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On the Weak Order of Coxeter Groups

Matthew Dyer

Abstract. _is paper provides some evidence for conjectural relations between extensions of (right)
weak order on Coxeter groups, closure operators on root systems, and Bruhat order. _e conjecture
focused upon here reûnes an earlier question as to whether the set of initial sections of re�ection
orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described
in terms of a suitable closure operator. Galois connections are deûned from the power set ofW to
itself, under which maximal subgroups of certain groupoids correspond to certain complete meet
subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any
rank of the root system is deûned, reducing to the usual weak order in rank zero, and having some
analogous properties in rank one (and conjecturally in general).

Introduction

Weak order is a partial order on a Coxeter group W which is of considerable impor-
tance in the basic combinatorics ofW . For example, themaximal chains inweak order
from the identity element to a given element are in natural bijective correspondence
with reduced expressions of that element. It is known that weak orders of Coxeter
groups are completemeet semilattices.

_is paper gives descriptions ofmeet and join (when existing) of elements inweak
order in terms of a closure operator on the root system of W . _e closure operator
used here is the ûnest one, i.e., with the most closed sets, for which, given any two
roots in a closed set, any root expressible as a non-negative real linear combination
of those two roots is also in that closed set, though some of the results hold for other
closure operators as well. _e paper also introduces two Galois connections from the
power set ofW to itself, under which maximal subgroups of certain groupoids (gen-
eralizing those in [6], andwhichwe shall study in a series of other papers) correspond
bijectively to certain complete meet subsemilattices of weak order. It also deûnes an
analogue of weak order associated with standard parabolic subsets of the root system
(that are the unions of the positive roots with the root systems of standard parabolic
subgroups). _e parabolic weak order reduces to the standard weak order in the case
of the trivial parabolic subgroup, and it is shown to be a complete meet semilattice
(with meet and join given by essentially the same formula in terms of the closure op-
erator as for ordinary weak order) in the case of a rank one parabolic subgroup.

_ese results have been obtained in attempting to reûne some questions and con-
jectures on the structure of re�ection orders of Coxeter groups and their initial sec-
tions raised in [14, Remark 2.12] and [16, Remark 2.14]. Re�ection orders and their
initial sections have applications to the study of Bruhat order, Hecke algebras, and
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Kazhdan–Lusztig polynomials. _e original questions are recalled here, and some
of the reûnements are stated, since they provide some of the principal motivations;
additional related results and conjectures will be discussed in other papers. _e ar-
rangement of this paper is as follows. Section 1 provides the statements of the main
results. Section 2 discusses the conjectures. Section 3 illustrates some of themain re-
sults by the example of ûnite dihedral groups. Sections 4–10 are devoted to the proofs
of themain results. Section 11 discusses two other standard closure operators on root
systems and the extent to which the results are known to hold for them.

_roughout the paper, it is assumed that the reader is familiarwith basic properties
of Coxeter groups and their root systems; standard references for this background
material are [4,23]. For the basic properties of weak order, consult [1]. Several of the
proofs proceed by reduction to the case of dihedral groups; the easy veriûcations of
the necessary facts in the dihedral case are usually omitted.

1 Statement of Results

1.1 Posets and Lattices

Fix the following standard terminology for partially ordered sets, which are called
posets in this paper (see, for example, [9]). A lattice is a non-empty poset (L, ≤) in
which any two elements x , y ∈ L have a least upper bound (join) x ∨ y and a greatest
lower bound (meet) x ∧ y. A lattice L is said to be complete if every subset X of L has
a join ⋁X and a meet ⋀X (this implies L has a minimum element and a maximum
element).
An ortholattice is a lattice which has amaximum element ⊺,minimum element �

and is equipped with an order-reversing involution x ↦ x⊥ such that x ∨ x⊥ = ⊺ and
x ∧ x⊥ = � for all x in the lattice. A complete ortholattice is an ortholattice that is
complete as lattice.
A complete meet semilattice is a poset in which every non-empty subset X has a

greatest lower bound⋀X; in particular, a non-empty completemeet semilattice has a
minimum element. By a completemeet subsemilattice of a completemeet semilattice
L, we mean a subset X of L such for any non-empty subset Y of X, the meet ⋀Y of
Y in L is in X (and is therefore themeet of Y in X). If X is non-empty, its minimum
element need not coincide with that of L (according to our conventions).

1.2 Coxeter Groups and Root Systems

Let (W , S) be a Coxeter system with standard length function l = lW and the set
of re�ections T = {wsw−1 ∣ w ∈ W , s ∈ S}. Assume without loss of generality that
W is the real re�ection group associated as in [18] with a based root system Φ in a
real vector space V (this allows the standard root system of [4, 23]). Let Π be the
standard set of simple roots corresponding to the simple re�ections S ofW , and let
Φ+ be the set of positive roots corresponding to Π. Abbreviate Φ− ∶= −Φ+. Denote
the re�ection in a root α ∈ Φ by sα ∈ T . For z ∈W , let

Φz = Φz ,W ∶= Φ+ ∩ z(Φ−) = {α ∈ Φ+ ∣ l(sαz) < l(z)}.
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It is well known that if z = sα1 ⋅ ⋅ ⋅ sαn is any reduced expression, then

(1.1) Φz = {α1 , sα1(α2), . . . , sα1 ⋅ ⋅ ⋅ sαn−1(αn)}, ∣Φz ∣ = l(z) = n.

Write Φ′
z ∶= Φ+ ∖Φz . Note that for z ∈ W , Φ′

z is ûnite if and only if W is ûnite, in
which case Φ′

z = ΦzwS , where wS is the longest element ofW .

1.3 Weak Order

_eweak (right) order ≤ onW is the partial order onW deûned by x ≤ y if and only if
l(y) = l(x)+ l(x−1 y). It is also known that x ≤ y if and only ifΦx ⊆Φy . In particular,
for any x , y ∈W , the equality Φx = Φy holds if and only if x = y.
For any ûxed y ∈ W , the set {x ∈ W ∣ x ≤ y} is ûnite. It is known that W in weak

order is a completemeet semilattice (see [1, 3.2]).

1.4 The 2-closure Operator on a Root System

Denote the power set of a set X asP(X). A closure operator on the set X is a function
c∶P(X) →P(X) such that c(c(A)) = c(A) and A⊆ c(A) for A⊆X, and A⊆B ⊆X
implies c(A)⊆ c(B). One calls the subsets of X of the form c(A) for A⊆X, the closed
sets (of c). _e closure c(A) of A is then the intersection of all closed subsets of X
containing A.
Following [14, Remark 2.12], we introduce a closure operator on Φ as follows. Say

that a subset Γ ofΦ is 2-closed if for any α, β ∈ Γ we have {aα+bβ ∣ a, b ∈ R≥0}∩Φ ⊆

Γ. _e 2-closed sets are the closed sets of the closure operator on Φ for which the
closure Γ of a subset Γ ofΦ is the intersection of all 2-closed subsets of Φ which con-
tain Γ. Henceforth, the 2-closed subsets of Φ are usually called closed sets, unless
other closure operators are under simultaneous consideration.

It is crucial for the purposes of this paper that Φ+ is closed and for x ∈W , that Φx
and Φ′

x are closed (see Lemma 4.1).

Remarks. _e 2-closure operator was called R-closure in [26]; the name 2-closure
emphasizes its rank two nature. See also [17] and Section 11 formore about this closure
operator.

1.5 Weak Order and 2-closure

_e ûrst main result aòords a new proof that W in weak order is a semilattice and a
description of its meet and join in terms of the closure operator.

_eorem Inweak order ≤,W is a completemeet semilattice. _e join (when existing)
andmeet of a non-empty subset X ofW are given as follows.
(i) _e join y ∶= ⋁X exists in (W , ≤) if and only if X has an upper bound in W , in

which case Φy = ⋃x∈X Φx .
(ii) If y ∶= ⋀X, then Φ′

y = ⋃x∈X Φ′
x .

Remarks. Subsequent conjectures of this paper would imply that the join in (i) exists
if and only if ⋃x∈X Φx is a ûnite set, but this remains an open question.
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1.6 Order Isomorphisms

_e order isomorphism in part (i) of the following corollary is well known [1, Propo-
sition 3.1.6]. Part (ii), which is a simple consequence of _eorem 1.5, shows that the
domain of this order isomorphism is closed under formation of those joins that exist
in W ; it is highlighted since it will play a fundamental role in subsequent papers.

Corollary Let x ∈W . _en
(i) _emap u ↦ xu∶W →W restricts to an order isomorphism between the subposet

(actually an order ideal) {u ∈ W ∣ l(xu) = l(x) + l(u)} and the subposet (an
order coideal) {z ∈W ∣ x ≤ z} of (W , ≤).

(ii) If U ⊆W with l(xu) = l(x) + l(u), i.e., Φu ∩ Φx−1 = ∅, for all u ∈ U , and
y ∶= ⋁U exists in W , then l(xy) = l(x) + l(y), i.e., Φy ∩Φx−1 = ∅.

1.7 Bruhat Order and 2-closure

_eorem 1.5 (i) and Corollary 1.6 are proved in Section 5, a�er giving some prelimi-
naries in Section 4. A more general statement (_eorem 7.1) than _eorem 1.5 (ii) is
proved in Section 7, a�er establishing Lemma 1.7 in Section 6. To state the lemma,
the following notation will be used. For n ∈ Z and x ∈W , deûne

Φx ,n ∶= {α ∈ Φ+ ∣ l(sαx) = l(x) + n}.

Note that Φx ,n = ∅ unless n is odd, and that Φx = ⊍n<0 Φx ,n and Φ′
x = ⊍n>0 Φx ,n

(here and later, the symbol ⊍ indicates that a union is one of disjoint sets).
_e following result is reminiscent of the Krein–Milman theorem, but note that

2-closure is not a “convex”, i.e., anti-exchange, closure operator in general (see Sec-
tion 11).

Lemma Let Γ ⊆Φ+ and x ∈W . _en
(i) Γ = Φx if and only if Φx ,−1 ⊆ Γ ⊆Φx .
(ii) Γ = Φ′

x if and only if Φx ,+1 ⊆ Γ ⊆Φ′
x .

1.8 Closure After Adjoining a Root

In Section 8, the following is proved using Lemma 1.7 and_eorem 1.5.

_eorem Let x ∈W and α ∈ Φ+.
(i) Suppose that l(sαx) = l(x) + 1 and also that there is some v ∈ W with Φx ∪

{α}⊆Φv . _en the set {z ∈ W ∣ x ≤ z, α ∈ Φz} has a minimum element y =

x ∨ sαx. One has Φx ∪ {α} = Φy and Φsα y = Φy ∖{α} = (Φx ∪Φsα x)∖{α}.
In particular, y > sα y = ysτ for some τ ∈ Π.

(ii) Suppose that l(sαx) = l(x) − 1. _en there is a maximum element y = x ∧ sαx
in {z ∈ W ∣ z ≤ x , α /∈ Φz}. One has Φ′

y = Φ′
x ∪ {α} and Φ′

sα y = Φ′
y ∖{α} =

(Φ′
x ∪Φ′

sα x)∖{α}. In particular, y < sα y = ysτ for some τ ∈ Π.
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Remarks. _eminimum andmaximum elements are taken with respect to weak or-
der. Note that the hypotheses of (i) hold for any x ∈W and α ∈ Π∖Φx forwhich x∨sα
exists; then y = x ∨ sα . _e hypotheses of (ii) hold for any x ∈W and α ∈ Π ∩Φx .

1.9 Galois Connection Between Subgroups and Subsemilattices

Deûne a relation R onW by xRz if and only if z(Φx) = Φx for x , z ∈W . Aswould any
relation on W , R deûnes a Galois connection (see [9, 24] for general background on
Galois connections) from P(W) to itself as follows. Consider the twomaps X ↦ X†

and Z ↦ Z∗ from P(W)→P(W) deûned by

X†
∶= {z ∈W ∣ xRz for all x ∈ X}, Z∗ ∶= {x ∈W ∣ xRz for all z ∈ Z}.

Ordering P(W) by inclusion, themaps are order-reversing and satisfy Z ⊆X† if and
only if X ⊆ Z∗, i.e., they give a Galois connection. As with any Galois connection,
there are associated families of stable sets (o�en called closed sets) for the composite
maps:

W∗ ∶= {L ∈ P(W) ∣ L †∗
= L } = {Z∗ ∣ Z ∈ P(W)},

W† ∶= {G ∈ P(W) ∣ G ∗†
= G } = {X†

∣ X ∈ P(W)}.

Well-known properties ofGalois connections imply that the restriction of ∗ to amap
W† → W∗ is a bijectionwith the inverse given by the restriction of † to amapW∗ → W†.
Also,W† andW∗ are complete lattices, dual under the above bijection,withmeet given
by the intersection of subsets ofW . In Section 9, the following is proved and analo-
gous facts are given for theGalois connection determined similarly by the relation R′
on W with xR′z if and only if z(Φ′

x) = Φ′
x .

_eorem (i) One has

xRz ⇐⇒ (x ∨ z = zx and Φx ∩Φz = ∅) ⇐⇒ Φzx = Φz ⊍Φx

(ii) If xRz, then xRz−1 and l(zx) = l(z) + l(x).
(iii) _e elements ofW† are subgroups ofW .
(iv) _e elements of W∗ are complete meet subsemilattices of (W , ≤) with 1W as a

minimum element.
(v) If L ∈ W∗, then for any subset X of L that has an upper bound in W , its join

x ∶= ⋁X in W is an element of L (and so x is the least upper bound of X in L).

1.10 Groupoids Associated With the Galois Connections

Adopt here the point of view that a groupoid is a category with a set of objects in
which every morphism is an isomorphism. Each element of W† is obviously a max-
imal subgroup of (i.e., the automorphism group of an object of) a groupoid whose
objects are I-indexed families X = (x i)i∈I of elements ofW for a suitable index set I,
and its morphisms are

Hom(X ,Y) ≅ {z ∈W ∣ z(Φx i ) = Φy i for all i ∈ I}

and where composition is induced naturally by multiplication in W , similarly for R′.
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Remarks. In the case of the relation R, the full subgroupoidswith objects the indexed
families of elements of S (more precisely, their variants using subsets of S instead of
indexed subfamilies)were studied in [6]. _e groupoids deûned abovewill be further
generalized and studied in a series of subsequent papers.

1.11 Coclosed and Biclosed Subsets of Roots

For any closed subset Λ ofΦ, say that a subset Γ ofΛ is coclosed in Λ ifΛ∖ Γ is closed.
Say that Γ ⊆Λ is biclosed in Λ if Γ is closed in Λ and Λ∖ Γ is closed in Λ. Let B(Λ)

denote the set of biclosed subsets of Λ. Order B(Λ) by inclusion. Note that B(Λ)

is a complete poset, in the sense that it has a minimum element ∅ and the union of
any directed family of elements of B(Λ) is in B(Λ). For any closure operator a on
Φ, deûne notions of a-coclosed sets, a-biclosed sets, etc., in a similar manner as for
2-closure.
For example, the ûnite biclosed subsets of Φ+ are the sets Φx for x ∈ W , by Lem-

ma 4.1. Since this paper deals mostly with subsets of Φ+, the terminology will be
slightly abbreviated in that case: by a coclosed set (resp., biclosed set) is meant a set
which is a coclosed subset of Φ+ (resp., a biclosed subset of Φ+).

1.12 Parabolic Weak Orders

Standard parabolic subsets of Φ are now deûned, following the usual deûnition for
Weyl groups [4, Chapter VI, §1, Proposition 20]. In the general context of this paper,
the analogues of the conditions loc. cit. are no longer all equivalent, e.g., for an inû-
nite dihedral group; the deûnition here of a standard parabolic subset is modeled on
condition (iii) of loc. cit. and the more general deûnition of quasiparabolic subset in
2.5 is based on condition (i) there.
For J ⊆ S, there is a standard parabolic subgroup WJ ∶= ⟨ J ⟩ generated by J, and

its root system ΦJ = {α ∈ Φ ∣ sα ∈ WJ}. Set Λ ∶= ΛJ ∶= Φ+ ∪ ΦJ . Call ΛJ the
standard parabolic subset ofΦ (of rank ∣J∣) associated with J (or associated with ΦJ).
LetL = LJ denote the set of all ûnite biclosed subsets Γ ofΛJ . OrderLJ by inclusion,
and call the resulting poset the parabolic weak order associated with J. Note that
L∅ = {Φx ∣ x ∈ W} naturally identiûes with W in weak order via x ↔ Φx . Deûne
τ∶P(ΛJ)→P(ΦJ) by τ(Γ) ∶= Γ ∩ΦJ .

1.13 2-closure and Rank One Parabolic Weak Order

Using the previous results, the following fact will be proved in Section 10.

_eorem Suppose above that ∣J∣ = 1. _enLJ is a completemeet semilattice of subsets
of Λ ∶= ΛJ . Furthermore, we have the following.
(i) If Y ⊆LJ has an upper bound in LJ , then it has a join ∆ ∶= ⋁Y in LJ given by

∆ = ⋃Γ∈Y Γ.
(ii) _emeet ∆ of a subset Y ofLJ is given by Λ∖∆ = ⋃Γ∈Y(Λ∖ Γ).
(iii) _e map Γ ↦ τ(Γ) maps LJ into the lattice of ûnite biclosed subsets of ΦJ (with

biclosed sets ordered by inclusion), preserving meets and those joins that exist.
Moreover, τ(Γ) = τ(Γ) for any Γ ⊆Λ.
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Remarks. _e analogue of _eorem 1.13 with J = ∅ is essentially equivalent to _e-
orem 1.5. _e analogous statement could be conjectured to hold for any J, but then
one could have LJ = {∅}, e.g. for J = S andW inûnite dihedral, and the conjecture
in that form is chie�y of interest for ûniteW (for which it is open if ∣J∣ > 1). A more
general conjecture without this diõculty is formulated in Section 2.

2 Conjectures

_e results of this paper have been obtained while investigating an extensive set of
questions and conjectures involving generalizations of basic combinatorics of Coxeter
groups. In this section, some of the conjectures most closely related to the contents
of this paper, and not requiring much additional background, are stated.

_e conjectures originated in studying applications of re�ection orders, the origi-
nal motivation for the deûnition ofwhichwas to extend symmetry amongst structure
constants of Iwahori–Hecke algebras from the case of ûnite Coxeter groups to general
Coxeter groups; this required a substitute for the reduced expressions of the longest
element, which was provided by the re�ection orders.

2.1 Reflection Orders and Initial Sections

A re�ection order of Φ+ is deûned as a total order ⪯ of Φ+ such that for α, β, γ ∈ Φ+
with α ≺ γ and β ∈ R>0α +R>0γ, we have α ≺ β ≺ γ. See [1] for a discussion of them
and some applications. Under transport of structure from Φ+ to T using the natural
bijection α ↦ sα , re�ection orders of Φ+ correspond to the re�ection orders of T in
the sense of [14] (which are combinatorial, in that they can be deûned purely in terms
of (W , S)).
Abbreviate the set of biclosed subsets ofΦ+ as B ∶= B(Φ+). Deûne an admissible

order of Γ ∈ B to be a total order ⪯ of Γ, all of the initial sections of which are in B,
where for any totally ordered set P, an initial section of P is by deûnition an order
ideal, i.e., a subset I of P such that x ≤ y for all x ∈ I and y ∈ P ∖ I.
By straightforward reduction to the case of dihedral groups, it follows that a total

order ⪯ of Φ+ is an admissible order of Φ+ if and only if it is a re�ection order of
Φ+. Let A denote the set of all subsets Γ ofΦ+ for which there exists some re�ection
order ⪯ ofΦ+ with Γ as an initial section. It is easily checked from the deûnitions that
A ⊆B. Attached to each element ofA , there is a twisted Bruhat order ofA as in [13];
the deûnition of these orders can be extended to the elements ofB [20], but themore
general orders are not known to have such strong properties as those from elements
ofA . On the other hand,B has many useful properties not obviously shared by A ;
for example, B is closed under arbitrary directed unions, but this is not known for
A .

2.2 Reflection Orders and Maximal Chains of Biclosed Sets

As will be explained in 2.3, the following conjecture is naturally suggested by naive
analogy with themost basic facts about combinatorics of Coxeter groups.

Conjecture (i) A = B

305

https://doi.org/10.4153/CJM-2017-059-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-059-0


M. Dyer

(ii) For any Γ ∈ A and any totally ordered (by inclusion) subsetI ofA ∩P(Γ), there
is an admissible order ⪯ of Γ such that every element of I is an initial section of
⪯.

Remarks. Part (i) of the conjecture is equivalent to the conjecture [14, Remark 2.12],
and the special case Γ = Φ+ of (ii) is equivalent to a positive answer for a question
raised in [16, Remark 2.14]. Given (i), (ii) is equivalent to its own special case with
Γ = Φ+. _e conjecture is known for ûnite Coxeter groups (see below) and will be
proved in the special case of aõneWeyl groups in another paper.

2.3 Admissible Orders as Generalized Reduced Expressions

It follows from [14, Lemma 2.11], [16, Example 2.2], and Lemma 4.1 that

{B ∈ A ∣ ∣B∣ is ûnite} = {Φw ∣ w ∈W} = {B ∈ B ∣ ∣B∣ is ûnite}

and that the admissible orders ofΦw are in natural bijective correspondence with the
reduced expressions of w as follows: to a reduced expression w = sα1 ⋅ ⋅ ⋅ sαn of w, one
attaches an admissible order ⪯ of Φw = {β1 , . . . , βn} given by β1 ≺ ⋅ ⋅ ⋅ ≺ βn , where
β i ∶= sα1 ⋅ ⋅ ⋅ sα i−1(α i) (compare (1.1)). _us,W can be identiûed with the subset {Φw ∣

w ∈ W} of B, the elements of B can be viewed as generalized elements ofW , and
the notion of admissible order of an element ofB can be regarded as a generalization
of the notion of reduced expression of an element ofW . In the case of ûniteW , the
generalizednotions are precisely equivalent to the original ones, but this isnot true for
any inûnite Coxeter group. In fact, it can be shown that there are examples of inûnite,
ûnitely generated Coxeter groups W for which A (and henceB) is uncountable. In
any case, the partial order ofB by inclusion naturally generalizes the weak order on
W , and will be called the extended weak order ofW .

Given Conjecture 2.2 (i), Conjecture 2.2 (ii) is equivalent (by Zorn’s lemma) to the
statement that for Γ ∈ B, the map taking an admissible order of Γ to the set of its
initial sections gives a bijection between the admissible orders of Γ and themaximal
totally ordered subsets of {∆ ∈ B ∣ ∆⊆ Γ}. _e conjectures together therefore gen-
eralize the statements that every element w ofW has a reduced expression and that
the reduced expressions of an elementw ofW are in natural bijective correspondence
with maximal chains from 1 to w in weak order ofW .

2.4 Reflection Subgroups and Closed Sets of Roots

Onemight ask how much of the standard combinatorics involving elements of ûnite
Coxeter groups and their reduced expressions,when suitably reformulated, extend to
elements ofB and their admissible orders. For example, since weak order on W is a
lattice ifW is ûnite, it is natural to ask if B, ordered by inclusion, is also a lattice in
general; this question was raised in [16, Remark 2.14]. Amore precise andmore gen-
eral version of this question is formulated as a conjecture below, extending _eorems
1.5 and 1.13. In order to do this, we ûrst record a simple lemma.

Note that the re�ection subgroups W ′ of W with closed root subsystem ΦW′ ∶=

{α ∈ Φ ∣ sα ∈ W ′} constitute a complete meet subsemilattice of the complete lattice
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of re�ection subgroups. An arbitrary re�ection subgroup W ′ of W need not have
closed root system, e.g., in type B2. However, one does have the following.

Lemma Let Ξ, Λ be subsets of Φ such that Ξ, Λ are both closed, Ξ = −Ξ, and Ξ ⊆Λ.
_en Ξ is the root system of the re�ection subgroup W ′ ∶= ⟨ sα ∣ α ∈ Ξ ⟩ and the natural
W-action on Φ restricts to aW ′-action on Λ.

Proof For α ∈ Ξ and β ∈ Λ, sα(β) ∈ (β + Rα) ∩ Φ⊆Λ since Λ is closed, β ∈ Λ,
and {α,−α}⊆Ξ ⊆Λ. _is proves that Λ isW ′-stable. _e statement that Ξ is the root
system ofW ′ follows by taking Λ = Ξ.

2.5 Conjecture on Parabolic Weak Order and 2-closure

A subset Λ of Φ will be called quasi-parabolic if Λ is closed and Λ ∪ −Λ = Φ. _e
standard parabolic subsets are obviously quasi-parabolic. _ere is a classiûcation of
quasi-parabolic subsets (and more generally, of elements of B(Φ)) in terms of el-
ements of B(Φ+) and additional combinatorial data, which will not be discussed
here. In [7], analogues of quasiparabolic sets in (possibly inûnite) orientedmatroids
are called large convex sets. _e main examples of quasi-parabolic subsets are the
W-conjugates of standard parabolic sets.
Fix a quasi-parabolic subset Λ ofΦ. By the preceding lemma,Ψ ∶= Ψ(Λ) = Λ∩−Λ

is the root system of a re�ection subgroup W ′ = W(Λ) ∶= ⟨ sα ∣ α ∈ Ψ ⟩ ofW . Note
that W ′ acts on Λ by (w , γ) ↦ w(γ), preserving Ψ. _is W ′-action on Λ (resp., Ψ)
obviously induces aW ′-action by order automorphisms on B(Λ) (resp.,B(Ψ)).
Deûne themap τ∶P(Λ)→P(Ψ) by τ(Γ) ∶= Γ ∩Ψ, for Γ ⊆Λ. Call τ(Γ) the type

of Γ. One clearly has τ(w(Γ)) = w(τ(Γ)) for w ∈W , and τ(Γ) ∈ B(Ψ) if Γ ∈ B(Λ).

Conjecture Let Λ be a standard parabolic subset ofΦ, say Λ = Φ+∪ΦJ for J ⊆ S. Set
Ψ ∶= Ψ(Λ) = ΨJ andW ′ ∶=W(Λ) =WJ .
(i) _e set B(Λ) of biclosed subsets of Λ is a complete ortholattice. _e join of a

family X of biclosed subsets of Λ is given by ⋁X = ⋃Γ∈X Γ, and the ortholattice
complement is just set complement in Λ.

(ii) _e restriction of τ to a map B(Λ) → B(Ψ) is aW ′-equivariant morphism of
complete ortholattices, i.e., it preserves W ′-action, preserves arbitrary meets and
joins, and preserves complements.

(iii) If Γ is coclosed in Λ, then Γ is biclosed in Λ.
(iv) If Γ ⊆Λ, then τ(Γ) = τ(Γ).

Remarks. _ere are several dependencies amongst parts of this conjecture, and reduc-
tions of its parts to superûcially weaker statements. For example, using that B(Λ) is
a complete poset, the conjecture (i) above follows easily from the special case of (iii)
according to which Γ ∪ ∆ ∈ B(Λ) if Γ, ∆ ∈ B(Λ). Most of this paper is devoted to
checking parts of the conjecture involving subsets of Λ that are either ûnite or coûnite
in Λ, where Λ is a (rank one or zero) standard parabolic subset. In an earlier version
of thismanuscript, the conjecturewas stated for arbitrary quasi-parabolic subsets, but
a counterexample was found byWang [27, Remark 8.2.9]. On the other hand, we will
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prove elsewhere the special case of the conjecturewhenΛ = Φ. _is implies in (ii) that
B(Ψ) is always a complete ortholattice. Except in the case that Λ = Φ, the conjec-
ture is open for all inûnite irreducible Coxeter groups excluding the inûnite dihedral
groups.

2.6 Conjectural Structure of Reflection Orders

_e set of standard parabolic subsets (and their conjugates) is the largest natural class
of subsets ofΦ, known to the author, forwhichConjecture 2.5 (i) seems plausible; for
example, the set B(Λ) is not necessarily a lattice if Λ is the complement, in a ûnite
root system Φ of type A3, of a rank one standard parabolic subset.

However, for at least some quasi-parabolic sets Λ, the coclosed subsets of Λ may
not be the largest natural family of sets, all of which have biclosed closure. Say that a
subset Γ of Λ = Φ+ is unipodal if it has the following property: if α ∈ Γ andW ′ ∈ Mα
is amaximal dihedral re�ection subgroup ofW containing sα , with canonical simple
system ΠW′ = {β, γ} with respect to (W , S), then either β ∈ Γ or γ ∈ Γ (see 6.3 for
notation andmore details). It is easy to see that coclosed subsets of Φ+ are unipodal,
so the following strengthens the special case Λ = Φ+ of Conjecture 2.5 (iii).

Conjecture If Γ ⊆Φ+ is unipodal, then Γ is biclosed in Φ+.

Some evidence for this conjecture will be given in another paper; in particular, it
holds for ûnite Coxeter groups, by an argument using Bruhat order. _e conjecture
would also imply that an arbitrary biclosed subset Γ of Φ+ is the directed union of
the biclosed sets obtained as the closures of ûnite unipodal subsets of Γ, and hence
that the (conjectured) complete ortholattice B(Φ+) is an algebraic lattice (see [9]
for the deûnition). In conjunction with Conjecture 2.2, the above conjecture would
lead to a quite satisfactory description of re�ection orders and their initial sections
(for example, one could eòectively compute with them, in examples or in general, by
ûnite “approximations,” in a similarmanner asone canworkwith elementsofproûnite
groups).

Note, however, that if (W , S) is an inûnite dihedral Coxeter system, then there are
two exceptional quasi-parabolic subsets Λ of Φ such that Φ = Λ ⊍ −Λ where Λ ∩Φ+
and Λ ∩ Φ− are both inûnite; for these, B(Λ) is a complete ortholattice (as conjec-
tured in 2.5) but not an algebraic lattice.

2.7 Conjecture on Biclosed Subsets of Quasi-positive Systems

In the terminology of [17], a subset Λ of Φ is called a quasipositive system if Φ =

Λ ⊍ −Λ. _us, closed quasi-positive systems Λ are special quasi-parabolic subsets of
Φ, and Φ+ is itself a closed quasi-positive system. _e following conjecture extends
Conjecture 2.2 (ii).

Conjecture Let Λ be any closed quasi-positive system of Φ. Let M be any maximal
(under inclusion) totally ordered subset ofB(Λ). _en there is a total order ⪯ of Λ such
that M consists of all initial sections of ⪯.
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From the examples in 3.4, one sees that the conjecture does not extend as stated to
general quasi-parabolic subsets Λ of Φ.

2.8 Conjecture on Initial Sections and Bruhat Order

Deûne a function τ∶P(Φ+) → P(W) as follows: for any Γ ⊆Φ+, τ(Γ) is the sub-
set of W consisting of all elements w ∈ W such that there exist α1 , . . . , αn ∈ Γ with
w = sα1 ⋅ ⋅ ⋅ sαn and 0 = l(1W) < l(1W sα1) < ⋅ ⋅ ⋅ < l(1W sα1 ⋅ ⋅ ⋅ sαn). _e motivation and
natural context for the study of this function is in relation to the twisted Bruhat or-
ders of [13], which are not discussed in this paper. Instead, τ is used here to provide
another, quite diòerent description of the (conjectural) join in the poset B(Φ+).

Conjecture If Γ,Λ ∈ B(Φ+), then {α ∈ Φ+ ∣ sα ∈ τ(Γ ∪ Λ)} is the join (least upper
bound) of Γ and Λ in the poset B(Φ+)

Remarks. _e above conjecture is open even for ûnite Coxeter groups. As already
mentioned, Conjecture 2.5 is also open for ûnite Coxeter groups in the cases 2 ≤ ∣J∣
and J /= S; all other conjectures mentioned are known to hold for ûnite Coxeter
groups. Some other results of this paper, such as _eorem 1.8, are special cases of
general conjectures which are not stated here.

2.9 Analogous Questions for Simplicial Oriented Geometries

_ere is a natural convex geometric closure operator d∶ Γ ↦ R≥0Γ ∩ Φ on Φ taking a
set of roots to the set of roots in its non-negative real span. It is shown in Section 11
that many of the main results of the paper hold for d just as for 2-closure. However,
while every d-biclosed subset of Φ+ is an initial section of Φ+, it can be shown that
there exist ûnite rankW forwhich not every initial section is d-biclosed, and thus the
d-analogue of Conjecture 2.2 (i) fails. _is is unsurprising since 2-closure and initial
sections are combinatorial in nature, but d-closure is not (see Section11.4).

In Section 11 of this paper, it is shown that the d-closure analogue of_eorem 1.5
holds. We do not know whether, more generally, the analogue of Conjecture 2.5 (i)
in the special case Λ = Φ+, but for d-closure instead of 2-closure, holds. However,
[2, §5-6] proved an analogue of that conjecture in a diòerent (and quite general) con-
text, namely for the posets of regions of a ûnite central simplicial hyperplane arrange-
ment in a ûnite-dimensional real vector space (we consider only essential arrange-
ments, namely those for which the normals to the hyperplanes span the ambient vec-
tor space). More generally, such an analogue holds for simplicial oriented geometries,
which are oriented matroids with additional properties; see [2, 3] for background. It
would be interesting to know if Conjecture 2.5 (iii), for example, also has an analogue
in that generality. _ere are (at least) two natural closure operators which one could
use; the natural oriented matroid closure operator d (see [7] or [2, §6]), and an ana-
logue of 2-closure constructed from d in a similarway as the 2-closure on root systems
is deûned in terms of their geometric d-closure. In view of the results of this paper
in the case of ûnite root systems, it would be particularly interesting to see how the
2-closure behaves in simplicial geometries (it certainly does not have good properties
for possibly non-simplicial oriented geometries in general).
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Another interesting point for comparison of [2]with the results here is the follow-
ing. If the poset of regions of a ûnite central hyperplane arrangement in a real vector
space is a lattice, then the base region is simplicial [2,_eorem 3.1]. However,we show
in Section 11 that the d-closure analogue of _eorem 1.5 (i) holds even if the simple
roots are linearly dependent (and the fundamental chamber therefore not simplicial).
_ese facts are not contradictory, as the Coxeter group case corresponds to an inû-
nite hyperplane arrangement and involves only a subset of the regions (those in the
W-orbit of the fundamental chamber, i.e., in the Tits cone).

2.10 Questions on Oriented Geometry Root Systems

Aûnal, subtle, pointwewish to raise concerning the conjectures in this paper (such as
2.5) is whether 2-closure is the natural closure operator for use in their formulation.
It may well not be, as it does not induce an antiexchange closure on the positive roots
in general (see Section 11).

It is a formal fact (the proof of which is similar to that of [2,_eorem 5.5] and not
given here) that if Conjecture 2.5 (i) holds for one closure relation, then the closure
operator a on Λ in which the closed sets are intersections of elements of B(Λ) has
B(Λ) as its a-biclosed sets and satisûes ⋁X = a(⋃Γ∈X Γ) for X ⊆B(Λ). It seems
possible that, if the conjectures hold for any closure operator on Φ, there may be
several diòerent natural closure operators e on Φ forwhich they hold (some evidence
for this can be seen in Section 11).

One natural candidate closure operator we wish to informally describe requires
notions of inûnite orientedmatroids, one deûnition ofwhich can be found in [7]. We
consider only a natural subclass, which we shall henceforth just call oriented geome-
tries, corresponding to oriented geometries in the case of ûnite, orientedmatroids (see
also [3, Exercise 3.13]). We shall not bemore precise as wemake only vague remarks
below.

Take aW × {±1}-set Ψ ∶= T × {±1} corresponding abstractly to theW × {±1}-set
of roots of (W , S) in its standard root systems (see 11.1). Consider oriented geometry
structures on this set, preserved by the W-action of (W , S), which restrict to the
standard oriented geometry structure on the roots of any dihedral re�ection subgroup
(the standard structure is the one obtained by transfer of structure from any of their
standard root systems) and for which the standard positive system Ψ+ ∶= T × {1} is
closed. Call such a structure an oriented geometry root system of W ; any standard
root system gives rise to one in this more general sense. Each oriented geometry root
system gives (by deûnition in [7]) a closure operator on Ψ; these include analogues
of the d-closures as previously considered, but onemight expect there could bemany
more (not for ûnite Coxeter groups, but at least for some inûnite non-aõne Coxeter
ones). _e closure operator on Ψ of interest (as a possibly natural one for use in the
conjectures) is the one which has as closed sets the intersections of closed sets for
these oriented geometry root system closure operators. It would also be interesting
(and possibly important in relation to the conjectures) to know to what extent the
results and conjectures of this paper can be extended to the groupoids introduced in
1.10 or the related and better studied groupoids such as as those in [6, 8,22] and [21],
which is explicitly concerned with weak order on Weyl groupoids.
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3 Example: Finite Dihedral Groups

In this section, a number of the objects attached to Coxeter groups in Section 1 are
explicitly described in the case of a ûnite dihedral groupW , and, at the end, illustrated
even more concretely by the example of the Weyl group of type A2. _e reader is
invited to consider the necessary changes for the inûnite dihedral group.

3.1 Closed Sets in Finite Dihedral Root Systems

_roughout this section,we consider a ûnite dihedralCoxeter system (W , S) of order
2m with simple roots Π = {α, γ}. _en

W = {1 = 1W , sα , sγ , sα sγ , sγsα , sα sγsα , . . . ,wS},

where wS ∶= (sα sγsα ⋅ ⋅ ⋅)m = (sγsα sγ ⋅ ⋅ ⋅)m is the longest element, and

Φ+ = {α, sα(γ), sα sγ(α), . . .}m = m{. . . , sγsα(γ), sγ(α), γ},

where each set on the previous line has m elements, and elements in corresponding
positions in the two listed sets are equal. _e order in which the elements are listed is
one of the two (mutually opposite) re�ection orders of Φ+; they are the two possible
orders in which a ray sweeping around the origin (beginning and ending with a ray
containing a negative root)would pass through the positive roots. For example,when
case (W , S) is of type A2, we have m = 3 and Φ+ = {α, β, γ}, where α = sγsα(γ),
β = α + γ = sα(γ) = sγ(α), and γ = sα sγ(α).

_e closed subsets ofΦ+ (in the general ûnite dihedral case) are the sets of positive
roots that can be obtained by deleting the ûrst j and last k roots from the list

α, sα(γ), sα sγ(α), . . . , sγsα(γ), sγ(α), γ

of elements of Φ+ in the above order, where j, k ∈ N with j + k ≤ n. _e biclosed sets
are the sets Φw forw ∈W ; they are the empty set togetherwith the subsets ofΦ+ that
are closed and contain a simple root.

3.2 Stable Subgroups and Subsemilattices

In this subsection, the stable subgroups and subsemilattices for theGalois connection
associated with R in Section 1.9 are described for the ûnite dihedral group W (the
analogous results for R′ can be obtained from this using the fact that Φ′

x = ΦxwS ).
Recall that xRz if and only if z(Φx) = Φx . Hence, 1Rw and wR1 for all w ∈ W . Also,
wRwS if and only if w = 1, and wSRw if and only if w = 1.

Let z, x ∈ W ∖{1,wS}. We claim that xRz if and only if z = sδ and x = sδwS for
some δ ∈ Φ+ with sδ /= wS . Suppose that xRz holds. _en z must be a re�ection, i.e.,
of odd length, since no non-identity rotation can ûx any non-empty set of positive
roots (such as Φx ) setwise. Suppose that z = sδ , where δ ∈ Φ+. _ere is some root
є ∈ Φx ∩Π since x /= 1. It follows that {є, sδ(є)}⊆Φx ⊆Φ′

sδ . But it is easy to check that
the le�-hand side is just Φ′

sδ , so equality holds throughout. Hence,Φx = Φ′
sδ = ΦsδwS

and x = sδwS . On the other hand, sδ(ΦsδwS ) = sδ(Φ′
sδ) = Φ′

sδ = ΦsδwS , and the claim
is proved.
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It now follows from the deûnitions that the pairs (G ,G∗) of stable subgroup G of
W and the corresponding stablemeet subsemilatticeG∗ ofW are (G =W ,G∗ = {1}),
(G = {1W},G∗ = W), and (G = {1, sδ},G∗ = {1, sδwS}) for δ ∈ Φ+ with sδ /= wS .
_ere are thus m + 1 stable pairs if m is odd, and m + 2 if m is even; the map w ↦
{w}∗ gives a bijection from the set of elements w ∈ W with w2 = 1W to the set of
stable subsemilattices. _e lattice of stable subgroups (resp., stable subsemilattices)
is a poset with W as the maximum element, {1W} as the minimum element, and all
other elements pairwise incomparable.

3.3 Standard Parabolic Weak Orders

_is subsection describes the standard parabolic weak orders LJ , where J ⊆ S, for the
ûnite dihedral group W .
First, the description of weak order is well known. _ere is a maximum element

wS ,minimum element 1, and exactly two maximal chains from 1 to wS , namely

1 < sα < sα sγ < sα sγsα < ⋅ ⋅ ⋅ < wS and 1 < sγ < sγsα < sγsα sγ < ⋅ ⋅ ⋅ < wS ,

both of length m, i.e., with m + 1 elements. _e poset L∅ is order isomorphic to
(W , ≤) under themap w ↦ Φw .

_e poset LJ for J = {sα} can be described as follows (the description for J =

{sγ} is obtained by symmetry). In this case, the poset LJ has a maximum element
⊺ ∶= Φ+ ∪ {−α} and a minimum element � = ∅. _e group {1, sα} acts by order
automorphisms of the poset by (w , Γ) ↦ w(Γ). _ere are 2n + 4 elements of LJ ,
namely ∅,Φ+ ∖{α}, {α,−α}, ⊺, and, for eachw ∈W with α ∈ Φw ,Φw , and sα(Φw).
_ere are six maximal chains from � to ⊺. _ree of themaximal chains are

∅ < Φsα = {α} < Φsα sγ < Φsα sγ sα < ⋅ ⋅ ⋅ < ΦwS = Φ+ < ⊺

(of length m + 1), ∅ < {α} < {α,−α} < ⊺ (of length 3) and, ∅ < Φ+ ∖{α} < Φ+ < ⊺
(also of length 3); the other threemaximal chains are obtained by acting on these by
sα .
Finally, we describe LS . _e group W acts on L (S) as a group of order auto-

morphisms. _e elements ofLS are theminimum element � = ∅,maximal element
⊺ = Φ, and elements Ψ+, Ψ+ ∖{δ}, Ψ+ ∪ {−δ′}, where Ψ+ runs over positive systems
of Φ and for each Ψ, δ and δ′ run over the simple roots of Ψ+. _ere are 6m + 2 ele-
ments of LS in all. _ere are 8m maximal chains from ∅ to Φ, all of length 4. _ey
are exactly the chains of the form ∅ < Ψ+ ∖{δ} < Ψ+ < Ψ+ ∪ {−δ′} < Φ for Ψ, δ, δ′
as above.

Remarks. It will be shown elsewhere in conjunction with a proof of Conjecture 2.2
for aõneWeyl groups that ifW is any ûnite Coxeter group, then LS is an ortholattice
with maximum element Φ,minimum element ∅, and in which everymaximal chain
from ∅ to Φ has length 2∣S∣. However, it has not been checked that the join is as in
Conjecture 2.5 (i).

3.4 The Type A2 Case

In this subsection, we take (W , S) of type A2 with notation as in Section 3.1, i.e.,
Π = {α, γ} and Φ+ = {α, β, γ}, where β = α + γ.
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_eHasse diagrams of the stable subgroups ordered by inclusion and correspond-
ing stable subsemilattices ordered by reverse inclusion are as follows:

W
��
� ??

? {1}
��� ???

{1, sα} {1, sγ} {1, sγsα} {1, sα sγ}

{1}

??? ���
W

??? ���

_eHasse diagram of the parabolic order LJ , where J = {sα}, is

{α, β, γ,−α}
jjjj

jj TTTTT
T

{α, β, γ} {α,−α}

tt
tt
tt
tt
tt
tt

JJ
JJ

JJ
JJ

JJ
JJ

{−α, γ, β}

{α, β} {−α, γ}

{α} {β, γ}

JJJJJJJJJJJJ

tttttttttttt
{−α}

∅

TTTTTTTTTTTT

jjjjjjjjjjj

Note that L{sα} is not graded; maximal chains can have diòerent cardinalities.
_eHasse diagram of the parabolic order LS is of the form

Φ
eeeeee

eeeeee
eeeeee

YYYYYY
YYYYYY

YYYYYY
YYYY

TTTT
TTTT

TTTT
T

jjjj
jjjj

jjjj
j

??
??

��
��

{α, β, γ,−α}
OOO

OOO
●

ooo
ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

{α, β, γ}
OOO

OOO
●

ooo
ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

OOO
OOO

OOO ●

ooo
ooo

ooo

{α, β} ● ● ● ● ●

∅

YYYYYYYYYYYYYYYYYYYY

TTTTTTTTTTTTT

????
����

jjjjjjjjjjjjj

eeeeeeeeeeeeeeeeeeeeee

where we have only explicitly indicated the elements of onemaximal chain.

4 Preliminaries

4.1 Finite Biclosed Subsets of the Positive Roots

Recall the terminology concerning biclosed sets from Section 1.11.

Lemma (i) For Γ ⊆Φ+ and x ∈ W , set x ⋅ Γ ∶= (Φx ∖ x(−Γ)) ∪ (x(Γ)∖ (−Φx)).
_en (w , Γ)↦ w ⋅ Γ gives an action of the group W on the power set P(Φ+).

(ii) x ⋅Φy = Φx y and x ⋅Φ′
y = Φ′

x y for x , y ∈W .
(iii) If Γ ⊆ Φ+ is biclosed, then w ⋅ Γ is biclosed for all w ∈W .
(iv) A ûnite subset Γ of Φ+ is biclosed if and only if it is of the form Γ = Φw for some

w ∈W .
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(v) Φx y = (Φx ∖ (−x(Φy))) ⊍ (x(Φy)∖ (−Φx)), where Φx ∩ x(Φy) = ∅, for any
x , y ∈W .

(vi) For x , y ∈ W , we have x ≤ xy if and only if l(xy) = l(x) + l(y) if and only if
Φx−1 ∩Φy = ∅ if and only if x(Φy)⊆Φ+ if and only if Φx y = Φx ⊍ x(Φy) if and
only if Φx ⊆Φx y if and only if x(Φy)⊆Φx y .

Proof _ere is aW-action (w ,A)↦ w ⋅ A = N(w) +wAw−1 on P(T), where

N(w) = N(W ,S)(w) ∶= {sα ∣ α ∈ Φw} = {t ∈ T ∣ l(tw) < l(w)}

and + denotes symmetric diòerence. _is action was used in [13, 14], for instance; the
fact that the formula gives an action follows from the cocycle property

N(xy) = N(x) + xN(y),

for x , y ∈ W . _e W-action on P(Φ+) in (i) is easily seen to be obtained from
this action by transfer of structure using the bijection α ↦ sα ∶Φ+ → T . For further
discussion of this action and of its geometric interpretation, see [16, 1.1–1.2].

_e formula in (i) immediately shows that Φy = y ⋅ ∅ and then Φx y = (xy) ⋅ ∅ =

x ⋅(y ⋅∅) = x ⋅Φy , proving the ûrst part of (ii). _e second part of (ii) follows since the
formula in (i) implies that x ⋅ (Φ+ ∖ Γ) = Φ+ ∖ (x ⋅ Γ). Part (iii) is proved by reducing
to the easily checked case of dihedral groups by considering the intersections of Γ
with the maximal dihedral re�ection subgroups (see 6.3) ofW ; see [20, Proposition
2.6]. Part (iv) was proved in [26] for the standard re�ection representation of [4, 23]
by a straightforward modiûcation of a well-known argument for ûniteWeyl groups.
Exactly the same argument as in [26] applies to the class of root systems we consider
here to establish (iv). Another proof of (iv) is as follows. Note that since ∅ is clearly
biclosed, so is Φx = x ⋅ ∅ for x ∈ W by (ii). _e reverse implication will be proved
using the easily checked fact that for any non-empty biclosed set ∆′, a root α ∈ ∆′

with sα ofminimal length must be simple; then ∣sα ⋅ ∆′∣ + 1 = ∣∆′∣. Let Γ be any ûnite
biclosed set and chose ∆ ofminimal cardinality in the orbit W ⋅ Γ. If ∆ /= ∅, applying
the above with ∆′ = ∆ gives a contradiction to minimality of ∣∆∣. Hence ∅ ∈ W ⋅ Γ,
Γ ∈W ⋅ ∅, and, say Γ = x ⋅ ∅ = Φx as required.
For (v)–(vi), note that the deûnitions give Φx−1 = −x−1(Φx). Part (v) is a straight-

forward consequence of (i)–(ii) and the fact that x−1(Φx ∩x(Φy)) = x−1(Φx)∩Φy =
−Φx−1 ∩ Φy ⊆Φ+ ∩ Φ− = ∅. _en (vi) follows easily from (v) on recalling that
l(z) = ∣Φz ∣ for any z ∈W .

4.2 A More General Order Isomorphism

_e following lemma will be used in Section 10 (cf. Corollary 1.6).

Lemma (i) For any x ∈W , themap Γ ↦ x ⋅ Γ induces an order isomorphism

{Γ ∈ B(Φ+) ∣ Γ ∩Φx−1 = ∅}
≅
Ð→ {∆ ∈ B(Φ+) ∣ Φx ⊆∆}.

(ii) If a non-empty subset X ofB(Φ+) is such that Γ ∩Φx−1 = ∅ for all Γ ∈ X, and X
has a join Λ = ⋁X in B(Λ), then Λ ∩Φx−1 = ∅.
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Proof _e map in (i) is the restriction of a similar order isomorphism with B re-
placed by P . Explicitly, the inverse bijections are Γ ↦ ∆ = Φx ∪ x(Γ) and ∆ ↦ Γ =

x−1(Γ∖Φx). One can put B in place ofP sinceB(Φ+)⊆P(Φ+) is W-stable.
For (ii), one notes that for all Γ ∈ X, one has Γ ⊆Φ′

x−1 ∈ B(Φ+), so Φ′
x−1 is an upper

bound for X and therefore ⋁X ⊆Φ′
x−1 i.e., Λ ∩Φx−1 = ∅.

4.3 Trivial Properties of Closure

_e following assorted simple facts are stated for future reference, omitting the proofs.

Lemma Let Γ, ∆⊆Φ and w ∈W .
(i) Recursively deûne Γ0 ∶= Γ and Γn+1 = ⋃α ,β∈Γn {α, β} for n ∈ N. _en we have

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ ⋅ ⋅ ⋅ and Γ = ⋃
n∈N

Γn .

(ii) w(Γ) = w(Γ).
(iii) Γ ∪ ∆⊇ Γ ∪ ∆ and Γ ∪ ∆ = Γ ∪ ∆.

5 Closure and Joins

Denote the join of a family of elements {x i} of W in weak order as ⋁i x i when it
exists (which it may not). Similarly, denote the meet as ⋀i x i when it exists. Also
write ⋁X and ⋀X for the join andmeet of X ⊆W when they exist. _is section will
prove_eorem 1.5 (i), describing joins in weak order in terms of 2-closure, and show
that (W , ≤) is a completemeet semilattice.

5.1 Joins in Cosets of Rank Two Standard Parabolic Subgroups

_e proof of_eorem 1.5 (i) begins with the following observation.

Lemma Let x ∈ W and α, β ∈ Π with x < y ∶= xsα and x < z ∶= xsβ . _en y
and z have an upper bound in (W , ≤) if and only if the standard parabolic subgroup
W ′ ∶= ⟨ sα , sβ ⟩ ofW is ûnite if and only if {α, β} is ûnite. In that case, let w denote the
longest element ofW ′. _en
(i) y ∨ z = xw,
(ii) Φxw = Φx ⊍ x(Φw) = Φx ⊍ {x(α), x(β)},
(iii) Φy∨z = Φx ⊍ (Φy ∖Φx) ∪ (Φz ∖Φx) = Φy ∪Φz .

Proof Since x < xsα and x < xsβ , it follows that x is the (unique) element ofminimal
length in the coset xW ′. Hence

l(xw′
) = l(x) + l(w′

), Φxw′ = Φx ⊍ x(Φw′), x ≤ xw′ ,

for all w′ ∈ W . In particular, Φy = Φx ⊍ {x(α)} and Φz = Φx ⊍ {x(β)}. Also note
that the set of positive roots of W ′ is {α, β}, so W ′ is ûnite if and only if {α, β} is
ûnite, and in that case the longest element w ofW ′ satisûes Φw = {α, β} and

Φxw = Φx ⊍ x{α, β} = Φx ⊍ {x(α), x(β)}.
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Finally, u ∈W is an upper bound of y and z if and only if Φy ⊆Φu and Φz ⊆Φu . _is
holds if and only if Φy ∪Φz ⊆Φu or, equivalently, if and only if Φy ∪Φz ⊆ Φu , since
Φu is closed.

Now suppose that an upper bound of y and z exists, and let u be any such upper
bound. From above, it follows that Φx ⊍{x(α), x(β)} ⊆ Φy ∪Φz ⊆Φu . In particular,
{x(α), x(β)} is ûnite, so W ′ is ûnite, Φxw ⊆ Φu , and xw ≤ u. Hence if an upper
bound for y and z exists, then W ′ is ûnite, and any upper bound u satisûes u ≥ xw.
On the other hand, ifW ′ is ûnite, then the above proves that Φy ,Φz ⊆ Φxw , so xw is
an upper bound of y and z. _e ûrst part of this paragraph with u = xw shows that
y ∨ z = xw and Φxw = Φx ⊍ {x(α), x(β)} ⊆ Φy ∪Φz ⊆Φxw . _is proves the ûrst
assertion of the lemma, and its parts (i)–(ii). Part (iii) follows from (i)–(ii) and what
has just been proved, using Φy ∖Φx = {x(α)} and Φz ∖Φx = {x(β)}.

5.2 Joins in Weak Order

_e following proof is quite similar to that of [2, Lemma 2.1], taking account of the
extra structure of concern here.

Proposition Suppose that x , y, z, u ∈ W with x ≤ y ≤ u and x ≤ z ≤ u. _en y ∨ z
exists and Φy∨z = Φx ⊍ (Φy ∖Φx) ∪ (Φz ∖Φx) = Φy ∪Φz .

Remarks. _e more complicated statement here as compared to the case ∣X∣ = 2 of
_eorem 1.5 (i) is only to facilitate the proof. _e two statements are equivalent, using
Corollary 1.6 (i). It can be shown that Conjecture 2.5 implies, for example, that for
Λ, Γ, ∆ ∈ B(Φ+) with Λ ⊆ Γ ∩ ∆, one has Γ ∪ ∆ = Λ ∪ (Γ∖Λ) ∪ (∆∖Λ).

Proof Observe that the union Φx ∪ (Φy ∖Φx) ∪ (Φz ∖Φx) is one of disjoint sets
since (Φy ∖Φx) ∪ (Φz ∖Φx) ⊆ Φ′

x = Φ′
x . Note that if x = y, then y ∨ z = x ∨ z = z

and the result is trivial, since Φz is closed. Similarly, the result is trivial if x = z.
In particular, the result holds if l(x) = l(u) (in which case x = y = z = u). _e
proposition will be proved by induction on N ∶= l(u) − l(x). Assume inductively
that N ∈ N>0 and the assertion of the proposition holds for all x , y, z, u satisfying
the hypotheses of the proposition with l(u) − l(x) < N . Let x , y, z, u satisfy the
hypotheses with l(u) − l(x) = N . As above, assume without loss of generality that
x /= y and x /= z.
Fix a simple re�ection r satisfying x < x′ ∶= xr ≤ z. Consider the following hy-

pothesis (H):

(H) y′ ∶= y ∨ x′ exists and Φy′ = Φx ⊍ (Φy ∖Φx) ∪ (Φx′ ∖Φx) = Φy ∪Φx′ .

We claim that (H) implies the conclusion (A) of the proposition:

(A) y ∨ z exists and Φy∨z = Φx ⊍ (Φy ∖Φx) ∪ (Φz ∖Φx) = Φy ∪Φz .

Assume for the proof of the claim that (H) holds. Since y ≤ u and x′ ≤ z ≤ u, it
follows that y′ = y ∨ x′ ≤ u. Hence there is a diagram indicating some of the order
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relations in (W , ≤) as follows:

u

y′
����

z

????

y
����

x′
����

???

x

����

????

Compute

Γ ∶= Φy ∪Φz ⊇ (Φy ∖Φx) ∪ (Φz ∖Φx) ∪Φx

= (Φy ∖Φx) ∪ (Φx′ ∖Φx) ∪ (Φz ∖Φx′) ∪Φx

= (Φy′ ∖Φx′) ∪ (Φx′ ∖Φx) ∪ (Φz ∖Φx′) ∪Φx

⊇ (Φy′ ∖Φx′) ∪ (Φz ∖Φx′) ∪ (Φx′ ∖Φx) ∪Φx

= (Φy′ ∖Φx′) ∪ (Φz ∖Φx′) ∪Φx′ =∶ ∆,

(5.1)

where we use (H) and Lemma 4.3 (iii) (resp., Lemma 4.3 (iii)) to get the third (resp.,
ûrst and fourth) line. Since l(u) − l(x′) = N − 1 < N , the inductive hypothesis
implies that y′ ∨ z exists and ∆ = Φy′∨z . Now ∆ ⊇ Φy′ ∪ Φz ⊇Φy ∪ Φz . Hence
∆ = ∆⊇Φy ∪Φz = Γ and so the containments in (5.1) are all equalities. Clearly, y′ ∨ z
is an upper bound for {y, z}. On the other hand, if v is any upper bound for {y, z},
then Φy ∪ Φz ⊆Φv , so Φy′∨z = Γ = Φy ∪Φz ⊆Φv , which implies y′ ∨ z ≤ v. _is
shows that y ∨ z exists and in fact that y ∨ z = y′ ∨ z. From (5.1) and Γ = ∆, it follows
that (A) holds. _is proves the claim that (H) implies (A).

Hence we are reduced to proving (H). Fix a simple re�ection s with x < xs ≤ y.
Consider the following hypothesis (H′):

(H′) xs ∨ xr exists and Φx s∨xr = Φx ⊍ (Φxr ∖Φx) ∪ (Φx s ∖Φx) = Φxr ∪Φx s .

Since x < xr ≤ u, x < y ≤ u, and l(u) − l(x) ≤ N , replacing (x , y, z, u, r) by
(x , xr, y, u, s) in the above proof that (H) implies (A), shows that (H′) implies (H).
Hence it remains only to prove (H′). But (H′) follows from Lemma 5.1, and so the
proof of the proposition is complete.

5.3 Meets From Joins

_e following well-known, simple facts are used in the argument to show that the
weak order on W is a completemeet semilattice.

Lemma Let (Λ, ⪯) be a poset with a minimum element, denoted �, such that for
every x ∈ Λ, {w ∈ W ∣ w ⪯ x} is ûnite. Assume that any two elements of Λ with an
upper bound have a least upper bound. _en Λ is a completemeet semi-lattice, i.e., any
non-empty subset of Λ has a greatest lower bound. Furthermore, any non-empty subset
with an upper bound has a least upper bound.
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Proof _e assumptions imply (by induction on ∣B∣) that the join ⋁B exists for any
ûnite non-empty subset B of Λ with an upper bound. Since any non-empty subset
with an upper bound is ûnite, it has a least upper bound, proving the last assertion.
Consider now any non-empty subset A of Λ. We need to show that the greatest lower
bound ⋀A exists. Consider the set B of lower bounds of A. For any a ∈ A, we have
b ≤ a for all b ∈ B, so B is ûnite, non-empty (it contains �), and bounded above. It
follows B has a join b ∶= ⋁B. For any a ∈ A, we have that a is an upper bound of B
and so b ≤ a. Hence b is a lower bound of A, i.e., b ∈ B. _is implies that b is the
maximum element of B, i.e., b = ⋀A as required.

5.4 The Semi-lattice Property of Weak Order

_e corollary below summarizes themain results of this section.

Corollary (i) (W , ≤) is a completemeet semilattice.
(ii) If a subset ofW has an upper bound in W , then it has a join in (W , ≤) given by

the formula in _eorem 1.5 (i).
(iii) IfW is ûnite, then themeet in W is given by the formula in _eorem 1.5 (ii).

Proof _e join of a family of two elements (with an upper bound) is given by _e-
orem 1.5 (i). _en the formula in 1.5 (i) follows for ûnite subsets X by induction on
∣X∣. _e formula in 1.5 (i) then applies to any non-empty subset X with an upper
bound, since such a set X is ûnite, proving (ii). Part (i) now follows from Lemma 5.3.
To prove (iii), recall that (assuming W ûnite) the longest element wS of W satisûes
wSΦ+ = −Φ+, w2

S = 1W , and Φ′
x = ΦxwS for all x ∈ W . Further, themap x ↦ xwS is

an order-reversing bijection ofW with itself. (See [1, 2.3.1, 2.3.2, 3.2.2] for these well-
known facts). Now _eorem 1.5 (ii) for ûniteW follows easily from _eorem 1.5 (i)
using these facts.

Remarks. If X = {x , y}⊆W and ⋁X exists, a similar (essentially, dual) argument
to the proof of Proposition 5.2 shows that the meet ⋀X is given by the formula in
_eorem 1.5 (ii); in particular, this argument can be extended to give another proof of
Corollary 5.4 (iii). However, X need not have a join, so one needs a diòerent argument
to prove_eorem 1.5 (ii) in general.

5.5 Proof of Corollary 1.6

Corollary 1.6 (i) is an easy consequence of the deûnitions [1, Proposition 3.1.6]. Using
Lemma 4.1 (vi), Corollary 1.6 (ii) says that the domain Dx of the order isomorphism
in (i) is closed under taking those joins that exist in W . _is holds since

Dx ∶= {u ∈W ∣ Φu ⊆Φ′
x−1},

so ifU ⊆Dx , thenΦy = ⋃u∈U Φu ⊆⋃u∈U Φ′
x−1 = Φ′

x−1 by_eorem 1.5 (i) and therefore
y ∈ Dx .
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6 Closure and Chevalley–Bruhat Order

_is section proves Lemma 1.7 a�er giving requisite background on the Bruhat graph
and re�ection subgroups.

6.1 Bruhat Graph

Deûne an edge-labelled, directed graph called the Bruhat graphΩ = Ω(W ,S) of (W , S)
as follows [12]. _e vertex set of Ω is W . _ere is an edge (x , y) from x to y for each
x , y ∈W such that l(x) < l(y) and y = sαx for some (necessarily unique) α ∈ Φ+. Let
E = E(W ,S) denote the set of edges ofΩ. EndowΩ with an edge labelling by attaching
to the edge (x , y) ∈ E as above the label Lx ,y ∶= α where α ∈ Φ+ with y = sαx. For
any subset V ofW , let Ω(V) denote the full edge-labelled subgraph of Ω on vertex
set V , i.e., with edge set E ∩ (V × V)).

6.2 Bruhat Order

_e Chevalley–Bruhat order,which is denoted here either as ≤∅ to distinguish it from
weak order or as ≤W ,∅ to indicate dependence onW , is the partial order onW deûned
by the condition that x ≤∅ y if and only if there is n ∈ N and a path of length n from
x to y in E, i.e., there exist x = x0 , x1 , . . . , xn = y in W such that (x i−1 , x i) ∈ E for
i = 1, . . . , n. Write [x , y]∅ = [x , y]W ,∅ ∶= {z ∈W ∣ x ≤∅ z ≤∅ y}.

Note that the Hasse diagram of the Chevalley–Bruhat order, when regarded as a
directed graph with edges (x , y) for x , y ∈ W with x <∅ y and l(y) = l(x) + 1, is a
subgraph of Ω. _en Φx ,1 (resp., Φx ,−1) as deûned in Section 1.7 is the set of labels
in Ω of edges of the directed Hasse diagram with x as initial (resp., terminal) vertex,
corresponding to the elementswhich cover (resp.,which are covered by) x in the order
≤∅.

6.3 Maximal Dihedral Reflection Subgroups

From [11], any re�ection subgroup W ′ of W , i.e., a subgroup W ′ = ⟨W ′ ∩ T ⟩, has
a canonical set of Coxeter generators χ(W ′) = {t ∈ T ∣ N(t) ∩W ′ = {t}} (with
respect to the simple re�ections S ofW). Always considerW ′ as a Coxeter groupwith
simple re�ections χ(W ′), unless otherwise stated. Recall that W ′ has a root system
ΦW′ ∶= {α ∈ Φ ∣ sα ∈W} (in the class of root systems considered in [18])with positive
roots Φ+ ∩ ΦW′ and simple roots ΠW′ ∶= {α ∈ Φ+ ∣ sα ∈ χ(W ′)}. _e maximal
dihedral re�ection subgroups ofW are the dihedral re�ection subgroups, i.e., those
generated by two distinct re�ections)which aremaximal under inclusion amongst the
dihedral re�ection subgroups; equivalently, they are the re�ection subgroupsW ′ with
∣ΠW′ ∣ = 2 and ΦW′ = Φ ∩ RΠW′ [12, Remark 3.2]. Let M be the set of all maximal
dihedral re�ection subgroups. For α ∈ Φ, let Mα ∶= {W ′ ∈ M ∣ sα ∈W ′}.

6.4 Reflection Subgroups and the Bruhat Graph

_e following lemma collects some basic facts about cosets of re�ection subgroups in
relation to the Bruhat graph.
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Lemma (i) Let W ′ be a re�ection subgroup ofW , S′ ∶= χ(W ′). For any x ∈ W ,
there is a unique element u = x′W′ ofW ′x of minimal length l(u). For any w ∈

W ′, one has N(W ,S)(wu) ∩ W ′ = N(W′ ,S′)(w). _e map z ↦ zu induces an
isomorphism of edge-labelled directed graphs Ω(W′ ,S′)

≅
Ð→ Ω(W ,S)(W ′x).

(ii) Let (x , y) ∈ E and α = L(x , y). For anyW ′ ∈ Mα , let u = x′W′ denote the element
ofminimal length in W ′x = W ′y, xW′ ∶= xu−1 ∈ W ′, and yW ∶= yu−1 = sαxW′ ∈

W ′. _en xW′ ≤W′ ,∅ yW′ and the map z ↦ zu induces an isomorphism of edge-
labelled directed graphs ΩW′([xW′ , yW′]W′ ,∅)→ ΩW([x , y]W ,∅ ∩ xW ′).

(iii) If (x , y) ∈ E, L(x , y) = α, and l(y) − l(x) ≥ 3, there is someW ′ ∈ M such that
lW′(yW′) − lW′(xW′) ≥ 3, where lW′ is the length function on (W ′ , χ(W ′)).

Proof Part (i) is from [11, 12], and (ii) follows from (i) (see also [13, (1.4)]). An ad
hoc proof of (iii) is given in [12]. A more natural argument for (iii) is to note that in
the identity

(6.1) l(y) − l(x) − 1 = ∑
W′∈Mα

(lW′(yW′) − lW′(xW′) − 1),

which holds for (x , y) ∈ E with y = sαx, α ∈ Φ+, the le�-hand side and terms on the
right are even elements of N, since

yW′ = sαxW′ >W′ ,∅ xW′ .

_is identity and argument are given in a more general context as [13, (1.2.1), (2.7)–
(2.8)]. A simple direct proof of (6.1) in the special situation here can be given as fol-
lows. Since α ∈ Φ+, it follows that Φ+ ∖{α} = ⊍W′∈Mα(ΦW′ ,+ ∖{α}). Since α ∈ Φy ,
(i) implies that

l(y) − 1 = ∣Φy ∖{α}∣ = ∑
W′∈Mα

∣(Φy ∖{α}) ∩ΦW′<+∣

= ∑
W′∈Mα

∣ΦyW′ ,W′ ∖{α}∣ = ∑
W′∈Mα

(lW′(yW′) − 1).

Similarly, since α /∈ Φx ,

l(x) = ∣Φx ∣ = ∑
W′∈Mα

∣Φx ∩ΦW′ ,+∣ = ∑
W′∈Mα

∣ΦxW′ ,W′ ∣ = ∑
W′∈Mα

lW′(xW′)

and (6.1) follows on subtracting.

6.5 Closure and the Bruhat Graph (Proof of Lemma 1.7).

For any Γ ⊆Φ+, write Γ̂ = ⋃α ,β∈Γ {α, β}. Recall that Φx ,n = ∅ for even n. By Lemma
4.3 (i), it will suõce to prove the following two assertions for any x ∈W and n ∈ N.

(i) Let Γ ⊆Φ′
x . _en Γ̂ ∩Φx ,1 = Γ ∩Φx ,1, and if Γ ⊇ ⋃ j∈N≤n Φx ,2 j+1, then

Γ̂ ⊇ ⋃
j∈N≤n+1

Φx ,2 j+1 .

(ii) Let Γ ⊆Φx . _en Γ̂ ∩Φx ,−1 = Γ ∩Φx ,−1, and if Γ ⊇ ⋃ j∈N≤n Φx ,−(2 j+1), then

Γ̂ ⊇ ⋃
j∈N≤n+1

Φx ,−(2 j+1) .
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_eproof of bothparts is by reduction to the case of dihedral groups using Lemma 6.4;
the proof is given only for (i), since that of (ii) is entirely similar.

Let Γ ⊆Φ′
x . Obviously, Γ ⊆ Γ̂ implies that Γ ∩ Φx ,1 ⊆ Γ̂ ∩ Φx ,1. For the reverse in-

clusion, suppose α ∈ (Γ̂∖ Γ) ∩ Φx ,1. _en α = cβ + dγ, where c, d ∈ R≥0 and
β, γ ∈ Γ. Since α /∈ Γ, it follows that c, d > 0 and β /= γ. _ere is W ′ ∈ M with
ΦW′ = Φ ∩ (Rβ +Rγ). In fact,W ′ ∈ Mα . For δ ∈ {α, β, γ}, we have l(sδx) > l(x),
and so from Lemma 6.4 (ii), lW′(sδxu) > lW′(xu), where u ∶= x′−1

W′ . Suppose the no-
tation is chosen so that lW′(sβxu) ≤ lW′(sγxu). From the well-known descriptions
of dihedral groups and their root systems, one checks that the above conditions imply
that lW′(sαxu) > lW′(sβxu), and hence there is a path of non-zero length from sβxu
to sαxu in ΩW′ . From 6.4 (ii) again, it follows that there is a path of non-zero length
from sβx to sαx in Ω and so l(x) + 1 = l(sαx) > l(sβx) ≥ l(x) + 1, a contradiction
which completes the proof that Γ ∩Φx ,1 = Γ̂ ∩Φx ,1.

Toprove the secondpart of (i), take Γ ⊆Φ′
x with Γ ⊇ ⋃ j∈N≤n Φx ,2 j+1. Let α ∈ Φx ,2n+3

i.e., α ∈ Φ+ with l(sαx) = l(x) + (2n + 3). It will suõce to show that α ∈ Γ̂. Since
l(sαx) − l(x) ≥ 3, Lemma 6.4 (iii) implies that there exists W ′ ∈ Mα such that
lW′(sαxu) − lW′(xu) ≥ 3, where u ∶= x′−1

W′ . Now there are distinct roots β, γ ∈ ΦW′ ,+
such that lW′(sβxu) = lW′(sγxu) = lW′(xu) + 1. Again using the descriptions of
dihedral groups and their root systems, one checks that α ∈ R>0β + R>0γ and that
there are paths of non-zero lengths in ΩW′ from sβxu to sαxu and from sγxu to sαxu.
By Lemma 6.4 (ii) again, there are paths in Ω of non-zero length from sβx to sαx and
from sγx to sαx. Hence, l(x) < l(sβx) < l(sαx) = l(x) + 2n + 3 and l(x) < l(sγx) <
l(sαx) = l(x)+2n+3. _is implies that β, γ ∈ ⋃ j∈N≤n Φx ,2 j+1 ⊆ Γ and so α ∈ {β, γ}⊆ Γ̂
as claimed.

7 Closure and Meets

In this section,_eorem 1.5 (ii) is deduced from themore general statement _eorem
7.1, which is itself a special case of Conjecture 2.5.

7.1 Cofinite Closures of Coclosed Sets Are Biclosed

_eorem Let Γ be any coclosed subset of Φ+ such that Γ has ûnite complement in
Φ+. _en Γ is biclosed, i.e., Γ = Φ′

x for some x ∈W .

Proof _e following trivial fact is used below. If v is a non-minimum, non-maxi-
mum element of a dihedral re�ection subgroup W ′ in its Chevalley–Bruhat order
≤W′ ,∅, then one can write ΠW′ = {α′ , β′}, where sα′v <W′ ,∅ v <W′ ,∅ sβ′v.

_e theorem is proved by induction on n ∶= ∣Φ+ ∖ Γ∣. If n = 0, then Γ = Φ+ is
obviously biclosed. Suppose next that n > 0, i.e. Γ /= Φ+. By Lemma 1.7 (ii), there is
α ∈ Π∖ Γ. Abbreviate s ∶= sα . We claim that Γ′ = s ⋅ Γ is coclosed; this follows by a
similar reduction to the dihedral case as that for Lemma 4.1 (iii) (note α /∈ Γ is essential
this time, since it is so in the dihedral case). Since α /∈ Γ ⊆Φ+, it follows that α /∈ Γ.
Hence, Γ′ = {α} ∪ s(Γ)⊇{α}∪ s(Γ) = {α}∪ s(Γ). _is shows that themap β ↦ s(β)
indexes an injection Φ+ ∖ Γ′ → Φ+ ∖ (Γ ⊍ {α}), and hence that ∣Φ+ ∖ Γ′∣ < ∣Φ+ ∖ Γ∣.
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By induction, there exists x ∈ W such that Γ′ = Φ′
sx . Since α ∈ Γ′, this implies that

α ∈ Φ′
sx , α /∈ Φsx , and α ∈ Φx , i.e., l(sx) < l(x). To prove the theorem, it will be

shown that Γ = Φ′
x .

By Lemma 1.7 (ii), Γ′ ⊇Φsx ,1 and it will suõce to show that Γ ⊇Φx ,1. Let β ∈ Φx ,1,
i.e., β ∈ Φ+ with l(sβx) = l(x) + 1. Let z ∶= sβx. By the Z-property of the Bruhat
order [13] and the fact that each length two Bruhat interval has four elements, the
situation is as in one of the following two diagrams that show vertices, edges, and
edge labels appearing in paths (all paths from sx to z if l(sz) < l(z), or from sx to sz
if l(sz) > l(z)) in the Bruhat graph Ω.

z sz

sz

α
>>}}}}}}}}

x

β
``@@@@@@@@

sy

s(γ)
>>}}}}}}}}

z

α
``@@@@@@@@

sx
s(β)

``@@@@@@@@ α

??��������
y

α
OO γ 77ooooooooooooooo x

β

OOδggOOOOOOOOOOOOOOO

sx

s(β)

OO

s(δ)

``AAAAAAAA α

>>~~~~~~~~

Consider ûrst the case that l(sz) < l(z). _en s(β) ∈ Φsx ,1 ∖{α}⊆ Γ′ ∖{α} =

s(Γ), so β ∈ Γ as desired in this case. Considernow the contrary case that l(sz) > l(z).
LetW ′ ∈ M withΦW′ = Φ∩(Rα+Rβ). Multiplying the vertex labels of this diagram
by u ∶= x′−1

W′ on the right gives a corresponding diagram in ΩW′ . One necessarily has
lW′(szu) = lW′(sxu) + 3.

Since α ∈ ΠW′ , inspecting the vertex xu of the resulting diagram and using the
trivial fact at the start of the proof shows that either ΠW′ = {α, δ} or ΠW′ = {α, β}.
_e ûrst case cannot occur, since then syu would be the longest element ofW ′,which
it is not, since it is the initial vertex of an edge (syu, szu). _erefore, ΠW′ = {α, β}
and δ /∈ ΠW′ . Now Γ ∩ΦW′ ,+ is coclosed in ΦW′ ,+, and from the ûrst case, it follows
that δ ∈ Γ ∩ ΦW′ ,+. By examining the possible coclosed sets in dihedral groups, one
sees that this implies that either α ∈ Γ ∩ ΦW′ ,+ (which is false here, since α /∈ Γ) or
β ∈ Γ ∩ ΦW′ ,+. Hence, β ∈ Γ whether l(sz) < l(z) or l(sz) > l(z). _is shows that
Φx ,1 ⊆ Γ and completes the proof.

7.2 Closure and Meets (Proof of Theorem 1.5 (ii))

To prove_eorem 1.5 (ii), consider ∆, where X is a non-empty subset ofW and ∆ ∶=
⋃x∈X Φ′

x . Note that ∆ has ûnite complement in Φ+ (as ∆ itself does, since ∣X∣ ≥ 1).
Also, ⋃x∈X Φ′

x is a union of biclosed sets, so it is coclosed, and therefore ∆ = Φ′
y for

some y ∈ W by _eorem 7.1. One can check that y = ⋀X in weak order as follows.
For any x ∈ X, Φ′

x ⊆∆ = Φ′
y implies Φy ⊆ Φx , so y is a lower bound for X. On the

other hand, if z is any lower bound of X, thenΦz ⊆Φx for all x ∈ X, so ∆ ⊆ Φ′
z . Taking

closures, Φ′
y = ∆⊆Φ′

z so Φz ⊆Φy and z ≤ y. Hence y = ⋀X and 1.5 (ii) follows.
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7.3 Closure of the Union of Finite and Cofinite Biclosed Sets

_e following corollary is another special case of Conjecture 2.5 (i).

Corollary Let x , y ∈ W . _en Φx ∪Φ′
y = Φ′

z for some z ∈ W . _e element z is the
maximum element in weak order of the set {w ∈W ∣ w ≤ y, l(x−1w) = l(x) + l(w)}.

Proof _is follows easily from the theorem by taking Γ ∶= Φx ∪Φ′
y . _e details are

omitted.

8 Closure of the Union of a Biclosed Set and a Root

In general, if Γ is biclosed and α ∈ Φ+, then Γ ∪ {α} need not be biclosed. _ere
need not even be a unique inclusion-minimal biclosed set containing Γ ∪ {α}; for
example, consider Γ = ∅, (W , S) of type A2 and α the highest root. _eorem 1.8,
which is proved in this section, gives suõcient (but far from necessary) conditions to
ensure that such a closure is biclosed when either Γ or Φ+ ∖ Γ ûnite.

8.1 Closures in Dihedral Groups

_e proof of_eorem 1.8 is by reduction to the case of dihedral groups. _e following
trivial lemma isolates some relevant properties of dihedral groups for the proof of
_eorem 1.8 (i).

Lemma Assume that (W , S) is dihedral. Let α ∈ Φ+.
(i) For w ∈W with l(sαw) = l(w) + 1, exactly one of the following three possibilities

occurs.
(a) α ∈ Π, w = 1W , and (Φw ∪Φsaw)∖{α} = ∅.
(b) α ∈ Π, w /= 1W , and (Φw ∪Φsaw)∖{α} = Φ+ ∖{α}.
(c) α /∈ Π, Φsaw = Φw ⊍ {α}, and (Φw ∪Φsaw)∖{α} = Φw .

(ii) Assume that α /∈ Π. IfW is inûnite, there is a unique w ∈ W satisfying (i) (c). If
W is ûnite, there are exactly two elements w ∈W satisfying (i) (c); denoting them
as w′ and w′′, one has Φ+ = Φw′ ⊍ {α} ⊍Φw′′ .

8.2 Closure After Adjoining a Root (Proof of Theorem 1.8).

We prove (i). As in Lemma 6.4, for any W ′ ∈ Mα and p ∈ W , write p = pW′ p′W′ ,
where pW′ ∈W ′ and p′W′ is the element ofminimal length in W ′p. Also write

Φp,W′ ∶= Φp ∩ΦW′ = ΦW′ ,+ ∩ p′W′(ΦW′ ,+),

where the right-hand equality is by Lemma 6.4 (i). Note α /∈ Φx . Set z = sαx. _en
z′W′ = x′W′ and zW′ = sαxW′ . From 6.4 (ii), it follows that lW′(sαxW′) = lW′(zW′) =

lW′(xW′) + 1. Lemma 8.1 implies that ΦxW′ ,W′ ∪ {α} = ΦxW′ ,W′ ∪Φsα xW′ ,W′ . So

Φx ∪ {α} = ⋃
W′∈Mα

ΦxW′ ,W′ ∪ {α} = ⋃
W′∈Mα

(ΦxW′ ,W′ ∪ΦsaxW′ ,W′) = Φx ∪Φsα x .
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Since Φx ∪ {α}⊆Φv , it follows that Φx ∪Φsα x = Φx ∪ {α}⊆Φv , i.e., v is an upper
bound for x and sαx inweak order. Let y ∶= x∨sαx, so by_eorem1.5 (i),Φx ∪Φsα x =

Φx ∪ {α} = Φy ⊆Φv . If z ∈ W with x ≤ z and α ∈ Φz , then Φy = Φx ∪ {α}⊆Φz .
Hence, y is theminimal element of {z ∈W ∣ x ≤ z, α ∈ Φz}.
Clearly, α ∈ Φy , so l(sα y) < l(y). Since x ≤ y, it is possible to write y = xu,

where l(y) = l(x) + l(u). Note that u /= 1W , since α ∈ Φy ∖Φx . Choose τ ∈ Π
such that l(usτ) < l(u). _en x ≤ ysτ < y. Since Φy = Φx ∪ {α}, it follows that
α /∈ Φysτ and therefore α ∈ Φy ∖Φysτ = {−y(τ)}. In particular, sα y = ysτ < y and
Φsα y = Φy ∖{α}. Obviously, (Φx ∪Φsα x)∖{α}⊆Φy ∖{α} = Φsα y since Φy ∖{α}
is closed. To complete the proof of (i), it will suõce to verify the following claim:

Φsα y ⊆ (Φx ∪Φsα x)∖{α}.
From Lemma 1.7, it follows both that Φx ∪{α}⊇Φy ,−1 and that it will suõce to show
that (Φx ∪Φsα x)∖{α}⊇Φsα y ,−1.
Abbreviate sα = s, sτ = r so sy = yr and r ∈ S. Let β ∈ Φsy ,−1, i.e., β ∈ Φ+ with

l(sβsy) = l(sy) − 1. Set z ∶= sβsy. Similarly as in Section 7.1, we have one of the
possibilities indicated by the following diagrams of vertices, edges, and edge labels
appearing in paths (all paths from z to y if l(zr) > l(z), or from zr to y if l(zr) < l(z))
in the Bruhat graph Ω.

y y

zr

β
??��������

yr

α
__????????

w

δ
>>}}}}}}}}

yr

α
``@@@@@@@@

z
γ

__@@@@@@@@ β

>>~~~~~~~
wr

є

OO δ 66nnnnnnnnnnnnnn z

β
OOγhhPPPPPPPPPPPPPPP

zr

β

OO

γ

aaCCCCCCCC ρ

==||||||||

Consider ûrst the case that l(zr) > l(z). _en β ∈ Φy ,−1 ∖{α}⊆Φx , so β ∈

(Φx ∪Φsx)∖{α} as desired in this case. Consider now the contrary case that l(zr) <
l(z). Let W ′ ∈ M with ΦW′ = Φ ∩ (Rα + Rβ). Multiplying the vertex labels of the
second diagram by u ∶= y′−1

W′ on the right, gives a corresponding diagram in ΩW′ .
One necessarily has lW′(yu) = lW′(zru) + 3. Note that sα(xW′) = (sax)W′ and
sα(yW′) = (sα y)W′ . By the argument in the ûrst case, δ ∈ Φx . Hence ,δ ∈ Φx ,W′ and
xW′ /= 1W′ . If α ∈ ΠW′ , then Lemma 8.1 (i) gives

β ∈ ΦW′ ,+ ∖{α} = (Φx ,W′ ∪Φsax ,W′)∖{α}⊆ (Φx ∪Φsα x)∖{α}
as required. So we can assume that α /∈ ΠW′ . Lemma 8.1 (i) implies that δ ∈ Φx ,W′ =

Φsα x ,W′ ∖{α}. Also, since Φsα y = Φy ∖{α}, we have δ ∈ Φsα y ,W′ = Φy ,W′ ∖{α}.
_us, Lemma 8.1 (ii) implies that xW′ = sα yW′ . From the above diagram, β ∈ Φy so

β ∈ Φy ,W′ ∖{α} = Φsα y ,W′ = Φx ,W′ ⊆ (Φx ,W′ ∪Φsα x ,W′)∖{α}⊆ (Φx ∪Φsα x)∖{α}
as required.
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_eproof of_eorem1.8 (ii) is very similar to that of_eorem1.8 (i) and is omitted.

8.3 Fibering the Closure Over a Newly Adjoined Root

_eorem 1.8 implies that Φy in (i) (resp., Φ′
y in (ii)) is well ûbered over α in the fol-

lowing sense: for any W ′ ∈ Mα , the intersection of Φy (resp., Φ′
y) with the plane

spanned by the roots of W ′ consists of all positive roots lying in a ûxed one of the
two closed half-planes in that plane bounded by the line spanned by α; for all but the
ûnitely manyW ′ ∈ Mα for which sα /∈ ΠW′ , this intersection is either ΦW′ ,+ or {α}.

Higher-dimensional analogues of this phenomenon, involving closures of sets ob-
tained by adjoining all roots of a suitable re�ection subgroup, may be expected but
remain conjectural in general. _e corollary below is the simplest result of this type.

Corollary Let WJ be a ûnite parabolic subgroup ofW with longest element wJ . Let
x ∈ W such that l(wJx) = l(wJ) + l(x) and y ∶= wJ ∨ x exists in weak order on W .
Write y = wJz.
(i) u ∨ z = uz and Φu∨z = Φu ⊍Φz for all u ∈WJ .
(ii) For any α ∈ ΦWJ ,+ and any W ′ ∈ Mα , either ΦW′ ,+ ⊆Φy or ΦW′ ,+ ∩Φy = {α}.

Proof Note that x and z are the minimal length elements of their cosets WJx and
WJz, respectively, so for any u ∈WJ , l(ux) = l(u) + l(x) and l(uz) = l(u) + l(z).

It is well known that themap s ↦ wJswJ deûnes a bijection θ∶ J → J. Now for any
s ∈ J,wJz = wJ∨x = (s∨wJ∖{s})∨x = s∨(wJ∖{s}∨x). SinceΦw J∖{s}∩Φs = ∅ = Φx∩Φs ,
Corollary 1.6 implies that Φw J∖{s}∨x ∩ Φs = ∅. From _eorem 1.8, it follows that
wJz = s ∨ swJz. Using that θ is a bijection,

(wJs)z = θ(s)wJz ≤ θ(s) ∨ θ(s)wJz = wJz = (wJs)(sz).

Since l((wJs)z) = l(wJs) + l(z) and l((wJs))(sz)) = l(wJs) + l(sz), this implies
that z ≤ sz. Write sz = zs′, where s′ ∈ S. Varying s gives a bijection s ↦ s′∶ J → K for
some subset K of S. _is bijection extends to a group isomorphism WJ → WK that
will be denoted as u ↦ u′. Note that uz = zu′ for all u ∈ WJ . Now z is the minimal
length element in WJz and in zWK . Let u ∈WJ . _en l(uz) = l(zu′) = l(z) + l(u) =
l(z) + l(u′). _is implies that z ≤ uz, u ≤ uz, and therefore z ∨ u ≤ uz. Since

l(z ∨ u) = ∣Φz∨u ∣ ≥ ∣Φz ∪Φu ∣ = ∣Φz ⊍Φu ∣ = ∣Φz ∣ + ∣Φu ∣ = l(u) + l(z) = l(uz),

it follows that z ∨ u = uz and Φu∨z = Φu ⊍Φz , proving (i).
Now let α,W ′ be as in (ii). IfW ′ ⊆WJ , then ΦW′ ,+ ⊆ΦWJ ,+ = Φw J ,+ ⊆Φy . Other-

wise, ΦWJ ∩ΦW′ ,+ = {α} (sinceWJ ûnite-parabolic implies ΦWJ = Φ ∩RΦWJ ). _is
implies that α ∈ ΠW′ . Choose u ∈ WJ , r ∈ J so that sα = uru−1 and l(sα) = 2l(u) + 1.
_en sαu = ur > u, so {α} ∪Φu = Φsαu . Also, sαuz = urz = uzr′ > uz so {α} ∪Φuz =
Φsauz . From the remarks at the start of this subsection, either ΦW′ ∩Φsαuz = ΦW′ ,+
or ΦW′ ∩ Φsαuz = {α}. Since Φsauz = Φsαu ⊍ Φz and Φy = Φw J z = Φw J ⊍ Φz with
Φsαu ∩ΦW′ ,+ = {α} = Φw J ∩ΦW′ ,+, (ii) follows.

325

https://doi.org/10.4153/CJM-2017-059-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-059-0


M. Dyer

9 Galois Connections

In this section,_eorem 1.9 and its dual are proved.

9.1 First Galois Connection (Proof of Theorem 1.9)

Assume that x , z ∈ W with xRz, i.e., z(Φx) = Φx . _en Φx ∩Φz−1 = ∅ and l(zx) =
l(z) + l(x). Also, xRz−1 holds since z−1(Φx) = Φx . _is proves (ii). Note that Φx ∪
Φz = Φz ⊍z(Φx) = Φzx , so clearly z∨x = zx. _is proves “⇒” for the le� implication
in (i). For the reverse implication, suppose that x ∨ z = zx and Φx ∩ Φz = ∅. From
the ûrst equation, z ≤ zx, so l(zx) = l(z) + l(x). Also, the two equations imply that
Φx⊍Φz ⊆Φzx ,where the le�-hand side has cardinality l(x)+ l(z) and the right-hand
side has cardinality l(zx) = l(z)+l(x). _is implies thatΦx⊍Φz = Φzx = Φz⊍z(Φx)
and so z(Φx) = Φx . It remains to prove the equivalence on the right-hand side of (i).
_e implication “⇐” is trivial, and the converse follows since, if Φx ∩Φz = ∅, then

∣Φx∨z ∣ ≥ ∣Φx ⊍Φz ∣ ≥ ∣Φx ∣ + ∣Φz ∣ = l(z) + l(x) ≥ l(zx) = ∣Φzx ∣.

_is completes the proof of (i).
For X ⊆W , X† = {z ∈ W ∣ z(Φx) = Φx for all x ∈ X} is clearly a subgroup ofW ,

proving (iii). To prove (iv), consider a subset Z ofW and let

L ∶= Z∗ = {x ∈W ∣ x ∨ z = zx ,Φx ∩Φz = ∅ for all z ∈ Z}.

Obviously 1W ∈ L . Suppose, given a non-empty subset A of L , say with a′ ∈ A, let
a′′ ∶= ⋀A in (W , ≤). Let z ∈ Z. Note that a′′ ≤ a′ implies thatΦz∩Φa′′ ⊆Φz∩Φa′ = ∅
for all z ∈ Z. Furthermore, l(za) = l(z) + l(a) for all a ∈ A; in particular, since
a′′ ≤ a′ ∈ A, it follows that l(za′′) = l(z) + l(a′′) and

(9.1) z ∨ a′′ = z ∨ (⋀A) ≤ ⋀
a∈A

(z ∨ a) = ⋀
a∈A

za = z( ⋀
a∈A
a)= za′′

using Corollary 1.6 (i). Since Φz ∩Φa′′ = ∅, we have

l(z ∨ a′′) = ∣Φz⋁ a′′ ∣ ≥ ∣Φz ⊍Φa′′ ∣ = ∣Φz ∣ + ∣Φa′′ ∣ = l(z) + l(a′′) = l(za′′),

and the equality holds throughout (9.1). Hence a′′ ∈ L and so a′′ is obviously the
greatest lower bound of A in L . _is proves (iv). It remains to prove (v). Maintain
the notation in the proof of (iv), but suppose now that A has a join b in (W , ≤). From
Φz ∩Φa = ∅ and l(za) = l(z) + l(a) for all a ∈ A, it follows that Φb ∩Φz = ∅ and
l(zb) = l(z) + l(b) by Corollary 1.6 (ii). Hence,

z ∨ b = z ∨ (⋁A) = ⋁
a∈A

(z ∨ a) = ⋁
a∈A

za = z( ⋁
a∈A
a)= zb

by Corollary 1.6 (i). _is completes the proof of (v) and of the theorem.

9.2 Second Galois Connection

_e dual result to _eorem 1.9 will now be formulated and its proof sketched. Deûne
a relation R′ on W by xR′z if and only if z(Φ′

x) = Φ′
x for x , z ∈ W . Deûne the two

maps X ↦ X†′ and Z ↦ Z∗
′
from P(W) → P(W) by replacing R by R′ in the
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analogous deûnition in Section 1.9. Also deûne the corresponding families of stable
subsets

W ′
∗ ∶= {L ∈ P(W) ∣ L †′∗′

= L } = {Z∗
′
∣ Z ∈ P(W)},

W ′
† ∶= {G ∈ P(W) ∣ G ∗′†′

= G } = {X†′
∣ X ∈ P(W)}.

_eorem (i) One has

xR′z ⇐⇒ (Φ′
x ∪Φz = Φ′

zx and Φ′
x ∩Φz = ∅) ⇐⇒ Φz ⊍Φ′

x = Φ′
zx .

(ii) If xR′z, then z ≤ x, l(x) − l(z) = l(z−1x) and xR′z−1.
(iii) _e elements ofW ′

† (other than, perhaps,W) are ûnite subgroups ofW .
(iv) _e elements ofW ′

∗ are (possibly empty) completemeet subsemilattices of (W , ≤).
One has W∗′ = ∅ if W is inûnite, and otherwise W∗′ = {wS}, where wS is the
longest element ofW .

(v) If L ∈ W ′
∗ , then for any subset X of L, which has an upper bound in W , its join

x = ⋁X in W is an element of L (and so x is the least upper bound of X in L).
(vi) Let w ∈ I = I (W) ∶= {w ∈ W ∣ w2 = 1W}. _en wR′w. _e stable subgroup

{w}∗
′†′ is a subgroup ofW contained in {x ∈W ∣ x ≤ w} and containing w. _e

corresponding stable subsemilattice {w}∗
′
is contained in {x ∈ W ∣ x ≥ w} and

has w as minimum element. _emap w → {w}∗
′
gives an injection

i∶I (W)Ð→ W ′
∗ ∖ {∅}.

Proof _e proofs of (i)–(v) are similar to those of the corresponding parts of _e-
orem 1.9 and most of the details are omitted, except to remark that ûniteness of the
stable subgroups in (iii) and the statement about W∗′ in (iv) follow using that xR′z
implies z ≤ x. We prove (vi). Let w ∈W . _en

w−1
(Φ′

w) = w−1
(Φ+ ∩w(Φ+)) = Φ+ ∩w−1

(Φ+) = Φ′
w−1 .

Hence, if w2 = 1, then w(Φ′
w) = Φ′

w i.e., wR′w. _is implies that w is the minimum
element of {w}∗

′
and themaximum element of {w}†

′
in weak order. All statements

of (vi) follow readily.

Remarks.
● _emap i in (vi) is not a bijection in general. Let W be of type A4 with simple

re�ections S = {r, s, t, u} and Coxeter graph

r s t u .

One checks that ⟨ s ⟩† = ⟨u, rstsr ⟩, ⟨ t ⟩† = ⟨ r, stuts ⟩ and ⟨ s, t ⟩† = ⟨ rstutsr ⟩ (by
direct calculation, or by using results of [6]), where ⟨A ⟩ is the subgroup generated by
A. _is gives three stable subgroups inwhich rstutsr is an element ofmaximal length.
But if i is a bijection, these stable subgroups would be uniquely determined by their
maximum element in weak order (which would be an involution), by (f).

● _ere is a partial order ⪯ deûned on the set I by v ⪯ w if and only if

{v}∗
′†′
⊆{w}

∗′†′ .

Clearly, v ⪯ w implies v ≤ w, but the reverse implication fails by Section 3.2.
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● For ûniteW , the stable subgroups X†′ or X† are not necessarily subsemilattices
ofW inweak order; they also need not be re�ection subgroups ofW . Also, the stable
subsemilattices Z∗ or Z∗′ need not be subgroups.

● _e stable subgroups X† neednot beCoxeter groups for inûniteW , as the groups
{s}† for s ∈ S may include non-trivial free groups by [5]. We do not know (for inû-
nite or ûniteW) if the (necessarily ûnite) stable subgroups X†′ for X /= ∅ are always
Coxeter groups.

10 Rank One Parabolic Weak Orders

_is section gives a proof of_eorem 1.13.

10.1 Joins With a Simple Reflection

_e following lemma collects special cases and consequences of the main results al-
ready proved, for use in the proof of_eorem 1.13

Lemma Let s ∈ S, say s = sα , where α ∈ Π.
(i) For x ∈ W , we have x ∈ {s}∗ if and only if s(Φx) = Φx if and only if Φsx =

Φx ⊍ {α}.
(ii) {s}∗ = {x ∈W ∣ sx > x}.
(iii) {s}∗ is closed under taking meets, and those joins that exist, in W .
(iv) If x ∈ W , l(sx) = l(x) + 1, and {s, x} has an upper bound, then s ∨ x = sy for

some y ∈ {s}∗.

Proof Part (i) follows from _eorem 1.9 (i). For (ii), note ûrst that if x ∈ {s}∗,
then Φx ⊆Φsx by (i), so x < sx. On the other hand, if sx > x, then α /∈ Φx , so
Φsx ⊇ Φx ⊍ {α}. But ∣Φsx ∣ = l(sx) = l(x) + 1 = ∣Φx ⊍ {α}∣, so equality holds,
proving (ii). Part (iii) is a special case of_eorem 1.9 (iv)–(v). Part (iv) follows from
_eorem 1.8(i), Remark 1.8, and (ii).

10.2 Notation for a Rank One Parabolic Weak Order

For the remainder of this section, ûx s ∈ S, say s = sα , where α ∈ Π, and set J = {s}.
Let Λ ∶= ΛJ = Φ+∪{−α} = Φ+∪s(Φ+) andL = Ls ∶= L{s}. _enΦ(L ) = {α,−α}
andW(L ) = {1, s}. In particular, every subset of Φ(L ) is biclosed in both Λ and
Φ(L ), the biclosed subsets of Φ(L ) form a complete lattice and τ(Γ) = τ(Γ) =

τ(Γ) is biclosed in Φ(L ) for any Γ ⊆ΛJ . Recall that W(L ) acts on L as a group of
order automorphisms by (w ,Λ)↦ w(Λ) satisfying τ(w(Γ)) = w(τ(Γ)) for biclosed
subsets Γ of Λ and w ∈W(L ).

10.3 Description of Elements of the Weak Order by Type

_e proof of_eorem 1.13 uses the following lemma describing the elements Γ ofLs
according to their type τ(Γ)⊆{α,−α}.

Lemma (i) {Γ ∈ Ls ∣ τ(Γ) = ∅} = {Φx ∣ x ∈W , x < sx},
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(ii) {Γ ∈ Ls ∣ τ(Γ) = {α}} = {Φx ∣ x ∈W , α ∈ Φx},
(iii) {Γ ∈ Ls ∣ τ(Γ) = {−α}} = {s(Φx) ∣ x ∈W , α ∈ Φx},
(iv) {Γ ∈ Ls ∣ τ(Γ) = {α,−α}} = {Φx ∪ {−α} ∣ x ∈W , sx < x}.

Proof Note ûrst that Ψ+ ∶= s(Φ+) = (Φ+ ∖{α}) ∪ {−α} is another positive system
for Φ,with simple roots s(Π). Also, Λ = Φ+∪Ψ+. It follows readily that if Γ ⊆Λ, then
Γ is closed (resp., biclosed) in Λ, if and only if Γ∩Φ+ is closed (resp., biclosed) in Φ+
and Γ ∩ Ψ+ is closed (resp., biclosed) in Ψ+. So by Lemma 4.1 (iv), for any Γ ⊆Λ, one
has Γ ∈ Ls if and only if there are x , z ∈ W with Γ ∩Φ+ = Φx and Γ ∩ Ψ+ = sα(Φz).
In that case, α ∈ Φx (resp., α ∈ Φz) if and only if α ∈ τ(Γ) (resp., −α ∈ τ(Γ)).

_e inclusions “⊆ ” will be proved ûrst. Let Γ ∈ Ls and let x , z be as above. If
τ(Γ) = {α} (resp., τ(Γ) = {−α}), the above immediately shows Γ = Φx ∋ α (resp.,
Γ = s(Φz) with α ∈ Φz) which gives the inclusion “⊆ ” in (ii)–(iii). For “⊆ ” in (i),
assume that Γ ∈ Ls with τ(Γ) = ∅. _en α /∈ Φx , α /∈ Φz , and Φx = s(Φz). Hence
Φsz = s(Φz) ⊍ {α} = Φx ⊍ {α}. _erefore Φx∨s = Φx ∪ {α} = Φsz . Lemma 10.1
gives z < sz and Φsz = Φz ⊍ {α}, so x = z and x < sx, proving “⊆ ” in (i). Next,
the proof of the inclusion “⊆ ” in (iv) is given. In this case, α ∈ Φx , α ∈ Φz , and
Φx ∖{α} = Γ ∩ Φ+ ∩ Ψ+ = s(Φz)∖{−α} = Φsz . _is gives sz < x, sz ∨ s = x, and
Φx ∖{α} = Φsx , so sx = sz, x = z, sx < x and Γ = Φx ∪ {−α}.

Next, the reverse inclusions “⊇ ” are proved, again using the characterization of
elements of Ls in the ûrst paragraph of the proof. For (i), suppose Γ = Φx , where
x < sx. By Lemma 10.1, Φx = s(Φx). So Γ ∩Φ+ = Φx , and Γ ∩ Ψ+ = s(Φx). For (ii),
suppose Γ = Φx , where α ∈ Φx . _en Γ ∩Φ+ = Φx and Γ ∩Ψ+ = Φx ∖{α} = s(Φsx).
For (iii), suppose Γ = s(Φx), where α ∈ Φx . _en Γ ∩ Ψ+ = s(Φx) and Γ ∩ Φ+ =

s(Φx)∖{−α}) = Φsx . Finally, for (iv) suppose that Γ = Φx ∪ {−α}, where sx < x.
From Lemma 10.1, it follows that Φsx = s(Φsx) = Φx ∖{α}. Hence, Γ∩Φ+ = Φx and
Γ ∩Ψ+ = (Φx ∖{α}) ∪ {−α} = s(Φx). _is completes the proof in all cases.

10.4 Proof of Theorem 1.13

Part (i) will be proved ûrst. Note for any Γ ∈ L , there are only ûnitely many ∆ ∈ L
with ∆⊆ Γ (since Γ is ûnite). Hence any subset X ofL with an upper bound is ûnite.
So by induction, one is reduced to proving the result for joins Γ ∨ ∆ of two elements
(when the join exists). More precisely, it needs to be shown that

(10.1) Γ ∨ ∆ = Γ ∪ ∆

whenever Γ, ∆ have an upper bound Σ in L . Note that obviously Σ ⊇ Γ ∪ ∆ for any
such upper bound (in particular, for Σ = Γ∨∆ if the join exists). To prove (10.1), there
are sixteen cases depending on the types τ(Γ) and τ(∆). To facilitate reductions of
some of the cases to others, (10.1) will ûrst be proved in the special case that ∆ = {α}.
_e symmetry Γ ←→ ∆ given by interchanging Γ and ∆ and the symmetry given by
theW(L )-action will also be used to reduce the number of cases to be considered.

Suppose then that ∆ = {α}. If α ∈ Γ, then Γ ∨ ∆ = Γ = Γ ∪ ∆; it can be assumed
that τ(Γ)⊆{−α}. If τ(Γ) = ∅, then Γ = Φx , where x < sx. _en Γ ∪ ∆ = Φx ∪ {α} =
Φx ∪ {α} = Φsx . Since Φsx ∈ L , it follows that Γ ∪ ∆ = Φsx = Γ ∨ ∆ in this case.
Next, consider the case that τ(Γ) = {−α}. In this case, Γ = s(Φx), where α ∈ Φx . By
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assumption, there is is some Σ ∈ L with Γ ∪ ∆⊆Σ. Necessarily, τ(Σ) = {α,−α}, so
Σ = Φz ∪ {−α}, where sz < z. Now Γ = s(Φx) = Φsx ∪ {−α}. Hence,

Γ ∪ ∆ = Φsx ∪ {α} ∪ {−α}⊆Φz ∪ {−α},

which implies that Φsx ∪ {α}⊆Φz . _erefore, sx ∨ s exists and Φsx∨s = Φsx ∪ {α}.
By Lemma 10.1, it follows that sx ∨ s = y, where sy < y. So

Γ ∪ ∆ = Φsx ∪ {α} ∪ {−α}⊇Φsx ∪ {α} ∪ {−α} = Φy ∪ {−α}.

But Γ ∪ ∆ = Φsx ∪ {α,−α}⊆Φy ∪ {−α} ∈ L . Hence, the join of Γ and ∆ exists and
is given by Γ ∨ ∆ = Γ ∪ ∆ = Φy ∪ {−α}. _is completes the proof when ∆ = {α}.
Using the above-mentioned symmetry, (10.1) also holds when ∆ = {−α}, Γ = {α} or
Γ = {−α}.

Next observe the following. Suppose that for i = 1, 2, ∆ i ∈ L is such that for all
Γ ∈ L such that Γ, ∆ i have an upper bound in L , they have a join Γ ∨ ∆ i = Γ ∪ ∆ i .
Assume also that ∆1 , ∆2 have an upper bound, so ∆1 ∨ ∆2 = ∆1 ∪ ∆2. For any Γ ∈ L
for which Γ and ∆1 ∨ ∆2 have an upper bound Σ, Lemma 4.3 (iii) implies that

Γ ∪ (∆1 ∨ ∆2) = Γ ∪ ∆1 ∪ ∆2 = (Γ ∨ ∆1) ∪ ∆2 = (Γ ∨ ∆1) ∨ ∆2 = Γ ∨ (∆1 ∨ ∆2),

noting that Σ is also an upper bound for Γ, ∆1 and for Γ ∨ ∆1 , ∆2.
Using the previous two paragraphs, it follows that (10.1) holds if ∆⊆{α,−α} or

Γ ⊆{α,−α}. _e next step is to reduce to the case that τ(Γ) = τ(∆). Suppose in
general that Γ, ∆ ∈ L have an upper bound Σ. Set Ξ ∶= τ(Γ) ∪ τ(∆)⊆{α,−α}. Note
Ξ ∈ L . _en Σ is an upper bound for Γ, ∆, and Ξ. Set Γ′ ∶= Γ ∨ Ξ = Γ ∪ Ξ and
∆′ = ∆ ∨ Ξ = ∆ ∪ Ξ. _en τ(Γ′) = τ(∆′) = Ξ, Γ ∪ ∆ = Γ′ ∪ ∆′, and Σ is an upper
bound for Γ′ , ∆′. If it is known that Γ′ , ∆′ have a least upper bound Γ′ ∨ ∆′ = Γ′ ∪ ∆′,
it follows that Γ, ∆ have the join Γ ∨ ∆ = Γ ∪ ∆. _at is, the proof of (10.1) is reduced
to its special case in which τ(Γ) = τ(∆).

So now suppose Γ, ∆ ∈ L have an upper bound Σ and are arbitrary except that
τ(Γ) = τ(∆) = Ξ. Write Σ ∩Φ+ = Φz , where z ∈ W . It is necessary to consider four
cases, according to the value of Ξ.
Case 1: Ξ = ∅. Write Γ = Φx and ∆ = Φy , where x < sx and y < sy. _en x ∈ {s}∗

and y ∈ {s}∗. Observe that Φx ,Φy ⊆Φz . Hence w ∶= x ∨ y exists in (W , ≤), with
Φw = Φx ∪Φy . From Lemma 1.9, it follows that w ∈ {s}∗, so w < sw and Φw ∈ L .
Hence, Γ ∪ ∆ = Φw = Γ ∨ ∆, completing the proof in this case.
Case 2: Ξ = {α}. Here we can write Γ = Φx , ∆ = Φy , where α ∈ Φx ∩ Φy . _en

x , y ≤ z, so w ∶= x ∨ y exists with Φw = Φx ∪Φy . Since α ∈ Φw , this immediately
implies that Φw ∈ L and Γ ∪ ∆ = Φw = Γ ∨ ∆ as required.
Case 3: Ξ = {−α}. _e third case reduces immediately to the second case by using

the symmetry given by the action of s on L .
Case 4: Ξ = {α,−α}. Herewrite Γ = Φx ∪{−α} and ∆ = Φy ∪{−α},where sx < x

and sy < y. _en sx ∈ {s}∗ and sy ∈ {s}∗. Also, Φsx ,Φsy ⊆Φz , so sx ∨ sy exists.
Write sx ∨ sy = sw, so Φsw = Φsx ∪Φsy and sw ∈ {s}∗ by Lemma 1.9. In particular,
sw < w, so Φw ∪ {−α} ∈ L . Now

Γ ∪ ∆ = Φsx ∪Φsy ∪ {α} ∪ {−α}⊇Φsw ∪ {α,−α} = Φw ∪ {−α} ∈ L .
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On the other hand, sx , sy ≤ sw imply x , y ≤ w and Γ ∪∆⊆Φw ∪ {−α}. It follows that
Γ ∪ ∆ = Γ ∨ ∆.
_is completes the proof of (i).

Using Lemma 5.3, it follows thatL is a completemeet semilattice. _e proof of (ii)
involves a few additional facts supplementing those of Lemma 10.1. First, one checks
using Lemma 10.1 (i) that

x ∈ s∗ ⇐⇒ s(Φ′
sx) = Φ′

sx ⇐⇒ Φ′
x = Φ′

sx ⊍ {α}.

Using this and Corollary 7.3, it follows that for x , y, z ∈ W , if Φx ∪Φ′
y = Φ′

z , x ∈ s∗,
and sy ∈ s∗, then sz ∈ s∗. To prove (ii), note ûrst that the meet of any non-empty
subset X ofL is equal to the (directed) intersection of the family ofmeets of its ûnite
subsets. SinceL has aminimum element and ûnite intervals, the proof of (ii) easily
reduces to that of its special case for meets of ûnite subsets, and then by induction it
reduces to the case ofmeets of pairs of elements ofL . _e proof of this is very similar
to that of (i). It is required to show that for Γ, ∆ ∈ L , we have

(10.2) Λ∖ (Γ ∧ ∆) = (Λ∖ Γ) ∪ (Λ∖∆).

Again, there are 16 possible cases initially. To reduce the number of cases, one ûrst
shows that for Γ ∈ L and Ξ ⊆{α,−α} one has

(10.3) (Λ∖ Γ) ∪ Ξ = Λ∖∆,

for some ∆ ∈ Λ. _is is trivial for Ξ = ∅. One checks (10.3) ûrst for Ξ = {α} using
Lemma 10.2, as in (i). Next, (10.3) follows using theW(Λ)-action for Ξ = {−α}, and
ûnally it follows for Ξ = {α,−α} on writing

(Λ∖ Γ) ∪ {α,−α} = (Λ∖ Γ) ∪ {α} ∪ {−α} = (Λ∖∆1) ∪ {−α} = Λ∖∆,

for some ∆1 , ∆ in L . Finally, using (10.3) one reduces (10.2) to the case τ(Γ) = τ(∆)
(as in (i)) which one checks (also as in (i), but using Lemma 4.2 instead of Corollary
1.6, where necessary). _e proof of (ii) is in fact slightly simpler than that of (i) since
themeets inW involved in the proof of (ii) automatically exist, whereas the existence
of the necessary joins in W had to be checked. Further details are omitted.
Finally, it remains to prove (iii). Suppose that X ⊆L has an upper bound. _en

τ(⋁X) = τ( ⋃
Γ∈X

Γ) = τ( ⋃
Γ∈X

Γ) = ⋃
Γ∈X

τ(Γ) = ⋁
Γ∈X

τ(Γ)

_e proof for meets in (iii) is similar and is omitted.

10.5 Join of a Finite and Cofinite Biclosed Set

_e following additional special case of Conjecture 2.5 is proved along similar lines
as the proof of _eorem 1.13 (in fact, a critical special case of it was already required
in the proof of 1.13 (ii)), and details of its proof are omitted.
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Proposition Let notation be as in _eorem 1.13. If Γ, Ξ ∈ L , then (Λ∖ Γ) ∪ Ξ =

Λ∖∆ for some ∆ ∈ L .

11 Variants for Other Closure Operators

Given a closure operator c on Φ, one can deûne c-coclosed, c-biclosed subsets ofΦ+,
etc. in the sameway as for 2-closure, and askwhether the analogues of themain results
(Section 1) holdwith all Γ replaced by c(Γ), “closed” replaced by “c-closed,” “biclosed”
replaced by “c-biclosed”, etc. _is section indicates, somewhat informally, what can
be proved about two other such closure relations by simple modiûcations of the ar-
guments in earlier sections. We ûrst introduce some more terminology concerning
closure operators.

11.1 Terminology for Closure Operators

A closure operator c on a set X is said to be of ûnite character if, for all A⊆X,

c(A) = ⋃
A0 ⊆ A
∣A0 ∣<ℵ0

c(A0).

Say that a closure operator c on X is an antiexchange closure operator if, for A⊆X
and all x , y ∈ X ∖ c(A), x ∈ c(A ∪ {y}) implies y /∈ c(A ∪ {x}) (this terminology is
o�en restricted to the case of ûnite X [19], but we shall not do so here).
Consider a family of root systems of a Coxeter group (W , S) for each one Ψ of

which there is an associated closure operator on Ψ. Say the family of closure operators
is combinatorial if the closure operator on T × {±1} deûned by transport of structure
using the canonical bijection Ψ

≅
Ð→ T×{±1} given by єα ↦ (sα , є) for α ∈ Ψ+ , є ∈ {±1},

is independent of the choice of root system Ψ in the family. Of course, other, quite
diòerent deûnitions of combinatorial closure operators could be made; the above is
convenient for our purposes here.

11.2 Z-closure on Finite Crystallographic Root Systems

Let Ψ be a (reduced) crystallographic root system of a ûnite Weyl group as in [4].
_ere is a standard closure operator on Ψ,whichwe callZ-closure to avoid confusion
with 2-closure, forwhich theZ-closed sets Γ are those forwhich α, β ∈ Ψ and α+β ∈ Φ
imply α+β ∈ Ψ. Equivalently,Ψ isZ-closed if α, β ∈ Ψ andmα+nβ ∈ Φwithm, n ∈ N
implies mα + nβ ∈ Ψ (as one sees by reduction to rank two; see also [26]). _e Z-
closure has well-known natural interpretations in the context of semisimple complex
Lie algebras, for instance.
Both 2-closure and Z-closure are closure operators of ûnite character, trivially.

However, 2-closure diòers from Z-closure in some signiûcant respects (aside from
its obvious applicability to more general classes of Coxeter groups). For example, it
was shown in [26] that Z-closure restricted to the set Ψ+ of positive roots of Ψ is
an anti-exchange closure operator whereas 2-closure on Φ+ is not anti-exchange for
(W , S) of type F4, H3, or H4. Also, 2-closure is easily seen to be combinatorial, but
Z-closure is not combinatorial in general, e.g., in type B2.
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11.3 Analogues for Z-closure of Some of the Results for 2-closure

_is subsection discusses the extent to which themain results and conjectures of this
paper are known to apply to ûniteWeyl groupswith Z-closure on Ψ in place of 2-clo-
sure.

Proposition _e Z-closure analogue of_eorem 1.5 is true.

Proof According to [4, Chapter VI, §1, Example 16], a subset of Ψ+ is Z-biclosed if
and only if it is of the form Ψw ∶= Ψ+ ∩w(−Ψ+) for some w ∈W . _e proof of_eo-
rem 1.5 (i) appliesmutatismutandis to establish the analogue forZ-closure of (i); then
the Z-closure analogue (ii) holds by the Z-closure analogue of the argument for the
proof of Corollary 5.4 (iii) (or by using Remark 5.4).

_e analogues for Z-closure of Lemma 1.7 (i)–(ii) fail for W of type B2. It was as-
serted in [25] that the Z-closure analogue of Conjecture 2.5 (iii) in the case Λ = Ψ
holds (though there is a gap in the published proof; see [10]. I thank Eugene Karolin-
sky for these references). It is not immediately clear if the Z-closure analogues of
_eorems 7.1, 1.8, or 1.13 hold.

11.4 The Convex Geometric Closure Operator d

Another natural closure operator d on Φ is given by d(Γ) ∶= Φ ∩R≥0Γ. _e operator
d is a closure operator of ûnite character and restricts to an antiexchange closure on
Φ+, but it is not combinatorial in general. In fact, for inûnite W of rank four with
no braid relations, i.e., all entries of its Coxeter matrix are either 1 or ∞, there are
many possible root systems (in the class [18], with the inner product normalized so
⟨ α, α ⟩ = 1 for all α ∈ Π) with linearly independent simple roots Π, determined by
arbitrary choices of inner products ⟨ α, β ⟩ = ⟨ β, α ⟩ ≤ −1 for distinct α, β ∈ Π. It is
easy to check that the closure operators on T × {±1} corresponding to the resulting
closures d as above, genuinely depend on the choice of root system.

Remarks. _e operators d for root systems of a Coxeter system (W , S) of rank three
are combinatorially invariant, by an argument involving homotopies of root systems
and the combinatorial nature of d-closure restricted to the maximal dihedral root
subsystems. Informally, any two root systems in the class are connected by a homo-
topy, determined by a suitable homotopy from onematrix (⟨ α, β ⟩) to another in the
space of such matrices attached to root systems. As the root system varies in such a
homotopy, a root can never enter or leave a plane spanned by two other roots (since
the re�ection in roots of this plane generate amaximal dihedral re�ection subgroup,
and the sets of re�ections of such subgroups are completelydetermined by theCoxeter
system). More precisely, in the rank three case, the orientedmatroid closure operators
on T × {±1} obtained by transfer of structure from the various root systems all coin-
cide; this argument uses a characterization of ûnite rank (possibly inûnite) oriented
matroids by their basis orientations [3, Exercise 3.13].
An obvious question is whether combinatorial invariance in this sense extends to

oriented geometry root systems of rank three Coxeter systems (with deûnition as sug-
gested in Section 2.10).
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11.5 Coverings in Bruhat Order, and Polyhedral Cones

_e following fact from [15, Proposition 3.6] will be used below.

Lemma For any x ∈ W , Φx ,1 (resp., Φx ,−1) is a set of representatives of the extreme
rays of a pointed polyhedral cone R≥0Φ′

x (resp., R≥0Φx ) spanned by Φ′
x (resp., Φx ).

Furthermore, R≥0Φx ∩R≥0Φ′
x = {0}.

11.6 Analogues for d of Some Results for 2-closure

Recall that d-coclosed sets and d-biclosed subsets are deûned in the obvious way.

Proposition _e d-closure analogues of_eorem 1.5, Lemma 1.7,_eorem 1.8, and
Proposition 7.3 are all true.

Proof Any d-closed set is obviously closed. Hence, for any Γ ⊆Φ , we have Γ ⊆ d(Γ).
Also, Φw and Φ′

w are d-biclosed for w ∈ W ; this holds since Φ+ and −Φ+ can be
strictly separated by a (linear) hyperplane, and hence so can

w(Φ+) ⊇ Φ′
w and w(−Φ+) ⊇ Φw .

Hence, if Γ ⊆ Φ is such that Γ is d-closed, e.g., Γ = Φw or Γ = Φ′
w , then Γ = d(Γ).

Using thepreviousparagraph, one sees that the analogues for d of_eorems 1.5 and
1.8 and Proposition 7.3 hold mutatis mutandis. In each case, the d-analogue follows
from the corresponding statement for 2-closure. For example, suppose X ⊆W has an
upper bound. _en by _eorem 1.5 (i), ⋃x∈X Φx = Φy , where y = ⋁X, and so by
above, d(⋃x∈X Φx) = Φy , i.e., we have proved the d-analogue of 1.5 (i).

_e d-analogue of Lemma 1.7 is proved using Lemma 11.5. In fact, that lemma
implies that for α ∈ Φx ,1 (resp., α ∈ Φx ,−1), one has α /∈ d(Φ′

x ∖{α}) (resp., α /∈

d(Φx ∖{α})). On the other hand, d(Φx ,1) = Φ′
x (resp., c(Φx ,−1) = Φx ) holds by the

lemma and the ûrst paragraph above. _ese remarks easily imply that the d-analogue
of Lemma 1.7 holds.

Remarks. ● One can show that Ls in_eorem 1.13 is the set of all ûnite d-biclosed
subsets of Λ (one uses simple arguments in convex geometry beginning with Lemma
10.3 and the possibility of separating Φw and Φ′

w by a linear hyperplane). _en the
d-closure analogues of_eorem1.13 andProposition 10.5 follow from the correspond-
ing results for 2-closure exactly as above.

● _e analogue for d of _eorem 7.1 cannot be deduced from _eorem 7.1 in the
same way as the other results above (since if Γ ⊆Φ+ is d-coclosed and d(Γ) has ûnite
complement in Φ+, one can not deduce that Γ has ûnite complement and apply _e-
orem 7.1; one only knows Γ ⊆ d(Γ)). However, a simple argument involving convex
geometry shows that if Γ is d-coclosed and α ∈ Π∖ Γ, then sa ⋅ Γ is d-coclosed; using
this and the d-analogue of Lemma 1.7, one sees that _eorem 7.1 and its proof also
holdmutatis mutandis for d.
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