0@y 0 KT 0 (ag) . (2.118)
To see this, note that
w=w OBS) =wpoa OBS) ~ge Wo O @poB®o (néi ® ’75,1‘) O,Bg, i=1,2. (2.119)
Therefore, we have
wooayo®o (7715:,1 ® 77?,1) ~ge. WO (ﬁg)i1 ~ge Wo O @y o @ o (Ué,z ® ng’z) R (2.120)

and then using the facts that © € Aut (Acg) and K, € Aut (Ac,),

W) ~qe. W00 @ 0@ 0Ky 00 0ag' =wyoago Ko (a) = ® wo o ag K (as)™.
o=L,R
2.121)

This implies that ws and we © @eKg (ozg)_1 are quasiequivalent. Because - is irreducible, this
implies the existence of a unitary V" on H, satisfying equation (2.118), proving the claim.
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Next we claim that there are unitaries v;’ 5, On Hes, for g, h € G and o = L, R, such that

Ady,, (I[HL ® V,f) =Ly, ®vF,.  Adw,, (V,f ® I[HR) =vk, ® Ty, (2.122)
and
* -1 -1
Ad(Veve ) (6.0 (Vi) ) 7o = 7o 0 aw ongaB7Vni, (BY) (152) ca'  (2123)
for any g, h € G and o = L, R. To see this, first we calculate

-1
Ad (Wg,l (]IHL ® V/f) (Wg,l)*) omy =Ad (Wg,l (]IHL ® V;f)) mpoago®o (ng,lﬁfgj) 0® o aal

U 1 1 R 1 v\ 1 1
_nooa'oo(aong‘]ﬁg 0@ oq, o(idL®aRoKho(a/R)7)oaoo(ao(ng’lﬁg) 0@ oq,

-1
mpoayo®o ng,1/3§’ 0®!o (idL ®K{f) o®o (ng,1ﬂ§') 0®!o 061
-1
=mpoayo®o ng,lﬁg o (idL ®K;f) o (nglﬂg) 0® o a,al

-1
=mpoapo®o (idL ®U§,1ﬁ§UKf (U§,155U) ) 0®lo a,(;l

-1
=y o (idL ®ag o Ny BRUKR (ng’lﬁf;U) a,;‘) ) (2.124)

-1
In the fourth and sixth equalities, we used the fact that K{f, ng | ,BgUK;f (ng , ,BgU) € Aut (Acg) and

® € Aut (Acg) commute, in order to remove ®. Equation (2.124) and the fact that 7y is irreducible

R
g.h
of vg’ ,, satisfying equation (2.122).

imply that there is a unitary v , satisfying equation (2.122). The same argument implies the existence

For this vg ,,» We would like to show equation (2.123). Rewriting

-1 -1
nea8Vns (65Y) (n60)

-1 -1 -1 -1
- k7 o (e (i7,85) ) engasni (80) () o (k)

(2.125)
we obtain
R ,HRU_R ru\V R O\
7TL®7TRoaRr]g’2ﬁg 77;1,2( g ) (Ugh,z) TR
-1
=m0 (idL ®aR © Kg o (U§,1ﬁ§UK,If (Tlg,pBgU) )
R RU_R ru\ (R O\ RN 4
°1,18g ’lh,1( g ) (ngh,l) O(th) a'R)
=71 ® Ad (vag’hug)(g,h) (th) )nR, (2.126)

substituting equations (2.118), (2.124) and (2.122). This proves equation (2.123) for & = R. An

analogous result for & = L can be proven by the same argument. Hence we have proven the claim
(2.124) and (2.123).
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Setting
—yL R
Ve =V, @V, € U(Hop), (2.127)
we have

Ad(VgWg’l) o o :ﬂoO(YoOKg Oaal OCYOOG)OUg,l Oﬂg o®_1 oaal
=mpoago@®ongr0pY 0@ oayl. (2.128)

In the last equality, we used the definition of K, and the commutativity of ® and K, again. From
equations (2.128) and (2.123), setting

u$ (8.1 = Vv ,uld g h (V4 (2.129)
we see that
((VeWen). (1 (2. ) € 1P (.6, (B) . (1C) - (v, k. ©) (2.130)
and
Ly @ 1) (8,5) = (g ® VE) Wet (I, @ VE) (W) (I, g (0 (VE) ). @131)
Now we set

cra = cr (00,0, (B). (1) (@1, ar. ©), (We). (2. 1))
CR2 = cR( (ﬁ(2>) ( ),(aL,aR,(a),((vgwg,l),(ug)(g,h)))). (2.132)

To prove the Lemma, it suffices to show cg,1 = cg2. By equation (2.131), we have

L, ® gy (g, Mg (gh, k)

- (]IHL ® vg) We (I[HL ® V;f) (We1)® (HHL o ull (g, h) ( ) )
: (I[HL @ VR ) Wen (s, @ V,f) (Wen1)" (I, @ (g, ) (thk)*)

_ (}IHL ® v;*) W, (I[HL ® v;f) (We1)® (JIHL oul (g, h))
Went (e, @ VE) Wena)” (e @ ) (81, ) (V) )

= (1 © VE) Wet (10, ®VIF) (W) {Ad (530, @ (8. 1) - W) (130, ® V)|
(B © [l (g g (gn 0)| (VEL) )

= cr1 (8., K) (T, ® VE) Wt (T, ® VE) (W) {Ad (We1 Wi ) (1, @ VE) )

(Wer (e @ () W3 ) (e, @ 0y (8, 10) (V) ) (2.133)
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We used equation (2.52) for the [-] part and Lemma 2.3(ii) and equation (2.122) for the {-} part in
the fourth equality. Again using equation (2.131), we have

Ty, ® u'e) (g, hul) (gh, k) = equation (2.134)
= cri(g, h k) (I[HL ® vg) W1 (]IHL ® v,f) {Ad (Wi.1) (I[HL ® V,f)}

(Waa (e ® (VE) ) W) (e @ V) (10, © 0 (.00 (13, @ (VI )) (W) )

Wet (e, ® (VE) ) We)” (1, @ VE) (1, @0 (8,0 ) (1, @ (VE)) (130 @ (VE) )
= crai(g, k) (I[HL ® ng) We.1 - ((ﬂm ould (h, k)))  (We)” (]IHL ® vg)* (I[HL ou (g, hk))
= cra(g, b k) - Ad ((I[HL ® vg) Wg,l) ((]IHL & u'? (h, k))) : (]IHL & u'? (g, hk))
= cra(g h k) - Ad ((V;* ® Trie) vgwg,l) ((HHL ®u'? (h, k))) (B, @1 (e, hk))

= cri(g. k) - Ad (VgWq 1) ((]IHL ou? (h, k))) : (ﬂm o ul? (g, hk)) (2.134)

In the last line we used formula (2.130) and Lemma 2.3(iii) to remove VgL*. From this, we see that
CR,1 = CR2, completing the proof. O

Lemma 2.17. Set
weSL, 0<6, <6< % with 1G(w, 61), 1G(w, 62) # 0. (2.135)
Then we have
" (w,01) = 1 (w,6,) . (2.136)
Definition 2.18. From this lemma, for any w € SL with IG(w) # 0, we may define
h(w) :=h (w,0) (2.137)

independent of the choice of 6. This is the index we associate to w € SL with IG(w) # 0.

Proof. By the assumption, there are some (B,) € IG(w, 6;) and (n7) € T((61.f¢)). Because w € SL,

there are @ € EAut(w) and (ar,ag,0) € D?ﬁ by the definition. Setting a¢ = ar ® ag, we have
@ = (inner) oapo®. Because 0 < 6; < 6, < 5, wealso have (77) € T((62, Bg)). and (B,) € IG(w, 67).

For the same reason, we also have (ay, ag,®) € DZ‘.
By Lemma 2.1, there is some

(W), (uer(g. 1) € IP (0,61, (By). (1) (L, @k, ©) ) (2.138)
However, we also have

(W), (uer(g. 1) € IP (0,6, (By). (1) (L. k. ©) ) (2.139)
Therefore, we obtain 2 (w, 6;) = ) (w, 6>). O

This completes the proof of Theorem 2.7.
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3. The existence of 3 for SPT phases

In this section, we give a sufficient condition for IG(w) to be nonempty. We consider the same setting
as in Section 2.2.

T

Theorem 3.1. For any 0 < 6 < % and a € SQAut(A) satisfying wo o a o g = wy o a forall g € G,
I1G(wq © @, 0) is not empty.

The strategy is as follows. Our infinite tensor product state wg can be written as wy = Wy ® wp, with
pure states wy, wp on Apy, , Am,, . Using the factorisation property of @ € SQAut(.A4), we can show that

ao ﬂg oa! = (idAHD ® ?g,U) o (an automorphism localised at Cg,) o (inner), 3.1
aoBgoa! = (Vyp ®Y, ) o (an automorphism localised at Cg, ) o (inner), (3.2)

P (s F]U & _ (s F]w : c c
with Yoy = B EuYep = Bg &p automorphisms on (Cg, )" N Hy, (Cays)" N
Hp, respectively. The ‘automorphism localised at Cg,” can be split into left and right parts. (See
equation (3.28).) From the latter equation and wg o a o B, = wp © @, one can show that wUYg,U is
quasiequivalent to a state of the form ¢; ® pr ® wcg,» where ¢y, pg are states on -ACezm o Acgzn Hr
and wcs is the pure state given as the restriction of wq to ACSZ (with 6p.3 < 60>). A general lemma

proven in the following (Lemma 3.2), derived from the homogeneity of pure state spaces on UHF-
algebras, then allows us to show the existence of automorphisms Z, 1, Zg.r o0 Acy, .y, » ACo,nmy

satisfying wy Yg,U ~ wyo (Zg,L ®ZgR® idcz2 ) Combining this with equation (3.1) basically gives the
Theorem.
Now let us start with a precise mathematical proof. We first prepare the general lemma just mentioned.

Lemma 3.2. Let A, B be UHF-algebras. Let w be a pure state on W @ B and oy, gy states on A, B,
respectively. Assume that w is quasiequivalent to gy ® pg. Then for any pure states Yy, g on U, B,
there are automorphisms yy € Aut (W), yy € Aut (B) and a unitary u € U (W ® B) such that

w = ((Yaoyw) ® (Ygoys)) o Ad(u). (3.3)
If Yy and @y are quasiequivalent, then we may set yy = idy.

Proof. Let (Hy, 7w, Quw), (HM,HW, QW) , (7—[%, T ogs Q%) be GNS triples of w, vy, ¢g, respec-
tively. Then (Hey ® Hog, Ty ® Ty, Loy ® Quy) is a GNS triple of oy ® ¢p. As w is quasiequiv-
alent to ¢y ® ¢, there is a x-isomorphism 7 : 74, (A ® B)” — ey (A)” @ 7y, (B)” such that
T O My = My ® Myy. Because w is pure, we have 7, (A ® B)” = B(H), and from the isomor-
phism 7, we have that 7, (A)” ® 7y, (B)” is also a type I factor. Then from [T, Theorem 2.30V],
both 7, ()" and 74, (B)” are type I factors. The restriction of 7 to 7, (A ® Cly)” implies a
s-isomorphism from 7, (W ® Clg)" onto the type I factor 74, (A)”". Hence we see that 77, (A ® Clg)”
is a type I factor. Therefore, from [T, Theorem 1.31V], there are Hilbert spaces Cq, g and a uni-
tary W : H, — Ky ® Kg such that Ad (W) (7, (X ® Clg)”) = B(Ky) ® Cli,. Because w is
pure, we also have Ad (W) (r,, (Cly ® 23)") = Clg, ® B(Kg). From this, we see that there are
irreducible representations pq, pg of A and B on Ky, g such that Ad(W) o n,, = py ® pg. Fix
some unit vectors &y € Ky, £ € Kg. Then because of the irreducibility of pg and pg, we have that
wyr = (&, pa () Eq) and wg = (£, pg () Eg) are pure states on A, B. By [KOS, Theorem 1.1]
(originally proved by Powers [P] for UHF-algebras), for any pure states g, s on U, B, there exist
automorphisms yy € Aut(W), vy € Aut(B) such that wy = Yy o Yy wy = Yy o yy. Now for unit
vectors W* (&g ® é) , Q. € H ., by Kadison’s transitivity theorem and the irreducibility of 7, there
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exists a unitary u € U (A ® B) such that 7, (u)Q,, = W* (€q ® £g). Substituting this, we obtain

w={(Qu, Ty, (1) Qu) = (Mo, (U )W* (g ® ) . ey (4) T (U)W (£t ® €g))
= (W" (fa ® ) w0 Ad(u) (1) W (Eg ® €))
=((lu ®&p), (pu ® pgy) o Ad(u) () (a ® €))
= (wy ® wg) o Ad(u) = (Yo o ya ® Y o yp) o Ad(u). (3.4)

Now assume that 9 and g are quasiequivalent — that is, the GNS representations of g, @9, denoted
by 7y, and m,, are quasiequivalent. From the foregoing argument, 7, |y and 7, are quasiequivalent.
At the same time, 7, |y and py are quasiequivalent. Therefore, , and py are quasiequivalent. Because
both of them are irreducible, we see that a pure state gy can be represented by a unit vector ¢ € Ky, as
Y = (¢, pa (+) £). Because py is irreducible, by Kadison’s transitivity theorem there exists a unitary
w € U (W) such that pg(w*)¢ = &g Hence we obtain g o Ad(w) = wyg. Substituting this instead of
wy = Yy © yy in equation (3.4), we obtain

w=(Yu @Yy oyp)oAd((w®idyg)u), (3.5)

proving the last claim. O

Lemma3.3. Let B, U, 1, Wr 1, A1 g, o g be UHF-algebras. Set | := Wy 1@ g, An := W 1. @A g,

Wp =W L @Wo p and Ug := W r ®WUs R. Let w, go(Ll’z), gpg’z), W be pure states on BW, Wy, g, B,

respectively. Suppose that w is quasiequivalent to (zp ® ‘,021’2) ® gol(;’z))‘% o Then for any pure states
®U

ga(Ll), cp;;) on Wy, Wy R, respectively, there are automorphisms yg) € Aut (?ILL) , yl(;) € Aut (?ILR)

and a unitary u € U (B @ W) such that

w= (¢® (go(Ll) oyg>) ® (goj;) oylg”)) o Adu. (3.6)

Proof. Because the pure state w is quasiequivalent to (1//®¢(L]’2) ®<p§;’2)

)‘%@‘Hl
(tp(Ll’z) ® gog’z))LI , applying Lemma 3.2 means that for any pure states go(Ll), t,og) on Ay 1, Ay g, there
1

= [//®

exist an automorphism S € Aut ¥, and a unitary v € U (B ® A;) such that

w= (zp@ ((go(Ll) ®¢p§;>) os)) o Adv. 3.7)

(1,2)

From equation (3.7) and w ~ge. (w ®p, " ® ¢g,2))|% 0 we get (lp ® ((9021) ® gag)) o S)) ~qee.
®

1

(1,2) (1,2))| D .
® ® , which implies
(tﬂ ¢r YR Bo, whi p

2 2
(6 0 ) 05 ~qe (#2047 68
1

Applying Lemma 3.2 to formula (3.8), there are automorphisms yg) € Aut (U 1) ’Vz(el) € Aut (%; g)
and a unitary w € U () such that

(ga(Ll) ® <p§el)) oS = ((9021) o yg)) ® (gag) o 71(21))) o Adw. 3.9)
Substituting this into equation (3.7), we obtain equation (3.6). O
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Lemma 3.4. Let Ay, Ar, Bru, Brp, Bru, Brp, Cu, €p be UHF-algebras, and set

By :=Bru ® Bru, Bp = Brp ® Brp, By =Brp ®Bry, Br:=Brp @ Bru,
A=A, @ AR, B :=Bp @ By = B @ Bg, C.=CpHh ¢y, D=ABC.
(3.10)

Let wx be a pure state on each X = Wy, g, Bru, Brp, Bru, Brp, Cu, Cp, and set

W = 0B, ® WB, ®wg, onBy @ Cy,

‘”g(s =Wy, , ® Wy, ®ws, onBpeCp,
wy = wy, ®wy, on,

wé‘[% =wy, Qwy,,, Qws,, on AL @By,

a);i% =W @ WP, @ WRg, ON Ar ® Bk,

wo = ® wx onD. (3.1

X=Ur , AR, Bru.BLp,
Bru,.Brp,Cu.Cp

Let a, & be automorphisms on © which allow the following decompositions:
& = (ple ® idu ®p ) o (ide, ®7hy ® Ty @1dc,, ) o (inner), (3.12)
a= (ng ® idy ® idg,, ®%) o (1qu oyky @y, ® id%) o (inner). (3.13)

Here, pgc, pgc are automorphisms on By @ €y, Bp @ Cp, respectively. For each o = L, R, 75[)-58’ )75[’53
are automorphisms on Ny @ Bop ® Bouy. Suppose that wy o & = wy. Then there are automor-
phisms np,nr on g @ Brp @ Bru,Ar @ Brp @ Bry such that wy o « is quasiequivalent to
wq © (id(gu RN ®NR id(gD).

Proof. First we claim that there are automorphisms 65" € Aut By, 08" € AutBry and a unitary
u €U (BY ® €Y) such that

WY 0 e = g o (05 © 08V @ idev ) 0 Ad (u) (3.14)

To prove this, we first note that from wg o & = wg and the decomposition (3.12), we have

1 1
U U D D L R
W © Py @ WA ® Wy © Py ~qe. Wey ® Wy © (VQLms) ® Wyygs © (75%) ®wg,.  (3.15)

From this, because both states are pure (hence the restrictions of their GNS representations onto €y @ By
are factors), we have

U U _ U U D D
Wge © Ppe = (“’M ° Py ® W B Wy © Pm)
Cy By

1 — 1
~qe Wey @ (“’*zli% ° (VQLUB) ® Wy © (J’glfsg) )‘ . (3.16)
By

We apply Lemma 3.3 for B, %1, Wig, or, War, 0, 057, 0, v, replaced by €y, BLy, Bro, AL @

— -1 —\ -1
Brp, g ® EBRD,a)g¢ o ngawé{% o (y?LIEB) ’w‘ZR}SB o (y;;%) , W, » respectively. From equation

(1

(3.16), they satisfy the conditions in Lemma 3.3. Applying Lemma 3.3 — for pure states ¢, ' = wg,,,
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and 901(31) = Wy, — We obtain automorphisms 65V € Aut (BLy), 08" € Aut(Bgy) and a unitary

u € U(By @ Cy) satisfying equation (3.14).
We set

nL = (QgU ®idy, ®id53u)) o yﬁ% € Aut (Bry @ AL @ Brp)
(3.17)
nR = (qu ® idy, ®idg;RD) o )/9’}’% € Aut (Bry @ Ar @ Brp) -

Then we have
wooa= ((UQ[L ® Wy ®wg¢®wg¢) oa
~qe. (wi‘IL ® Wy, ® “’%0: o pg(g ® wg@) o (id(gu ®y§53 ® yg% ® id(gu)
~ge. (wglL ® wy, ® w%c ® wgq)
o (id¢U ® ((053” ® idy, ® id%w) o y;i%) ® ((QQU ® idyr, ®id%RD) o yg%) ® id%)

= wg o (ldGU ®77L ® 1R ® ldGD) .
(3.18)

This completes the proof. O
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Set0 < 6 < 7 and a € SQAut(A) satisfying wpoa oy = wpoa forall g € G.
We would like to show that IG(wq © @, 6) is not empty.

Let us set 65> := 0 and consider 6y 3, 61, 012,013, 02,028, 03, 03 » satisfying formula (2.11) for this
0>.,. Because @ € SQAut(.A), there is a decomposition given by formulas (2.12), (2.13) and (2.14).
Using this decomposition, set

a) ;= aip ®ajy, Wwhere

Qg = (awl,ez],,: ® ¥(,,63].¢ ® a(ﬂs,%],é)

(3.19)
°© (a(f)o.xﬂl,z],{ ® X(0,4,0,51,¢ ® 0(62.8303.2]’_{) € Aut (‘A((Cgo.s)f){) . {=U,D,

)y = aqo,e,] € Aut (Acgl) .

We have a = (inner) o a; o .
We would like to show that [« o ﬁg oalao Bg o a/‘l) satisfy the conditions of (@, &) in Lemma

3.4. We first show that they satisfy a decomposition corresponding to equations (3.12) and (3.13). For
I’ =72, Hy, we have

-1 -1 -1
(ﬂg) « oﬁg oa~! = (inner) o (ﬁg) o (alﬂgafl) (alﬁgal_l) agalﬁgal—]a@_l. (3.20)
-1
The latter part, (al ,BIg;a/l‘l) a1 Bya;ta;y!, decomposes to left and right. To see this, first note that

0’1*1(120/1 = a(iéo‘s,amja/[oﬂl]a(90.8,91.2] € Aut (AC(,LZ) . (3.21)
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-1
Because the conjugation (,Bg) . Bg does not change the support of an automorphism,

-1
(,82) (a7 @2a1) By is also supported on Cy, ,. Therefore, we have

-1
03] ((,8&1:) (afl_laza’l) Bg) all_l
r\7! o r -1 -1
= Q(6,,6,]1% 63,01 2] (ﬁg) @ (g0 5.002]210,61 19 (605,01 21B X (g, 5.0, ,1% (61,651 (3.22)

Hence we get the left-right decomposition

-1 -1
r_ -1 r -1 -1 r -1 ry -1 -1
I e (YR R P T

-1
r -1 I -1 -1 -1
X(61,6,]%(695.612] (ﬁg) 0(00'8,91.2]0[0’91]a'(90.8,91.2]18g0(90,8,91.2]0(01,92] ©p,0,]

Er.g,o-
o=L,R
(3.23)

Here we set

-1
- . r
=rg,o = (0(91,92],00'(90.8,6’1.2],0 (ﬂg”)

-1 I -1 -1 -1
0(9()‘8,91.2],0'&[0’01]""a(e"-%*91-2]"Tﬂgga(%‘s,gl,z],(fa(‘)l,92],0’ © 0[0,01],‘7) € Aut (A(Cez)a) ’

(3.24)
On the other hand, the first part of equation (3.20) with " = 72, Hy satisfies
-1
Bolapeer' =epoty,  (BY) aplai! =iday, ®fu, (3.25)
where
-1
— (5 <1 . _
& = (BE)  areBiarl € Au (A((Ceo.s) )(:) , {=U,D. (3.26)
Hence we obtain decompositions
v\~ U -1 _ .
(8Y) eaoploa = (inner) o (ida, ©v) o (Erygn ©Emyar) .

-1 _ . — -
(Bg) ca@oBgoa !'= (inner) o (¢p ® &y) o (.:.Zz’g,L ® :.Zz,g,R) )

c C
Because ¢, € Aut ('A((Cao D) ) commutes with 8, ) Be [o,eo_x]qu’ we get
’ . Z

C
U -1 . . 0.8 % |U Clo.605].L.U — Clo.60.5].RU —
aofgoa = (inner) o (1dAHD ®Bg( ] gU) o (ﬁg[ 0.5] EHy oL ®ﬁg[ 0.8] aHU,g,R) ,

C Ed C z C C
-1 . (60.8-% 1.0 (69.8.51.U 10,69 g1.L — [0.69 g1.R —
@opgoa =<mner)o(ﬁg F e @B, fU)O(.Bg =

(3.28)
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Furthermore, from the S, -invariance of wy o a, we have
wooaofgo ol = wg. (3.29)

>

Now we apply Lemma 3.4 for A, B, €, replaced by A(C[o , ]) , A(C(Q , ]) , A(c
20081/ & 0.8:21) o ¢ (32,%] )[

for o = L,R, { = D,U. By equations (3.29) and (3.28), (a o,BgU oal,a ofBg0 a/‘l) satisfy the
conditions of (@, @) in Lemma 3.4, for wy and its restrictions. Applying Lemma 3.4, there are 7j, ¢ €
Aut ('A(Cez) ), g € G,0 = L, R, such that

wooaoBy oa! ~ge woo (fLg ®7rg). gE€G. (3.30)

Because both wg o a o ﬁg oa~!and wg o (ﬁ Le ® TR g) are pure, by Kadison’s transitivity theorem there
exists a unitary ¥, € U(.A) such that

wooao By oa™ =wyoAdy, o (fiLe ®irg), 8€G. (3.31)
We define
ﬁ~g = Ad (a_l (ﬁg-l)) oalo (ﬁLg-l ® ﬁRg-l) oa Oﬁg» g€G. (3.32)

It suffices to show that (Eg) € IG(wgoa, 0) = IG (wg o a, 6,.3). By equation (3.31), we have woocwﬁg =
wy o @. Therefore, what is left to be proven is that there are ¢ € Aut ((Co),), g € G, 0 = L, R, such
that

B¢ = (inner) o (né ® ng) 0By, forallgeG. (3.33)

By the decomposition (2.12) and the fact that 7j; 41 ® fig,-1 has support in Cy,, we have

oo (ﬁLg-l ® ﬁRg-l) ca
= (inner) o (a'((*o.x,@l.z] ® a(HLx,Hz.z])il (0[0,91] ® 0(91,92])71 (ﬁLg’l ® ﬁRg") (a[0,91] ® 0(91,92])
°© (a'(90.8,6’1.2] ® 0(91.8’9242])
= (inner) o (ngj ® ng) ,
(3.34)

where

-1
1g = (@as0s10 ® Aoseate) | (@010 @ @0.010) " (Toe) (@001.0 ®0.01.0)

° (a(90.8,91.2],0' ® 0(91.8,92.2150')
€ Aut((Capy),). o =L.R.
(3.35)

Substituting this into formula (3.32), we obtain equation (3.33). This completes the proof. O

4. The stability of the index /i (w)
In this section we prove the stability of the index h(w) with respect to y € GUQAut(.A).
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Theorem 4.1. Set w € SL with IG(w) # 0. Set y € GUQAut (A). Then we have w oy € SL with
IG(woy)+# 0and

hwovy)=h(w). 4.1)

Proof. The point of the proof is that we can derive (&L,dR,é) € Df}f (formulas (4.10)

and (4.11)) and (y~'Bgy) € IG(w o y,Gl_z),(ﬁg) € T(012, (y'Bgy)) (formula (4.16)) from
the corresponding objects for @, using the factorisation property of «@,y. And it is straight-

forward to see that the ﬁg—invariance of yc results in IP (w, @, 67, (ﬁg),(n‘gr),(aL,aR,G)) =

P (w oy,a@oy,012, (v ' Bey), (ﬁg) , (&L, 4R, C:))), which immediately implies the Theorem.

Step 1. From w € SL, there is an & € EAut(w). For any 0 < 6 < 7 fixed, we show that Dgoy # 0,
hence @ oy € QAut(A) and w oy = wp o ay € SL. Set 01, := 0 and choose

0<0p<bpg<b<bip:=0<018<br<brr<brg<O3<0O3,< g “4.2)

Because @ € QAut(.A), there exists some (ar,ag,®) € Dgz. Setting @ := ar ® agr, we have
a = (inner) o ag o ©. Because y € GUQAut (.A), there are yy € HAut(A) and yc € GSQAut(.A4) such
that

Y=YCOVH- (4.3)
Because yy € HAut(A), we may decompose yy as

yu = (inner) o (yy. L ® yu,r) = (inner) o o, (4.4)

with some Yy » € Aut (‘A(Cﬂo) ) o =L,R.Wesetyy:=yn.L ®YH.R € Aut (ACHO). By definition,
vc € GSQAut(.A) allows a decomposition

Yc = (inner) o ycs,

Ycs = (7[0,91] ® Y (61,61 ®Y (6,651 ® y(@y%]) © (7(90.8,9142] ®Y(615,6021 ® 7(9248,6’12]) > (4.5)

with

YXx = ® YX,0.¢5 Yio,6,] = ® Y10,6:1,0 Y(6s,2] = ® Y(63,.2].¢°

o=L,R,2=D,U o=L,R 7=DU
YX,o,¢ € Aut (ACX,O-,()7 YX,o = ® YX,0.,¢5 Yx,o = ® YX,0.05 (46)
¢=U,D o=L,R
7[0,61],0‘ € Aut (AC[O,Q]],O—) 5 7(93,%],{ € Aut (AC(ey,zr]’{) 5
for
X =(01,62], (62, 63], (B0.8,01.2], (61.8,022],(628,632], o=L,R, {=D,U. 4.7

Here we have
yioBY =By oy forallgeG, (4.8)
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for any

T
I=10,61],(61,62], (62,03], (6’3, 5] ,(60s,012], (0138, 622], (628, 032]. 4.9)

Set

PN

0 =00 (¥(0.0 8 ¥(00.5]) © (V0110220 ® V(2n.021) € Aut (A ) € Aut(Acs ) 4.10)
and

Qo =00 (V0,010 ® Y(01.00].0) © Y(0s.012].0 © YH,o € Aut (A, ), o=L,R. 4.11)
We claim
@ oy = (inner) o (& ® ag) o O. (4.12)

This means (&r,dr,0) € Dgl)',z, hence Dzy = Dfi‘f # 0. The claim (4.12) can be checked as

follows. Note that y(g,,9,] ® Y(65.%] and (g, 4,6, ,] commute because of their disjoint supports. Because
(CXS Aut(.Acg2 ), it commutes with y[0.¢,] ® ¥(6,,6,] and Y(gy5,0,,]- Therefore, we have

a oy = (inner)oapgo®o (7[0’911 ®Y(6,,6,] ®Y(6,,6;] ® 7(93,%])
° (7(90.8,912] ®Y(015.6,2]1 ® 7(928,93.2]) °%Y0
= (inner) o g © (7[0,91] ® 7(91,92]) © ¥ (65,621 ©O© (7(92,93] ®'y(93,%])

° (7(91.8»922] ® 7(928,93‘2]) °%o0
= (inner) o ag © (7[0,91] ® 7(91,92]) ©Y(60s.612] © 6o Yo- (4.13)

Because yy € Aut (.ACHO) and O € Aut (Acg 8) commute, we have
1.

@ o'y = equation (4.13) = (inner) o @ © (¥[0,6,] ® ¥(61.61]) © ¥ (65.61.2] © Yo © O
= (inner) o (47, ® &@g) © O, (4.14)
proving equation (4.12).

Step 2. From IG(w) # 0, we fix a 0 < 6y < F such that IG(w,6p) # 0. We choose
0.8, 01,012,018, 02,022,023, 03,032 such that

0<0p<0pg<B1<b012<0§<0r<0rr<brg<b3<6b3,< g 4.15)

For these 6s, we associate the decomposition of y in step 1. Fix (B;) € IG(w,6p) and (ng) €

T (60 (Bg))- Set ng == nk ® n«. Note that (ng) also belongs to T (62, (B,)). Set

. -1 -1
775— = (y[o,e]],0”)/(9()_3,9|A2],0")/H,0') 77? (ﬁgU’Y[O,H]],UY(H()_g,H[,z],O”)/H,U' (ﬁgu)

e Aut (A, ) |, (4.16)
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for o = L, R. We also set fig := L ® AX. We claim that (y™'B,y) € IG(w o y,60;,) with (ﬁg) €
T(01.2, (v 'Bgy)). Clearly we have

woyo(y—lﬁgy)zwoﬁgoyzwoy. 4.17)
Therefore, what remains to be shown is
y_lﬁgy = (inner) o (ﬁ&L ® ﬁg) oﬁg. (4.18)
To see this, we first have

_ . — -1
Y o Ng oY= (inner) o 701 ° (7(90.8’9142] ®7Y(015.6:21 ® 7(9248,6’3.2])
-1
° (7[0,011 @Y (01,0:1 © V(62,631 ®7(93,g])

OTgo° (7[0,91] ® Y (61,6,] ®Y (6,631 ® 7(93,%]) © (7(908,91‘2] ® V(61,6221 ®7(92A8,93.2]) Yo (4.19)

from the decomposition of equations (4.3), (4.4) and (4.5). Because y(g,,6,] ® Y(6,,05] ® Y(65.%]

. . -1
commutes with 17 € Aut(Ac, ) and ¥(g,5.0,,] ® ¥(625.60:,] cOmmutes with (Y[0.0,1)" MeY[o.0] €
Aut(Ac,, ), we have

ylongoy
= equation (4.19) = (inner) 0 ¥5"' © (Y (65,6121 ® Y(615.602] ® 7(92_8,93_2])_1
o (¥10.01) ™ ©7g © (710.6011) © (¥(005.0121 © Y(015.0221 © V(625.051) Yo
= (imner) 075" © (Y(aps021) " © (Vi0.01)” 07 © (o.61) © (V(dos.on21) ¥o. (4.20)

On the other hand, because y¢s and Bg commute, we have

y ' oY oy = (inner)yy' o yesBY yesyo = (inner)yy' o BY vo. @.21)

Combining equations (4.20) and (4.21), we obtain

15 . _ -1 -1 _
Y™ Bey = (inner) o v (Yias,00.1) © (v10.011) " 0715 © (¥10,011) © (Y(a5,0121) Y0 © %5 © B ¥o
. - -1 -1
= (inner) o 701 (7(90.8»91.2]) ° (7[0,91]) ° ngﬂg ° (7[0,91]) ° (7(90.8,91.2]) Y0
= (inner) o (ﬁé ® ﬁg) OBg. (4.22)

In the second equality, we used the fact that y(o ¢,1Y(6,5,0,,] and ﬂg commute. This completes the
proof of the claim.

Step 3. We use the setting and notation of steps 1 and 2 (with 6y chosen in step 2). By Lemma 2.1,
there exists

(W), (e (g, 1) € IP (w, .6, (By), (1), (L, @k, ©) ) (4.23)
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Now we have
woy€eSL, @ oy € EAut(w o), (7’1 o Bg 07) €IG(woy,0:2),
) A (4.24)
(77) e T(012 (v 'Bev)).  (01.88,6) € DI,

We claim
(W), (e (g 1)) € TP (w0 v @0 7,012 (v Bey) . (iF) . (0. 4m.0)) . 425)

This immediately implies /(w) = h(w o ). To prove the claim, we first see from formulas (4.10) and
(4.11) that

(@L ®ar) 000 ¥y (Yiasaa) © (Yioe))
=00 (Y[0,611 ® Y(61,6:1) © Y (65,6121 © Y0 OO0 (7(92,33] ® 7’(93,g]) O (Y(615,0221 ® ¥(65,6321)
°%' (Vans.o1) " © (vio.on) ™
=00 (Y0, ® Y(61,6,1) ©©O 0 (7(62,6}3] ® 7(33,§]) O (Y(015,021 ® ¥(6r5,6321) © (7’[0,(9]])71 ,
(4.26)

because y(gyg,0,] © Y0 € Aut(ACF)]'z) and © o (7(92,6’3] ® 7(0;,%]) °© (7(91.89922] ®
Y(0:5.0521) € Aut(Ac, <) commute. Furthermore, because y[o,9,] and © o (y(q,,6,] ® 7(93%]) o

(Y(015.002] ® Y(6r5.052]) € Aut(Acg].st-) commute and ¥(g,,9,] and ® € Aut(Ac, <) commute, we
have

. R N -1 -1 ,
(L ®ar) 00 ¥y (Y(ays.021) © (Y0.011) = equation (4.26)
=ao °Y(6,,6,] ° Oo (7(92,93] ®7(93,§]) ° (7(913,92‘2] ®7(92A8,93.2])

=apo 0oy, 0° (7(92,93] ® 7(93,%]) °© (7(6’1.8,6’2.2] ® 7(5’2.8,93.2]) =apoB@o7.
4.27)

Here 7 == y(0,,0,] © (¥(0,.65] ® y(93’%]) o (7(91.8,92.2] ® y(gz.s,gu]) € Aut(Acglc) commutes with ,Bg.
Combining this and

By = (Y1061 (G05.60170) " NPy ¥10.6,1Y (805.61.21Y0- (4.28)
we obtain
7o 0 (& ® ag) 0O 0N BY () (dL®dR) =m0 o@0Fonpl o9 0@ oay!. (4.29)
Because 9 commutes with ,Bg and 17 € Aut(Ac, ) commutes with § € Aut(.ACH1 <), we have
7o 0 (&L ® Grg) 0 O 0 Ny BY (O)' (4L ® )™
= equation (4.29) = mg 0 g 0 @ 0 7y 0O 0y = Ad(W,) o my. (4.30)

Hence the condition for Wy, in formula (4.25) is checked. On the other hand, substituting formulas (4.11)
and (4.16), we get
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TR © @R © ﬁg §Uﬁf ( ?U)_l (ﬁgh)_l Qg
=TMROQRO (7[0,61],R ® 7(91,612],R) ©Y(6os.612],R ©YH,R © (7[0,9]],R ©Y(6os,6121.R ° 7’H,R)7l
n§ f,fUnf ( f,fU)_l (nf;h)_l ©Y[0.611.R © Y (603.612].R
o YH.& © ((Y10.011.R ® ¥(61.0:1.8) © Y(00..0021.R © VH.R) @R

-1 -1
1
= TR © @R © Y(6,,0,1,k © NaBR" N ( §U) (Tlgh) o (Y(o.01.8) ©ag. (4.31)

RU R

Because 5 BRYnR (BRY)™! (ngh)‘l € Aut(Ac, ) commutes with (g, g,].r, We obtain

-1 -1
RO QR o ﬁg gUﬁf ( ?U) (ﬁgh) dl_el = equation (4.31)

-1 -1
= rr o ar o nBRUnf (BRY) " (nF,)  oR' = Ad (ur (g, 1) o 7. (432)

An analogous statement for o = L also holds. This completes the proof of formula (4.25). Hence the
statement of the theorem is proven. )

5. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The proof relies heavily on the machinery of quasilocal automor-
phisms developed in [BMNS, NSY, MO]. (A summary is given in Appendix D.) We use terminology
and facts from Appendixes C and D freely. We introduce a set of F-functions with fast decay, F,, as
Definition C.2. A crucial point for us is the following:

Theorem 5.1. Set @y, @1 € Py and let we,, wa, be their unique gapped ground states. Suppose
that ®y ~ @ holds, via a path ® : [0,1] — Pyg. Then there exists some ¥ € Br([0,1]) with

2~ _.-0
¥, € Br([0,1]) for some F € F, of the form F(r) = % with a constant 0 < 0 < 1, such that

W, = W, © TI{O. If @y, @ € Pygp and ® ~g Oy, we may take ¥ to be S-invariant.

For the proof, see Appendix D.

From this and Theorems 3.1 and 4.1, in order to show Theorem 1.5 it suffices to show the following,
which says that the automorphism TII:O in Theorem 5.1 satisfies all the good factorisation properties
which we assumed in previous sections:

0
Theorem 5.2. Let F € F, be an F-function of the form F(r) = ex(p]gr))

¥ e Br([0,1]) be a path of interactions satisfying ¥ € Br ([0, 1]). Then we have TE’O € SQAut(A).
Furthermore, if ¥ is ,Bg—invariant — that is, ,Bg (W(X;1) = Y(X;1) forany X € Sp, t € [0,1] and
g € G — then we have T;YO € GSQAut(A).

with a constant 0 < 6 < 1. Let

Proof. Fix arbitrary
bis
0<fpg<b << 018 <0r<brr<brg<O3<b3,5< 5 (51)
We show the existence of the decomposition

¥
Ty = Ad(u) (aw,m ® @(6,,6,] ® X(6,65] @ 0(93,g]) 5.2)
°© (0(9().8,91.2]0(01.8,92.2] ® 0(92.8,93.2]) >
with as of the forms in formulas (2.13) and (2.14). We follow the strategy of [NO].
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Step 1. Fix some 0 < 6’ < 6 and set

. exp (-r?)
F(r) = ——. 5.3
)=~y (53)
With a suitably chosen constant ¢; > 0, we have
r Al s
max {F (5) , (F ([5])) } < F(r), r>0. (5.4)
~ ~ _ r9
Namely, c1 F(r) satisfy the condition on Fy in Definition C.2(ii) for our F = exf&r—fﬂ) and 6 = 3. Set
0y = Clo.o1.00 Coo1.0.85 C02.03.0.2> Cloy,5].00 ’ 5.5
oc=L,R, (=D,U
e = C00s,012).0.¢> Cl015.020).0.¢5 Clo25,032),0.¢> . (5.6)
oc=L,R, {=DU
Define ¥, ¥ ¢ B, ([0, 1]) by
WO (x:7) = Y (X;t) if there‘exists aC e(Cpsuchthat X c C,
0 otherwise, 5.7

D (X;0) =90 (X;0) - ¥ (X31),

foreach X € S5, 1 € [0, 1].

) . ©_
First we would like to represent (TI” 0 ) Lor?

1,0
We apply Proposition D.6 for ¥ replaced by W1 and ¥ by ¥. Hence we set

as some quasilocal automorphism. Set ¢, s € [0, 1].

=0 Zn= ) Axew (7 (¥ (Xi0)) (5.8)
m>0XcZ,X(m)=Z

and

=M (7,7 = Z Z Ax(m)( (An)¥ (\11(1) (X; t))) (5.9

m>0XcZ,X(m)NA,=Z

Corresponding to equation (D.31), we obtain

(A ).¥ (HA \p(l)(t)) HAH’E(n)(s)(t). (5.10)

Applying Proposition D.6. we have 2" () 2() ¢ fSF([O, 1]), and

Z(m)(s) =)
T (A) -1,

(A)H 0, AcA tuel01], (5.11)

n—oo

holds. Two functions T(A n)- 2 (A) an (A ¥, o (1, (A )¢ ))

tion and initial condltlon Therefore we obtaln

I(A) satisfy the same differential equa-

=(n)(s ) -1
FAET () = 200 o (AT (a), e 0,11, Ac A (5.12)
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A(A)EME) (M) EWE) _ g
From the fact that 7, Tut = Tur

A (equation (5.11)), we have

lim

n—oo

On the other hand, by Theorem D.3 we have, forz € [0, 1] and A € A,

lim

n—oo

An),¥ An), PO <0>
T( " (t(,s) ) (A) - Tts (Tt\ys

Therefore, taking the n — co limit in equation (5.12), we obtain

=) \~!
=) =1 o (Tfjs) (A), 1,5€[0,1], Ac A

Hence we have

-1 -1 -1
yo 7 _ w(0) =(s) g
Ts,t - (Tt,s) - (Tt,s Ts,t - Ts,t T

In particular, we get

W w(0) =)
T0 =70 To1 -

Step 2. We show

ze6(22), t€[0.1]

ACeCy st. ZcC

From this,

V() = Z 2D (z,neA
Ze6(2?),
ACeC st. ZcC

converges absolutely in the norm topology and defines an element in 4. Furthermore, for

= > BD(Zned,,
Z2e6(2%),Zch,
ACeCy st. ZcC

we get

lim sup ||V.(1) =V (®)] =0

n—=%ref0,1]

from formula (5.18).
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To prove formula (5.18), we first bound

=M (z, t)“

ZEG(ZZ) IE[O,I]

ACeC st. ZcC

IN

Z sup HAx<m) ( Tl (T( ' I)))M

zea(22), m20 X:XcZ L 0,1]
BCceC st. ZcC X(m)=2

Z Z Sup HA’“'")( (Tm (X; Z)))“ (5.22)

te[0,1]
._)QCECI s.t. X(m)CC

M (y.
Z Z [ s[l(l)p]] SH‘P CIEXJ)H (ezlp(‘l’) _ 1) IX| G (m)l

m=>0
ACeC; st X(m) cC

:C;i(ezwv) )Z Z [ sup (H\pm (x;;)“) IX| G (m)l.

t€[0,1]
jHCECl s.t. X(m)CC

For the third inequality, we used Theorem D.3 3. For any cone Cy, C, of Z* with its apex at the origin,
we set

t€l0,1]

M(C.Cy) =) > [ sup (H‘P“) (X; r)”) IX|Gr (m)l (5.23)
-

m>0 :
VCeCy, XN((C)(m))#0,
XNC1#0, XNCr#0

From the definition of ¥(!, we have ¥(!) (X;¢) = 0, unless X has a nonempty intersection with at least
two elements in Cy. Therefore, if X gives a nonzero contribution in formula (5.22), then it has to satisfy

XN ((C%)(m)+0, forallC ey,
AC;,Cr e Cypsuchthat Cy #Cy, XNC1 0, XNCy 0.

Hence we have

8 ([ 2w
formula(5.22)sa(e ¥ —1) > M(CLG.

C1,C2€Cy
C1#C,

(5.24)

Hence it suffices to show that M (Cy, C;) < oo for all Cy, Cy € Cy with Cy # C.

In order to proceed, we prepare two estimates. We will freely identify C and R? in an obvious manner.
In particular, arg z of z € Z*> ¢ R? in the following definition is considered with this identification: For
@1 < @2, We set

Clorgn) ={z €2 | argz € [g1. p2]} . (5.25)

We define ¢ (¢1,¢,) and so on analogously. Set

c(o)(l,&,é,g = \/1 —max {cos({3 — {3),co8(Ly — 1),0},  C1,82,83,84 €R. (5.26)
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Lemma 5.3. Ser ¢ < ¢ < @3 < @4 with ¢4 — @1 < 271. Then

bo(pr, 92,3, 03) = . > [s;p1]<||\v<x;z>||)|X|GF(m)l

m>0 . X: telo0,
Xn?[wl-wz];tw
XNCgq,0,]#0
3*k1aF
3 .4,
< (64)" == (I ll) > Gr (m)| < co.
C‘P1,902,<P3,</>4 m>0

Proof. Substituting Lemma C.4, we obtain

bo(p1, 92,3, 48) = . > [s[%p”urll(x;t)u)|X|GF<m>l

m>0 L X
X0C (g, )%
X“C[¢3,¢4]¢@
< > D [sup (¥ (X; 1) 1X] GF (m)l
mzoxeé[wly‘pz] XBX,y IE[O,I]
yee[%»m]
<(llly) D, F@y) | Gr <m))
xeC:‘[sa]W] m=0
YEC 43,04]
3148
< (64)° Ul | D Gr (m) | < o0, (5.27)
m>0

(Cwl,saz,%,w)

We used Lemma C.4 in the last inequality. The last value is finite by equation (C.14) forour F € F,. O

Set

W4 oty = 1 =max {cos(Z1 — o), cos(Z1 — (3)}, 41,40, &3 € [0,27). (5.28)

Lemma 5.4. For 9| < ¢y < @3 with 3 — ¢ < 7, we have

bi(p1 92.¢3) = ) >, [ sup (¥ (X:1) 1D X1 G (m)l

m>0 X:
XCVC[%%]

XﬂC[ ];60
Xné[tpzm{ji@
X0(((€gy.09) ) m))20 (5.29)

@192

< 6414424 - (nx1 0.0 + F(0)) (19111 7) (Z (m+1)*G (m))

m>0

4 4
1 1
((C( )901,902,%) + (C( )<p3,¢1,<pz) ) < oo,
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Proof. Set
Ly:={zeR*|argz=9}, ¢e€[0,2n). (5.30)

Note that if X € S satisfies X C Cv‘m,%] and X N (((Cv'(w,%))c)(m)) # 0, then we have

d(X,Ly) <m or d(X,Ly)<m. (5.31)
Therefore, we have
> >, sup (I[% (X;0)[)) IXI G (m)
m>0 X 1€[0,1]
XCVC[‘PI"PS]
XﬂC[wl"Pz]#@

Xﬁé[¢2,¢361¢@
X0(((€ gy ) m))20

<> Gem| >+ D] [s[l(l)p”<||lv<x;t>||>|X|

m>0 X: X:

ch[wz.tp3]¢® ch[‘/’l“f’z]#@
d(X.Ly )sm  d(X,Lyy)<m

<> Gem| Yo+ >

~ E E
m=0 *¥€Clp03]  *Clp1p]
€Ly (m)  y€Lyy(m)

[ sup ([[¥ (X;0)[]) 1X]
X:X3x,y 1€[0,1]

<Uilllp) D Grem| >+ > [Fdx,y)

m=0 X€Cl0 03] *¥EC p100]
Y€Lg, (m) V€L, (m)

< 6414424 - (nic1 2,7 + F(0)) (11111 )

(Z(m +1)*Gp (m)) ((c(l)“,l,‘pz,‘m)_4 + (c(l)‘p3,¢l,¢2)_4) . (5.32)

m>0

In the last inequality, we used Lemma C.5 with ¢3 — ¢1 < 7. Because ¢3 — ¢1 < 7 and because of
formula (C.14), the last value is finite. |

Now let us go back to the estimate of formula (5.23). If C1, C; € Co are Ci = Cly,.0,]5 C2 = Clgs, 4]
with @1 < 2 < @3 < @4, P4 — @1 < 2w, then from Lemma 5.3, we have

M(Cy,C2) < bo(e1, 2, @3, p4) < 0. (5.33)

v v

Now suppose that C1,C> € Cp are C1 = Cly;, 0,1, C2 = Clyy, 03] With @1 < @02 < 3,03 — @1 < 27.
(Recall definition (5.5).) By the definition of Cy and Cj, there is some C = C(4, »,) € C; such that
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p1 <1 <@ < <gzand - < 5. For X € G5 to give a nonzero contribution in formula
(5.23), it has to satisfy

Xm) N (Clzo)#0, XNClppgm 0, XN Clygy g # 0. (5.34)

For such an X, one of the following occurs:

@) Xﬂc;2 o] ¢(DandXﬂC¢, o] # 0.
(ii) XnCw al qt@andXﬂsz%J * 0.
(iii) X N Clypy.z0) # 0(and X N Cgy.4) # 0) and X N Clyy. 421 # 0.
@iv) X c C§1,§2’ XN ((C{l’é'z)c)(m) #0,XN C[wz,{z] #0and X N C[(l,tpz] # 0.

Hence we get

M(Cy,C2) < bo(@1, 2, (2, 93) + bo(@1, {1, 02, 03) + bo(@2, {2, @3, 01 +21) + b1 ({1, 92, {2)

(5.35)
< o0,
Hence we have proven the claim of step 2.
Step 3. Next we set
. 2)(z,1) if3CeC st.ZcC,
Bz = o (&) H3CECs (5.36)
0 otherwise.
Clearly, we have 2 € B ([0, 1]). Note that

As a uniform limit of [0 ]2t V,(1) e A (equatlon (5.21)), [0,1] 2 t = V(¢) € A is norm-
continuous. Because = € BF([ 1]), [0,1] > t = 775, (V(2)) € A is also norm-continuous, for each

s € [0, 1]. Therefore, for each s € [0, 1], there is a unique norm-differentiable map [0,1] > ¢
W) (1) € U(A) such that

4

ZWO @) =it (V)W (), WO (s) =1 (5.38)

It is given by

© t S1 =
WOl Y -0t [ [T [T dnd e R 060 539)
k:() S S S
Analogously, for each s € [0, 1] and n € N, we define a unique norm-differentiable map from [0, 1] to
U (A) such that

LW @) =i V) WO 0, W (5) =1, (5.40)

It is given by

© t S1 Sk-1
W) = Y (i) / dsi / ds: - / dsit{%% (Va(s1) - o= (Vas)) . (54D)
=0 s s s

By the uniform convergence (5.21) and Lemma D.3, we have

lim sup
N 4 e(0,1]

E Wa(0) = 72, (V)| = 0. (5.42)

https://doi.org/10.1017/fmp.2021.17 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.17

42 Yoshiko Ogata

From this and formulas (5.39) and (5.41), we obtain

lim  sup ”W,(,S)(t) - W(S)(t)H - 0. (5.43)

n=%el0,1]

This and Theorem D.3 4 for 2, 2 € B ([0, 1]) imply

r}gr.}o‘r( E o Ad W(S)(t)) (A) =15, 0 Ad (W“)(t)) (A),

(A2 - (5.44)
lim 7, (A) =15, (A),

n—oo

for any A € A.
Note that for any A € A,

ZTW) o Ad (WS (1) (A) = =i [Hy, 20, 7% 0 Ad (Wi (1) (4)]
= ey ([FA0 2 ) Ad (W 0) ()]
2O+ Va0, 74 0 Ad (W (1)) ()]

=0 (0,70 Ad (w,i”(r)) (A)] :

We used equation (D.10) for the second equality and equation (5.37) for the third. On the other hand,
for any A € A, we have

d =)
+(An).E

T (A) =i [HA 2o (1), 7= >(A)]. (5.45)

Therefore, 7% o Ad(W(S) (¢))(A) and T(A n).E (A) satisfy the same differential equation. Also note

> st

that we have T( An)E o Ad(W,(ls)(s))(A) = TA(IE n)-E )(A) = A. Therefore, we get
=6 Ad (W(S)(t)) W= (5.46)

By equation (5.44), we obtain

£, 0 Ad (WU)(;)) (A)=72"(4), AecA t5sel01]. (5.47)

Taking the inverse, we get
Ad (W<s>*(t)) ot =2 1selo01]. (5.48)
Step 4. Combining equations (5.17) and (5.48), we have
o=ty e =l o Ad((WV() ) o 7). (5.49)

By the definitions of ¥(?) and =, we obtain decompositions

p(0)
To = 210,01 ® X(61,0,] @ X(0,,0,] @ X(g, 2] (5.50)

T()H,l = (65,6121 @ (05,6021 @ X(65,651]>

with as in the form of formulas (2.13) and (2.14). This completes the proof of the first part.
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Step 5. Suppose that ,Blg] (P(X;1) = Y(X;1) forany X € Sz, ¢t € [0,1] and g € G. Then clearly
we have Y (W (X;1)) = WO (X:1) forany X € G, 1 € [0,1] and g € G. By Theorem D.3 5, this
implies T'P( ) BY = ,BgTIP(()) From the decomposition (5.50), this means that all of @{o,g,],0-» (6,6, ].c [,
@(0,.05).0.8 X3, 5].0> T = L,R,{ = U, D, commute with ,Bg Because IIy commutes w1thﬂ ‘r, B
commutes with ,Bg (Theorem D.3 5) and YW and E¢) are ,BU-lnvanant from the deﬁnltlon (5.8).
Therefore, from the definition (5.36), X is also ,Bg -invariant. Hence by Theorem D.3 5, 7 1 commutes
with ﬁfgj. The decomposition (5.50) then implies that @(gys,6,,],0,¢> X(615,0021, 0,8 X (6r5.652],0,¢ >
o =L,R, { =U,D, commute with 7. O

An analogous proof shows the following:

e
Proposition 5.5. Let F € F, be an F-function of the form F(r) = %

Let ¥ € B ([0, 1]) be a path of interactions satisfying Y1 € Br ([0, 1]). Define ¥© € B ([0, 1]) by

with a constant 0 < 6 < 1.

(5.51)

WO (x.p) = | ¥ 6D X € Hy or X H,
0 otherwise,

foreach X € Syt € [0,1]. Then (T;p(())) TEIO belongs to HAut(.A).

Proof. Define F as in formula (5.3) with some 0 < 6’ < 6. The same argument as in Theorem 5.2, step
2, implies that there exists 2" € Bz [0, 1] with F € F,, such that

] \p(‘)) =)
Ti0=Tro To1 - (5.52)

This 21 is given by formula (5.8) for current ¥ and ¥V (X;7) := ¥ (X;1) — ¥ (X;1). To prove the
theorem, it suffices to show that ‘1'05(1” belongs to HAut(.A). Indeed, for any 0 < 6y < Z, as in Theorem
5.2, step 2, we have

Z:ZgC[O,(IOJ,L IE[O’I]
2¢Clo,09].1

< Ci( 2 (¥) 1) D > § l sup (H‘P(]) (X; t)||) IX| Gr (m)l <. (5.53)

m=0X:X (m)£C1 €lo.
X(m);t_C[() 6 ].R

To see this, note that if X in the last line has a nonzero contribution to the sum, then at least one of the
following occurs:

@) XﬁC[a() l.u #0and X N Hp # 0.
(ii)XﬁC[ p*0and XN Hy # 0.
>iii) X C C[O,Oo] and
(1) XN Co,001, # 0 and X N Cpo,g,),r # 0, Or
(2) X c Cpo,61,r- X N 6[0’00] #0,XnN Cv‘[_go,o] # (0 and X(m) N (C[()’go )C # 0, or
3) X cCpo,6,),L- XN é[n_go’ﬂ] #0,XN é[ﬂ’ﬂ+90] # 0 and X(m) N ( (0,601, ) # 0.

o
2
1
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Therefore, the summation in the second line of formula (5.53) is bounded by

i (eyF(\y) _ 1) bo(0g, m — 09, 7w, 27) + bo(0, T, w + B¢, 271 — 6p) + bo(—by, Oy, m — 6, T + Op)
F +b1(=00,0,60) + b1 (x — 6o, 7, 7 + 0)

from Lemmas 5.3 and 5.4, proving formula (5.53).
Therefore, as in step 3 of Theorem 5.2, setting

. 20(z,1) ifzccC ZccC
E(Z.1) = (Z,1) i < Cro.1.2 08 Z € Cro,ap). (5.54)
0 otherwise,
we obtain 70(1 (inner) o 7;,. By the definition, 7, E decomposes as Tél = {1 ® {Rr, with some

lo € Aut(.Ac[0 0 Lo =1L, R As this holds for any 0 < 0y < Z, we conclude 7'05(11) € HAut(A). ©

0
Theorem 5.6. Let F € F, be an F-function of the form F(r) = % with a constant 0 < 6 < 1.

Let ¥ € Br([0,1]) be a path of interactions satisfying ¥, € Br([0,1]). If ¥ is B-invariant, then Tllljo
belongs to GUQAut(A).

Proof. Define ¥ as in formula (5.51) for our ¥. By Proposition 5.5, we have (T1 0 7)1 Tl , € HAut(A).

On the other hand, applying Theorem 5.2 to ¥(? € B ([0, 1]), we see that T;Ijo belongs to SQAut(.A).

Note that ¥(9) (X;r) is nonzero only if X ¢ Hy or X ¢ Hp, and it coincides with ¥(X;f) when it
is nonzero. Therefore, if ¥ is S-invariant, ¥(© is ,BU -invariant. Therefore, by Theorem 5.2, we have

(0) € GSQAut(.A). Hence we have Tl o € GUQAut(A). m|

Proof of Theorem 1.5. Let @y € Py be the fixed trivial interaction with a unique gapped ground state.
Its ground state wq := wa, is of a product form (formula (2.18)). For any ® € Psz g, we have @y ~ ©.
Then by Theorem 5.1, there exists some ¥ € BF([O, 1]) with ¥; € fSp([O, 1]) for some F € F, of the

.0
form F(r) = ex(pl(+ 34)

SQAut(A). Because @ € Psy g, wo = We, © Tl o is B-invariant. Then, by Theorem 3.1, IG(wg) is not
empty. Therefore, we may define he = h(we) by Definition 2.18.
To see that hg is an invariant of ~g, set @1, ®, € Pgrg with ®; ~g ®;,. Then by Theorem 5.1,

there exists some B-invariant ¥ € Bx ([0, 1]) with ¥, € Br([0,1]) for some F € F, of the form

xp(-r¢
F(r) =2 (pl(+r)4) with a constant 0 < 6 < 1 such that we, = We, © ‘rllpo. Applying Theorem 5.6 to this

¥, we see that qujo belongs to GUQAut(.A). Then Theorem 4.1 implies

with 0 < 6 < 1, such that we = we, © T;P o From Theorem 5.2, TIP 0 belongs to

o, = h(wa,) = (wq,l 01! 0) h(wa,) = ho,, (5.55)

proving the stability. O

6. Automorphisms with factorised d?{ a
U

When o € EAut(w) has some good factorisation property with respect to the action of ﬁg , the index
h(w) can be calculated without going through GNS representations.

Definition 6.1. For @ € Aut (A), we set

(d?iua/) (g) = a_lﬁg oao (ﬁg)_l , g€G. 6.1
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We say that d(,)_IUa is factorised into left and right if there are automorphisms y, » € Aut(Ag, ),
g € G,0 =L, R, such that

(d?iu a) (g) = (inner) o (g, ® Yo.r), &€G. (6.2)

For known examples of 2-dimensional SPT phases like [CGLW, MM, Y, DW] or injective projected
entangled-pair states [MGSC], this property holds. Namely, with a bit of effort, states in these models
can be written in the form woa, where wy is a pure infinite tensor product state and « is an automorphism
satisfying the property in Definition 6. 1. From such an automorphism, we can derive an outer action of G.

Lemma 6.2. Let @ € Aut (A) be an automorphism. Suppose that d?_lua is factorised into left and right

— that is, there are automorphisms yq » € Aut (AH”), g €G,0 =L,R, such that

(d%ua) (g) = (inner) o (yg.L. ® yg.r), 8€G. (6.3)

Then there are unitaries v, (g, h) € U (.AH(T), g,h € G,0 = L,R, such that

-1
yg,o'ﬁgUYh,aﬁgU (ygh,aﬁghu) =Ad(vs (g, h)). (6.4)

Proof. Because ﬁg is a group action, substituting equation (6.3) we get
19U 1pU 10 )7
idg=a Bgaca Byao (a_ ,tha/)

-1
= (inner) o (Vg,LB§U ® yg,R,B";U) o (Vh,Lﬁ,L,U ® Vh,Rﬁ,’fU) o (Vgh,Lﬁgff ® Yen RBLY )

-1 -1
= (inner) o (yg,L,BéU)/h,Lﬂ;I;U (th,L,Bé;ll]) ® Yo.rBE Yn.RBY (Vgh,R,Bg;,llj) ) . (6.5)
By Lemma B. 1, we then see that there are unitaries v (g, #) € Aut (.AHU), g € G,0 = L, R, satisfying
equation (6.4). m]
It is well known that a third cohomology class can be associated to cocycle actions [C, J].

Lemma 6.3. Let a € Aut (A) be an automorphism such that d?qu a is factorised into left and right as
in equation (6.3). Let v, (g, h) € U(An,), §.h € G,o = L, R, be unitaries satisfying equation (6.4).
Then there is some ¢ , € C3(G, T), o = L, R, such that

Vo (g Ve (gh k) = co (g, h, k) (yg,a 0BV (v (h, k))) v (g.hk), g.hkeG.  (6.6)
Proof. By equation (6.4), we have
Ve.oVno = Ad(ve (8, h) © Ygh,or (6.7)
for ¢, := ¥g.0B87 ¥ . Using this, we have

Ad(vy(g,h)) o Ad (v (8h, k) © Venk,or
= Ad(V(r(g, h)) o ygh,o- o ?k,a’ = ?g,o‘f’h,o‘f’k,a‘ = )A’g,a' o Ad (V(r(h, k)) o yhk,a'
=Ad (?g,o‘ (Vo-(h, k))) 'j\/g,o‘ o ’f’hk,a— =Ad (’f’g,o‘ (V(T(h’ k)) V(J’(gv hk)) ° 'j\/ghk,a'- (6.8)

Because A’ N A = I 4, it must be the case that 7, » (v (h, k) v (g, k) and v, (g, h)v(gh, k) are
proportional to each other, proving the lemma. m}
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By the same argument as in Lemma 2.4, we can show that this cg is actually a 3-cocycle. If w € SL
is given by an automorphism @ € EAut(w) with factorised dOHU a, and if wy is invariant under ,Bg, then
we have h(w) = [cr]p3(G 1), for cg given in Lemma 6.3.

Theorem 6.4. Let wq be a reference state of the form in formula (2.18), and assume that wq o ﬁg = wo

for any g € G. Let @ € QAut (A) be an automorphism. Suppose that d e is factorised into left
and right as in equation (6.3) with some yq o+ € Aut(Acg o) and 0 < 00 < 7, for o = L,R. Let

vo(g, h) € Z/I(AHJ), g, h € G,0 = L, R, be unitaries satisfying equation (6.4) and cg € C3>(G,T)
satisfying equation (6.6) for these vgr(g, h) which are given in Lemma 6.2 and Lemma 6.3. Then we
have wy o @ € SL with1G(wg o @) # 0, cg € Z>(G,T), and h(wgy o @) = [erlu3(Gm)-

Remark 6.5. The situation of this theorem is special. We do not expect that it always occurs.

Proof. That wg o @ € SL is by definition. Because

Ad(vo(8.1) = V.o BT Yno BTV (Vgh,o'ﬁghU)_l € Aut (ACHO,U) : (6.9)
our v (g, h) belongs to U(Ac, o). Because
woa °© a/_l,Bga = woﬁga/ = woa (6.10)
and
a_lﬁga = (inner) o (y4.1 ® Yg.r) o,Bg, 6.11)
with 7, o € Aut(Ac,, ), we have (a‘lﬁgaf) € IG(woe, 6p), and (yq.s) € ﬂeo,a‘lﬁga). Clearly

a € EAut(wq o @), and there is (@, ag,0®) € Df,(’ because a € QAut(A). Set yg := ¥4I ® Vg r. From
Lemma 2.1, there is some W, € U(Ho)g € G satistying

Ad(Wy) oty =mp o (ar ® ag) 0@ o0 y,BY 0@ o (ap®ag)™!, geGC. (6.12)

In particular, because vg (h, k) belongs to U(A(c,),), © € Aut(Ace ), and 7gﬁfg] preserves A(Cso) ,
0 R
we have

Ad(W,) o mg o (ar, ® ag) (ida, ® (vr(h, k)))
=mpo (L ® ag) 0 @0 yyBY 0@ o (ida, ® (vr(h.k)))

=m0 (L ® agr) (idAL ®ye.rBy" (Vr(h, k))) =TIy, ® R 0 @R © Vg rBY. (VR(1,K)).

(6.13)
On the other hand, equation (6.4) means
Ad (g 0 @ (ver (8. 1)) Ter = 7 0 @ © Vg, BV Vi o (ﬂgU)_l (yano) ' oal.  (6.14)
From equations (6.12) and (6.14), we have
(We), (7o 0 o (ver(g. 1)) € IP (w0 0 @, 00, (@7 BY ) (v0.0) s (01,02, @) . (6.15)

https://doi.org/10.1017/fmp.2021.17 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.17

Forum of Mathematics, Pi 47

Now from equations (6.6) and then (6.13), we obtain

Iy, ® ng o ag (VrR(g, h)Vvr(gh, k))
= cr(g: h )y, ® 7w © ar ((Yew © B (VR (1K) vi(s, k)
= cr(g, h, k) (Ad(Wy) (idy, ®ngag (vr(h,k)))) - (I, ® ng o ag (vg (g, hk))) . (6.16)

This means
cr = cr (w00 @000 (a7 B ). (rg.0) - (L. @R, ©), (Wo), (g 0 €0 (vr (8, 1)) (617)

in Definition 2.5. Hence we get cg € Z3(G,T), and h(wq o @) = [erlm3G.m)- O

A. Basic notation

For a finite set S, #S indicates the number of elements in S. For ¢ € R, [¢] denotes the smallest integer
less than or equal to 7.

For a Hilbert space H, B(H) denotes the set of all bounded operators on H. If V : H| — H; is
a linear map from a Hilbert space H; to another Hilbert space Hj, then Ad(V) : B(H;,) — B(H>)
denotes the map Ad(V)(x) := VxV*, x € B(H). Occasionally we write Ady instead of Ad(V). For a
C*-algebra B and v € B, we set Ad(v)(x) := Ad, (x) :=vxv*, x € B.

For a state w, ¢ on a C*-algebra B, we write w ~g.. ¢ when they are quasiequivalent (see [BR1]).
We also write w =~ ¢ when they are equivalent. We denote by Aut B the group of automorphisms on
a C*-algebra 5. The group of inner automorphisms on a unital C*-algebra B is denoted by Inn B. For
v1,Y2 € Aut(B), y; = (inner) o y, means there is some unitary u in 3 such that y; = Ad(u) o ;. For
a unital C*-algebra B, the unit of B is denoted by Iz. For a Hilbert space we write I, := Ig4. For a
unital C*-algebra B, by U(B) we mean the set of all unitary elements in 3. For a Hilbert space we write
U(H) for U(B(H)).

For a state ¢ on 3 and a C*-subalgebra C of B, ¢|¢ indicates the restriction of ¢ to C.

To denote the composition of automorphisms a1, @;, all of @ o @y, @1, @] - @; are used. Frequently,
the first one serves as a bracket to visually separate a group of operators.

B. Automorphisms on UHF-algebras

Lemma B.1. Let W, B be UHF-algebras. If automorphisms yyq € Aut(W), yg € Aut(B) and a unitary
W e U(U @ B) satisfy

(ra ®y®) (X) = Adw (X), X eAR®B, (B.1)
then there are unitaries uy, € U(N) and ugyy € U(B) such that

ya (Xy) = Adyy (Xar), Xop € ¥,

¥ (Xg) = Ad,y (Xg), XpeB. (B.2)

Proof. Fix some irreducible representations (Hgr, 79r), (Hg, 7g), of A, B. We claim that there are
unitaries vy € U(Hg ) and vy € U(Hg) such that

Adyy (o (Xor)) = 7o o yar(Xar), X € U,

(B.3)
Adyy, (m8(Xg)) = 7 o yu(Xp), Xy €B.
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To see this, note that

(myr o yu ® 3 0 y) = Ad (ry o) (W) © (T ® 7). (B4)

From this, e oyg (resp., mgoys) is quasiequivalent to mry (resp., rg). Because g and 7y are irreducible,
by the Wigner theorem there are unitaries voy € U(Hgy ) and vy € U(Hg) satisfying equation (B.3).
We then have

Ad (g @rg) (W) © (T ® ) = (o 0 yar) ® (7 © yy)
= (Ad,y omry) ® (Adyy 0rg) = Adyyevy © (Ty ® ) . (B.5)

Because my ® mg is irreducible, there is a ¢ € T such that
(o ® ) (W) =c (v ® vg) . (B.6)
We claim there is a unitary ug € U(B) such that
ng (ug) = vg. (B.7)
Choose a unit vector & € Hy with (&, vyé) # 0. For each x € B(Hy ® Hg), the map

He X Hg 3 (71,172) = ((E@n1),x (£ ®n2)) (B.8)

is a bounded sesquilinear form. Therefore, there is a unique @, (x) € B(Hg) such that

(m- @ ()m) =((E@m).x(@m)), (n.m) € Hy X Hyp. (B.9)
The map ®, : B(Hy ® Hy) — B(Hs) is linear and
[@c )| < lIxll.  x e BH). (B.10)

Because W belongs to A @ B, there are sequences
nn
av = aMeb™, witha™ e b™ B, (B.11)
i=1
such that

1
W —znll < v (B.12)

Because of formula (B.10), we have

¢ (ra @ 7w) (W = 2| < 1 B.13)
Note that
e (ra® 79) () = ) (£, (0] €) 7 (b)) € 7(B). (B.14)

i=1
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Therefore, we have
c (£, vaé) v = D (¢ (v ® vp)) = D (g ® 75) (W) € 795(B) (B.15)

—_—n
where #* denotes the norm closure. Because g (B) is norm-closed, we have g (B) = 73 (B). Hence
we have vy € g (B) — that is, there is a unitary ug € B such that vy = g (ug).
We then have

7 0 Adyy (X) = Ad g (ug) o5 (X) = Ad,y, o (X) = g 0 y(X), X € B. (B.16)

As B is simple, Ad,, (X) = yg(X) forall X € B.
The proof for A is the same. O

C. F-functions

In this section, we collect various estimates about F-functions. These estimates are useful for the proof
of the factorisation property. Let us first start from the definition:

Definition C.1. An F-function F on (Zz, d) is a nonincreasing function F : [0, c0) — (0, o) such that

() I = sup,ezn (Zyeze F (d(x, 7)) < o0 and

(i) Cr =sup, yez2 (Zze% _F(d(;’(zci()i(y%z’y))) < oo

These properties are called uniform integrability and the convolution identity, respectively.
We denote by F, a class of F-functions which decay quickly.

Definition C.2. We say an F-function F belongs to F, if

(i) forany k €e NU {0} and 0 < ¢ < 1, we have

Kok F = Z(n +DE(F(n)? < o (C.1)
=0
and
(i) for any 0 < © < 1, there is an F-function Fyg such that

r r1\\? -

max {F(g) , (F ([3])) } < Fy(r), r>0. (C.2)
0

For example, a function F(r) = exr>l(+r)4) with a constant 0 < 6 < 1 belongs to F,. (See [NSY,

Appendix] for (i). The proof of (ii) is rather standard.)
In this appendix, we derive inequalities about F' € F,. In order for that, the following lemma is
useful. We will freely identify C and R? in an obvious manner.

Lemma C.3. For0<6; <0, <2rm,¢>0,andr > 0, set

SIO0) (e eR? | r<s<r+e, 6€[61,6:]). (C.3)

https://doi.org/10.1017/fmp.2021.17 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.17

50 Yoshiko Ogata

Then we have

2
#(sif’g:@z] nzZ) <n (2\/§+c) r+1). (C.4)
In particular, we have
#(s1% % n2?) < 64+ 1), C.5)

Proof. Because the diameter of a 2-dimensional unit square is V2, any unit square B of Z? with
BN Sif’;’eﬂ N Z? # 0 satisfies B C S‘li‘"eﬂ (V2). Therefore, we have

# {B | unit square of Z? with B N Sli‘.’gz} NZ2 # 0} = Z 1<

B:BmS,[Z‘ 7240

A,,L.""2](«/§)| . (C6)

Note that the area of S} 0‘ 0] (\/_ )

91 621 (\/E)), is less than

91 0:] (\/_)‘<n((r+c+\/_) ( \/E)z))§7r(2r+c)(2\/§+c)Sﬂ(2\6+6)2(”+1)
(C.7)

if r > V2. Forr < \/5, we have

01 ] (‘/_)) <n ((r+c+ \/_) ) <m- (2\/_+c) <n (2\/§+c)2 (r+1). (C.8)
Hence, in any case we have

§L?g"’21(\/§)| < n(2\/§+ c)z(r+ 1. (C.9)

Substituting this into equation (C.6), we obtain

2
# {B | unit square of Z2 with B N SL%%1 0 72 % a)} <n (2«/§+ c) r+1). (C.10)

On the other hand, we have

#{s£?5’921n22}= o= D %HZGB

2 ES,[(ZI .60 nZ2 zeslo [91 6] 2 Brunit square of 7?2
1
D T
B:unit square of Z2 ZESr[i-l .05 ] Az B:

unit square of Z2
BﬂS[al 02lnz249

2
—# {B | unit square of Z2 with B n SL%-%1 072 # @} <n (2«/§+ c) r+1).
(C.11)

i
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For an F-function F € F,, define a function Gr on ¢ > 0 by

Gr(1) == sup Z F(d(x,y) |, t>0. (C.12)
x€z? yezZ?,d(x,y) =t

Note that by uniform integrability, the supremum is finite for all ¢. In particular, for any 0 < 6 < 1 we

have
Gr(1) < Z > F@oysy Y Fns ) #(srlf’f“ mzz) F(r)
r=[t] yez?: r:[t]yesloizﬂlnzz r=[t]

r<d(0,y)<r+l1

F([tD'°

<64 Z (r+1)F(r) =64 Z (r+1)F(r)°F(r)'~ <64 (i(w DF(r)?

r=[t] r=[t] r=0

<64 kg1 - F([t])' <
(C.13)

Substituting this, forany 0 < @ < 1,0 < 6,¢ < 1, and k € NU {0}, we have

Z(l +n)* (Gr(n)” < (64 ko,1,F)" Z(l +m)* - F(n)*19 = (64 - k0,1,F) " Ka(1-0).k.F < 0,
n=0 n=0

Z (1 +m)* (Gp(n)* < (64 -kg.1.7)" i (1+n)* - (F(n)a(l_a))(l_“’) (F(n)au_a))“’
n=[5] n=[%]

a(1-0)¢
< (64'K9,1,F) Ka(1-0)(1-¢), kFF([S]) ’
(C.14)

For any 0 < ¢ < 1, we have

r=0

1=0  r€Zsg =0 reZso

l [+l
I<cr<l+l sr<ss

b 4
sZF(z)(ﬂJrz) (%_(__1) ) ZF(,)(Z” 2) (C.15)

4
3%k14.F
P <

< %ZF(Z)(1+3)4S =

We also have, form € Zsgand 0 < ¢ < 1,

i Z (r1+1)F(1/r2+r12c—(m+1))
ri=0 reZso:
< i Z (ri+1)F (w/r2 +ric—(m+ 1))

\/r2+r1262 (m+1)
1=0 ri,r €Zs0

lS\/r2+r|2c'—(m+l)<l+1
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1=0 r,r EZZ()

IS\/r2+rlzc—(m+1)<l+1

c

o0 2
SZ,T(MJ) (M_HH).(M_”H).F(,)
c

1=0 (C.16)
o 2 2
1 l 3
<> (2\/§+ —) (ﬂ) CF(D)
= c c
1\? 2
< n(zx/i+—) wz‘(” )2 F(l)
c ¢ Py
2 2 2 2
1 3 3 1
<n (2\/§+ —) @K]J’F < (—) (2\/§+ —) m(m+ 1)2K1,2,F.
¢ c c c
Recall formulas (5.25) and (5.26).
Lemma C.4. Let ¢ < ¢y < @3 < @4 With ¢4 — @1 < 21. Then we have
s 3*ar
D, Fd(x) < (64) PR (C.17)
xec:[wl,m] (C‘Pla‘P2a<P3»<P4)

YEC g3.04]

Proof. Letx = 51€'? € Cly,.pp) and y = 52¢'%2 € Cyy. 0,1, With 51,52 > 0. If cos (¢2 — ¢1) > 0, then
we have

d(x,y) = \/s% +53 = 2s152c08 (¢ — 1) > \/s% +53/1 = cos (¢2 — ¢1)

(C.18)
> /1 — max {cos (¢3 — ¢2) ,cos (¢4 — ¢1) , 0} s% + s%.
If cos (¢2 — ¢1) < 0, then we have
d(x,y) = \/s% + s% —2s1852¢08 (¢ — P1) > \/s$ + s%. (C.19)

Hence for any x = slei¢1 € é[‘ﬁl,‘/’z] and y = S2€i¢2 € CV‘[‘F,S,‘M] with 51, 5o > 0, we have

d(x,y) > y/1 — max {cos (g3 — ¢2) , cos (¢4 — 1) ,0}/s% + 52 = cfpol),(pz,%‘pﬂ/s% +s53. (C.20)
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Substituting this estimate, we obtain

D F(d(x,y))sii D, Fdy)

XGC:[wl,wz] n=0 r2=0x€5)[l*/j11v¢’z]mzz
YEC 43,04 yeSr[;?"”]nZZ
< SF (CQ{%W 2+ rg) # (st nz?) (sl n 2?)
r1:O r2:0
0
< (6492 ) Y F (cg,),%w,/rf + rg) (ri+1)(r+ 1)
r1=0 r;=0
< (64)? Z Z F (cgg{%%w/rlz + rg) (r+1(ra+1) (C21)
r=0 rl,rzeZZ()
(r1.72) es,_[ﬂ’ 5] nz?
< (642 ) F (cf) o) (r+2)7 - # (S,[O’ﬂ n7?)
r=0

0
< (64)° ) F (c8) rgr) (7 +2)°
r=0
3*k14,8

.
O
P1,P2,93,P4

We used Lemma C.3 to bound # (S [01’ 5l N Zz) and so on, and in the last inequality we used equation

r,

< (64)°

(C.15). o
Set
L, ={zeR?|argz=9}, ¢e€[0,2n), (C.22)
and
el = T=max{cos(Zi - &a).cos(1 - &)} 412423 € [0.27). (C.23)

Lemma C.5. Set ¢,01,6, € Rwith 6 < 6, and 0 < |¢ — 6o| < F for all y € [01,62]. Then we have

-4
> D F(d(x,y))564.144.24-(c<1>¢,91,92) (k108 + F(0)) (m+1)%,  (C.24)
XEC[HIVHZ] yEL‘p(m)

Jor any m € N U {0}.

Proof. Foreachr € Z, set
Tprm = {se’® €R* |r <scos(@—¢) <r+1, —m < ssin(d — ) <m}. (C.25)

Note that s cos(8 — ¢) is a projection of se’? onto L, and |s sin(8 — ¢)| is the distance of se’? from the
line including L. Then we have

Lo(m) C U TyrmNZ> and )T¢,r,m(«/§)| < (2«/5 + 1) (Zm + 2\5) <12(m+1). (C.26)
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Because the diameter of a 2-dimensional unit square is V2, any unit square B of Z> with BN Ty, r.m NZ?* +
0 satisfies B C flp,r,m (\/5) Therefore, using formula (C.26) we have

# {B | unit square of Z> with B N Torm N 7% ¢ (1)} = Z 1
B:BNT, i NZ?#0 (C.27)

< ‘T}),,,m(\/i)| <12(m+1).

On the other hand, we have

#H{TprmnZ= > 1= > > %11253

2€Ty,r mNZ? 2€Ty,r,mNZ? B:unit square of Z2

1
gleens D 1
B:
unit square of Z2
BNT,  mNZ*#0

#{B | unit square of Z* with BN T, , , N Z* # 0} < 12(m + 1). (C.28)

B:unit square of Z? z€Ty, ;- ;ynNZ?

If x € Cg,.0,], We have x = roe!® for some ro > 0 and 6y € [61,6,]. By the assumption, we have
0 <160 — ¢| < 7, hence 0 < cos(¢ — 6p) < 1. Therefore, for any r € R, we have

d(x,re') = \/r2 +r3 = 2rorcos(6p — @) = \/r2 +r3y/1 - cos(6 — ¢)

(C.29)
> \r2+ r%x/l — max {cos(8; — @), cos(62 — ¢)}.
Therefore, for any x € C{g,.¢,] and y € Ty, We have
d(x,y) > d (x,re"?) = (m+1) = \Jr2+r2c¢W g g, — (m+1). (C.30)

From this and formulas (C.26) and (C.28), for any x = roe'® € C(g, 4,], ro > 0, we have

> F(d(x,y»si > Fd(xy) < i > Fdk,y)

y€Ly(m) r="1ye(Ty,r mNZ?) 7==0 ye(Typ,r.mNZ?)
1
< Z Z F(w/r2+r(2)c( )¢’gl’g2—(m+1)
rez: yE(Tw.r,mﬁZZ)

\/rZTrgc“)wlﬂz >(m+1)
. D >, FO

rez: yE(T%r’mﬁZz)

1”’2+”(§C(1)«p,91,02<(m+1)
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< > 12(m+1)F(,/ +rc()¢gh92—(m+l)) (C31)

rez:
\ lr2+r02c“) 0,0,0, 2 (m+1)
+ Z 12(m + 1)F (0)
rez:

,}r2+r§c“)‘p,gl,92<(m+l)

< Z 24(m+ 1)F (1/ +r c(l)¢gl,92—(m+1))
VEZZ()C
Jri+reW o, 0, > (m+1)
+1)2
+36MF(0) I o wn
c(1 )(/J 0,.6 <M 010,

We then get

> D) Fky)

xee["lﬁzl y€Ly (m)

Z 2d(m+ )HF (w/ +77 2.0 )47 0.0, — (m+ 1))

s reZso:

< Z Z \/r2+r12c'(1)¢,31,922(m+1)

r1=0 [61.02] . »
*eSna e +36 ((I?M) F( )1 nsome

tp91 ]

Z 24(m + 1)F (,/r2 + V%C(l)w’gl’gz —(m+ 1))

re€Zso:

< Z 64(1‘] + 1) \/r2+r]2c'(1)%91,322(m+1)
r1=0
+36C((1§”;1)F(0)1I

m+l

®,01,0)

r <

2
3
<6424 ( 1 ) (2\/_+—l ) m(m+1) k1 0,F
W 4,0,,6, M 4,0,,0,

(m+1)?

2
1
+64-36- _mrl 1)
W00,

F(O)( -
C ' ,01,6,

) - 4
< 64-144.24. (c M,gz) (k12 + F(0)) (m + 1)*. (C.32)

We used formula (C.16). ]

D. Quasilocal automorphisms
In this appendix we collect some results from [NSY] and prove Theorem 5.1.

Definition D.1. A norm-continuous interaction on A defined on an interval [0, 1] is a map @ : G2 X
[0,1] — Ajoc such that

(i) foranyt € [0, 1], @(-,7) : Sz — Ajq is an interaction and
(ii) for any Z € S, the map ©(Z,-) : [0, 1] — Az is norm-continuous.

To ensure that the interactions induce quasilocal automorphisms we need to impose sufficient decay
properties on the interaction strength.
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Definition D.2. Let F be an F-function on (Z2,d). We denote by Br([0,1]) the set of all norm-
continuous interactions @ on A defined on an interval [0, 1] such that the function ||®|| : [0,1] - R
defined by

|®l[F (1) == sup

F () ezl 0,1], D.1
xyezz F (d(x,)) ZGSZ lo(Z; )], te]0,1] ®.1)

72, 23X,y

is uniformly bounded — that is, sup, ¢ (o 1} [Pl (#) < oo. It follows that t > ||®|| (¢) is integrable, and
we set

1
Ir (D) =1 o(P) := CF/ dt ||®|| ¢ (1), (D.2)
0
with Cr given in Definition C.1. We also set

1
l®lllF = sup ——— sup ([P (Z;0)lD) (D.3)
x,y€z? F (d(x, y)) ZGGZZ,Zax,yte[O’I]

and denote by Br ([0, 1]) the set of all ® € Br ([0, 1]) with |[|®||| < co.

We will need some more notation. For ® € Br([0,1]) and 0 < m € R, we introduce a path of
interactions @,, by

@, (X0) = X" @ (X31), XeG (Zz) refo,1]. (D.4)
An interaction gives rise to local (and here, time-dependent) Hamiltonians via

Hyot) = ) ®(Z,1), 1€[0,1], AeGp. (D.5)
ZeA

We denote by Up o (t; 5), the solution of

d
EUA,Q)(t;S) = —iHp o () Upo(t;s), s,t€[0,1], (D.6)

Urao(s;s) =1 (D.7)

We define corresponding automorphisms T(A) ® ‘?',(/S\) “®on A by

NP (A) = U o(t;9)" AUp o (1; 9), (D.8)
2 NP(A) = U o (t; ) AU o (13 5)", (D.9)

with A € A. Note that
P = P (D.10)

by the uniqueness of the solution of the differential equation.

Theorem D.3 ([NSY]). Let F be an F-function on (Zz,d). Suppose that ® € Bp([0,1]). Then the
following hold:
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1. The limits

™ (A) = Im% VPA),  2(A) = hm f,“”’(A) AeA t,se[0,1], (D.11)

exist and define strongly continuous families of automorphisms on A such that ‘?j‘i s = TS . = T;? s,_l
and
ot =10, Tt =ida, t,s,uel0,1]. (D.12)
2. Forany X,Y € Sy with X NY = 0, the bound
2[[AlL1IB]
|[=2 (). Bl « =5 — (27 = 1) 1X] G (d(X. 1)) (D.13)
holds for all A € Ax, B € Ay, andt,s € [0, 1].
IfA € Gpand X UY C A, a similar bound holds for T(A) e,
3. Forany X € Gy, we have
8|lA
[axm ()| < 2L (2@ 1) x1 G (m), (D.14)
F

for A € Ax. Here we set Ax gy = Ilx and Ax () = Ix () — x (m-1) for m € N. A similar bound
holds for T,(ﬁ)’@. (See formula (C.12) for the definition of Gr.)
4. Forany X, A € & (Z?), with X C A, and A € Ax, we have

) =) < & 14N @ 1 @) 1X1Gr (4 (x.22\ A)) (D.15)

5. Ifﬁg (D(X;1)) = D(X;t) forany X € Spo, t € [0,1], and g € G, then we haveﬂg OT;?S = TSA. O,Bg
foranyt,s € [0,1] and g € G,

Proof. Ttem 1 is [NSY, Theorem 3.5], and 2 and 4 follow from Corollary 3.6 of the same paper by,
respectively, a straightforward bounding of D(X,Y) and the summation in [NSY, equation (3.80)]. Item
3 can be obtained using 2 and [NSY, Corollary 4.4].

Suppose that ﬁg (D(X;1)) =D(X;1) forany X € Sy, € [0,1], and g € G. Then we have

%ﬁg (Uno(t;8) = —ﬁé’ (iHA,cD(f))ﬁg (Uno(t;8) = —iHA,cb(f)ﬁg (Uro(t;s)), tel0,1],
(D.16)

and BY (Un.o(s:s)) = L Hence BY (Un o(1:5)) and Up o(1; 5) satisfy the same differential equation
(A), @ _

and initial condition. Therefore we get ,BU (U Aot s)) = Un.o(t;5). From this, we obtain ,BUT, =
(A) “PBY, and taking A 1 Z2, we obtain ¥ o 2, = 7% o pY. O
The following is slightly strengthened version of [NSY, Assumption 5.15]:

Assumption D.4 ([NSY]). We assume that the family of linear maps {K; : Aioc = A}sefo,1] is norm-

continuous and satisfies the following: There is a family of linear maps {lC;") s Ap, & »AAH} 0.1] for
tel0,

each n > 1 such that the following are true:
(i) For each n > 1, the family { K s Ap, — A, } co] satisfies the following conditions:
(a) Foreacht € [0,1], (IC,(") (A)) = IC,(") (A¥) for all Ay, .
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(b) For each A € A,,,, the function [0,1] 53¢ — ICE") (A) is norm-continuous.
(c) For each r € [0, 1], the map ICg") : Ap,, — A,,, is norm-continuous, and moreover, this
continuity is uniform on [0, 1].
(i) There is some p > 0 and a constant B; > 0 for which, given any X € G5 and n > 1 large enough
so that X C A,

(iii) There is some g > 0, a nonnegative, nonincreasing function G with G(x) — 0 as x — oo, and a
constant C; > 0 for which, given any sets X,Y € S and n > 1 large enough sothat X UY C A,,

IC,(")(A)” < B/ |X|” |All, forallAe Ax and e [0,1].

”[IC,(")(A),B]H < C1 X IA| 1Bl G (d(X,Y)), forallAe Ay, Be Ay, t € [0,1].

(iv) There is some r > 0, a nonnegative, nonincreasing function H with H(x) — 0 as x — oo, and a
constant D > 0 for which, given any X € S, there exists N > 1 such that forn > N,

|

forall A € Ax and r € [0, 1].

K7 (A) = K ()| < Dy XY AN (4 (X.2\ A )

The following theorem is a slight modification of [NSY, Theorem 5.17]:

Theorem D.5. Set F € F,, with Fy in formula (C.2) for each 0 < 6 < 1. Assume that {Kt}eepo) isa
family of linear maps satisfying Assumption D.4, with G = G in part (iii). (Recall Definition C.2 and
Jormula (C.12)). Let ® € Bg ([0, 1]) be an interaction satisfying ®,, € Br ([0, 1]) form = max{p, q,r},
where p, q,r are numbers in Assumption D.4. Then the right-hand side of the sum

¥ (Z,1) = Z Z Ax(m) (K (@ (X:1))), Z€Gp, t€[0,1] (D.17)
m>0XcZ,X(m)=Z

defines a path of interaction such that ¥ € By, ([0, 1]), for any 0 < 6 < 1. Furthermore, the formula

YO (Z,1) = ) > Ax(m) (K}") (@ (X;t))) (D.18)
m>0XcZ,X(m)NA,=Z

defines ¥\ € Bg, (10,1]), for any 0 < 8 < 1, such that W (Z,1) = 0 unless Z C A, and satisfies

K" (Ha,.0(1) = Hy, won (1). (D.19)

Forany t,u € [0, 1], we have

lim |7, (4) -7, (A)H =0, AcA. (D.20)
n—oo

Furthermore, if ® i € Br([0,1]) for k € N U {0}, then we have ‘P](("), Y, € BFH([O, 1]) for any

0<6<1.

Proof. Because of F' € F,, we see from formula (C.14) that forany 0 < @ < 1 and k € N, G;! has a
finite k-moment. We also recall formulas (C.2) and (C.14) to see that

max F(g) , _Z[;](l +n)°Gp(n)?} < CFQ(1_9/)¢(I’), r >0, (D.21)

https://doi.org/10.1017/fmp.2021.17 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.17

Forum of Mathematics, Pi 59

for any 0 < @,6’,¢ < 1. As this holds for any 0 < «@,6’,¢ < 1, the condition in [NSY, Theorem
5.17(ii)] holds for any Fy. Therefore, from [NSY, Theorem 5.17(ii)], we get ¥, pn) ¢ BFQ ([0,1]) and
¥ converges locally in F-norm to ¥ with respect to Fy, forany 0 < 6 < 1.

From [NSY, Theorem 5.13] we have the implication

1
su ()
o [ o],

(see also [NSY, equation (5.101)]. Therefore, from [NSY, Theorem 3.8], we obtain equation (D.20).

By the proofs of [NSY, Theorems 5.17 and 5.13, equation (5.87)], if @4y, € Br ([0, 1]) for some
k € N, then we have ‘I’]({")(S), ‘P,((S) € B ([0, 1]). More precisely, instead of [NSY, equation (5.88)], we
obtain

> 1zl Sup I¥(Z:0)
ZEGZ
sty

()dt < oo (D.22)

<B ) |z sup (2 t>||+4CIZGF(n> > XX (e D sup Il0(X:1)]
ZeG, r€[0 n=0 X:X (n+l)3x,y t€[0,
Zaxy

< Bi[|@csplllp Fd(x, ) +4C1 Y Grmy2n+3)* > 1XI7 sup Jlo(X;0)]
n=0 X:X (n+1)3x,y 1€[0,1]
< By || @kspl||» F(d(x, ) + CoFo(d(x, ) || @guk|| < o
(D.23)

with some constant Cy, for each 0 < 6 < 1. In the last line we used formula (C.14) and [NSY, Lemma
8.9]. Hence we get ‘I‘,(C"), Wi € B, ([0, 1]). o

Proof of Theorem 5.1. Suppose @y ~ ®@; via a path ®. Our definition of @y ~ ®; means the existence
of a path of interactions satisfying [MO, Assumption 1.2]. Therefore, [MO, Theorem 1.3] guarantees
the existence of a path of quasilocal automorphisms «; satisfying we, = we, © @;1. From the proof in
[MO], the automorphism «; is given by a family of interactions

W(Zn=D Y Axem (K (@(X30)), ZeBn, 1e0,1], (D.24)
m>0XcZ,X(m)=Z

with
K(A) = - / duW, (u)ry " (A), (D.25)

as a; = ;PO. (Note that by the partial integral of [MO, equation (1.19)], we obtain [NSY, equation
(6.103)] with function W,, in [NSY, equation (6.35)]).) The interaction ¥ actually belongs to B ([0, 1])

for some F3 € F,. To see this, note that the path ® in Definition 1.2 satisfies [NSY, Assumption 6.12]
for any F-function, because

(2R+1)?
XEZG:ZZ (I (X; )l +1X][|d (X3 9)) < W)bF(d(x’ ), (D.26)
X3x,y

with Cg’ and R given in Definition 1.2 3 and 4. In particular, it satisfies [NSY, Assumption 6.12] with
respect to the F-function (see [NSY, Section 8]) F;(r) := ﬁ By [NSY, Section 8], F; belongs to F.
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Fix any 0 < @ < 1. Then by [NSY, Proposition 6.13] and its proof, the family of maps given by formula
(D.25) [NSY, equation (6.102)] satisfies Assumption D.4, with p =0,¢ = 1,r = 1 and G = GF,, where
Fy(r) = (1 +r)~* exp (—=r®). Furthermore, we have ®,, € Br, ([0, 1]) for any m € N, because

. 1 , 20RD* QR + 1> CP
0] = sup —— sup |Z|" (||®(Z;1)|]) <
1l vyezz F2 (d(x,y)) ZEGZZZZBX,yte[O’l] ( L F>(R)
(D.27)
We have F, € F,, and fixing any 0 < @’ < a, F5(r) := (1 +r) ™ exp (-r?) satisfies
r r1\\? -
max {F2 (g) , (F2 ([3])) } <Crowbr(r), r>0, (D.28)

for a suitable constant C; g o .
Therefore, by Theorem D.5, ¥ given by formula (D.24) for this K; and ® satisty ¥;, ¥ € B 5 ([0,1])

for F> € F,.
If ® is B,-invariant, then 7% commutes with Bg, hence K; commutes with 8,. As IIx commutes
with 8, and @ is Be-invariant, we see that ¥ is B,-invariant. O

Proposition D.6. Let F,F € F, be F-functions of the form F(r) = (1 +r)"*exp(-r?),F(r) =
(1+r)*exp (—r‘)’) with some constants 0 < 0’ < 0 < 1. Let P, ¥ € Br ([0, 1]) be a path of interactions

such that ¥y € Br ([0, 1]). Finally, let T;Ii , and Tt(fs\")’\i' be automorphisms given by ¥, ¥ from Theorem
D.s.

Then, with s € [0, 1], the right-hand side of the sum

EOZn=Y Y Axw (B (XGD)), ZeBp, re(01], (D.29)
m>0XcZ,X(m)=Z

defines a path of interaction such that 2 € Bz ([0,1]). Furthermore, the formula

2 (Z,1) = Z Z Ax (m) (Tf,?"w (¥ (X;t))) (D.30)

m>0XcZ,X(m)NA,=Z

defines 2M ) ¢ B ([0, 1]) such that B (Z,1) = 0 unless Z C A, and satisfies

e (Ha, w(t) = Hy, 2o (1) (D.31)
For any t,u € [0, 1], we have
. =(n)(s) =(s)
tim |22 (4) - 2, (A)” -0, AcA (D.32)

Furthermore, if ¥, € Br ([0, 1]), then we have E) 56) ¢ BF([O, 1.

Proof. From Theorem D.5, it suffices to show that the family {IC, = T;i’lu} satisfies Assumption D.4.
This follows from Theorem D.3. O
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