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Abstract. We define a 4-parameter family of generically irreducible and inequivalent
representations of the Witt Lie algebra on which the infinitesimal rotation operator acts
semisimply with infinite-dimensional eigenspaces. They are deformations of the (generically
indecomposable) representations on spaces of polynomial differential operators between two
spaces of tensor densities on S', which are constructed by composing each such differential
operator with the action of a rotation by a fixed angle.
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1. Introduction

Let W be the Witt Lie algebra, the space of Laurent polynomial vector fields on the
circle S', and let V be its universal central extension, the Virasoro Lie algebra.
Representations of W and V are important in many areas of Mathematics and
Physics, and have been studied since the 1970s [GoOl]. However, essentially only
the Harish-Chandra representations have been considered, on which the
infinitesimal rotation z(d/dz) acts semisimply with finite-dimensional eigenspaces
(or weight spaces) [Kal, FF1, FF2]. One exception is Kirillov’s paper [Ki], in which
a class of irreducible representations of W with infinite-dimensional weight spaces
is defined (see the final remark of Section 5, and also the related paper of Ushirobira
[Us)).

In this paper we introduce a 4-parameter family of irreducible representations of
W, which act in spaces of operators between two spaces of tensor densities on
S!, on which z(d/dz) acts semisimply with countably infinite-dimensional weight
spaces. In order to be more precise, denote by A(a, y) the space of (multivalued)
tensor densities of the form dz’z¢ "p(z), where a and y are in C, and p(z) is a poly-
nomial on S'. These spaces were introduced by Feigin and Fuchs [FF2], and they
carry a natural action of W which permits the realization of all irreducible
Harish-Chandra representations of V that are not of highest or lowest weight [Ka2],
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[Ma], [MP1], [CP]. For any additional complex numbers b and p, let Ey(a, b, y, p) be
the span of the ‘polynomial’ differential operators from A(a,y) to A(a+ b,
v 4 p), i.e., those mapping (dz)'z¢7p(z) to (dz)'Pz#2(d/dz)*z¢"p(z), for some p
inb + 7 and k in N (the quote marks indicate the fact that z*~” may be multivalued;
this particular operator is of weight u for all k). The natural adjoint action of W on
Ey(a, b, v, p) is in general indecomposable, but not irreducible, and is itself composed
of infinitely many tensor density representations. The study of these representations
goes back to the nineteenth century, and is still active [CMZ], [BOv], [GaOv], [Mat].

We shall define a 1-parameter deformation Ej(a, b, y, p) of Ey(a, b, y, p), and our
main result is that for generic values of the parameters, the representations of
W on Ej(a, b, 7, p) are irreducible, and if « is fixed, inequivalent. In the case that
h is purely imaginary, the deformation Ej(a, b, y, p) has the following geometric
definition, which has a holomorphic analog for arbitrary /: if ¢, is the rotation
of S' given as multiplication by e~", then:

Ey(a,b,y,p) = {To ¢, T € Eola, b, y,p)},

where ¢}, is the natural action of ¢, on tensor densities. This is invariant under the
adjoint action of W, because conjugation by ¢, preserves polynomial differential
operators.

We remark that the choice of ¢, is natural: if ¢ is an arbitrary diffeomorphism of
S', we have the more general space E4(y, p), spanned by the maps T o ¢* such that
T is an arbitrary differential operator from tensor densities of degree y to those
of degree y + p. It is still invariant under the adjoint action of W, but when ¢ is
not a rotation, it has no natural subspace that preserves the polynomial tensor
densities, and z(d/dz) does not act upon it semisimply.

This paper is organized as follows. In Section 2 we collect our notation and
definitions, in Section 3 we prove the generic irreducibility of the deformations
Ey(a, b, v, p) (let us remark that our proof uses difference operators, and is remi-
niscent of g-calculus), and in Section 4 we prove their generic inequivalence. In
the final section we make some remarks: in particular, we relate E,(0, 0,0, 0) to
the g-Weyl algebra (considered, for example, by Kassel [Kas]), and note that
Ex(0,0,0,0) is the Weyl algebra with z~! adjoined, whose deformation
E;(0,0,0,0) was previously considered by Pinczon [Pi] (with only positive powers
of z present), in connection with his theory of non-commutative deformations of
associative algebras.

2. Definitions

In this section we establish our notation, give definitions of A(a, y) and Ej(a, b, vy, p)
more suited to calculation than those in the introduction, and exhibit some of
the intertwining maps and subrepresentations of the Ej(a, b, y, p) at certain special
values of the parameters.
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2.1. TENSOR DENSITY REPRESENTATIONS

Let {e,:n € 7} be the standard basis of the Witt Lie algebra W, the space of poly-
nomial vector fields on the circle: e, = z""'(d/dz), so [e,, em] = (M — n)enym. Let
a, be the subalgebra Spanf{ey, ex,}, which is isomorphic to sl(2), and recall that
the Casimir operator Q, of a, is defined by n>Q, = eé + ney — e_,e,. Note that
ep 1s the infinitesimal rotation z(d/dz), and a; is the projective subalgebra of linear
fractional transformations.

In any representation V' of W, the eigenvalues of the action of ¢y are called the
weights of 7, and the eigenspace of eigenvalue u is called its u-weight space, written
V.. The irreducible Harish-Chandra representations are classified as follows: those
with a highest or a lowest weight are irreducible quotients of Verma modules,
and those of uniformly bounded weight space dimension may be realized in the
spaces A(a, y) of tensor densities. We now rephrase the definition of the A(«, y):
let M be the 1-form z7'dz on S!, and for A € C, think of z* as a function on S!,
multivalued if 4 is not an integer. For any complex scalars ¢ and yp, define
A(a,y) to be Span{M’z*:). € a+ 7). Then the natural action of W on tensor
densities gives:

en(M72") = () 4 ny) M7 2+,

Of course, we may always assume that 0 < Re(a) < 1. These are all irreducible,
except for A(0,0) and A4(0, 1): the 0-weight space of 4(0, 0) is invariant, and thus
is the trivial representation; the corresponding quotient is called A, and is irreducible;
and A(0, 1) is the dual of A4(0, 0). If A(«a, y) and A(d/, ") are different, then they are
equivalent if and only if a =d # 0 and {y,)’} = {0, 1}, and so the following list
classifies the irreducible bounded representations: the trivial representation, A,
the A(a, 0) with « not 0, and the A(a, y) with y not 0 or 1. We mention that the
(restricted) dual of A(a, y) is equivalent to A(—a, 1 — ).

It will be convenient to define A to be the algebraic direct sum of all the A(a, y):

A = @ A(a,y) = Span {M""z;':y,ieC}.
0€§e{u}<]

Of course A is a representation of W, and we shall write e, for the operator on A by
which e, acts.

Let ad denote the adjoint action of End(.A) on itself: if r and T are operators on A,
then ad(t)T = tT — T'z. In particular, we denote by ¢ the adjoint action of W on
End(A):

a(e,) = ad(ey).
We will also have occasion to use the following subspace of A:

Ap) = P Ay = span{M?'zi:/le @}.

0 < Re(a)<1
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We shall write r,, and r, for restriction of operators on A to A(a,y) and A(y),
respectively, and ), for restriction of maps with domain A(y) to A(a, y). Of course,
¥ay =1) or,. Note that the adjoint action ¢ of W is also defined on the spaces

Hom[A(a, y), A(a+ b,y + p)] and Hom[A(y), A(y + p)].

2.2. AN ALGEBRA OF OPERATORS ON TENSOR DENSITIES

Here we define a subalgebra £ of End(A), which contains W. For p and p in C, and
f:C — C any set-theoretic function, let M”, z*, f(&y;), and T" be the following

operators on A:

MY(MZ) = MPYIZ (M) = MY
@M =fM'Z, T(M'ZH) =M

Then we have the following commutation relations:

[ZH’ Mp] = 07 [énv Mp] = anpZn’ f(EO)ZH = Zﬂfv(é() + ,LL),
[[,2]=0, [[,é]=0, TM?=MT +p),

where f(ey + 1) denotes the operator mapping M7z* to f(J + p)M’z*.
We define the subspace £ of End(A) by

£ = Span {M"z“f(éo)l“j:p, peC, jeN, f:C— C arbitrary}.

In light of the above commutation relations, it is a subalgebra of End(A). The
operator ¢, is z"(ey + nl), which is contained in &, and so £ is invariant under
the action ¢ of W. To compute this action, recall that o(e,) is the derivation

ad(Z,), and check that:
Se)M? = mpMPZ", o(e)z" = uz,
o(en)f @) = '@ + nD)[f@0) —f@o +m)], (el =0,
Hence,
o(en)| M7 @)

= MP24| (4 mp + T+ &)f (Bo) — (1T + E0)f Go +m) | .

The u-weight space €, is the span of the M?z/f(ey)[Y with u fixed, and £ is the

algebraic direct sum of its weight spaces.
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2.3. THE REPRESENTATION E,(b, y, p)

In this section we give two equivalent definitions of the representation considered in
this paper: Ej(b,y,p), a space of maps from A(y) to A(y +p) or, equivalently,
Ej(a, b, y,p), a space of maps from A(a,y) to A(a+ b,y + p), for any a.

Fix h, a, b, p, and p in C, recall the restriction maps r, and r, from Section 2.1, and
define a map Tf(h, v, p) from A(y) to A(y + p) by:

T (h, 3. p) =, [M”z“ exp(héo)é’g].
Now define:
Ey(b, 7, p) = Span {Tjj(h, npypeb+7, ke N},

and

En(a, b,y,p) =7, [Eh(b, V,p)]-

Throughout this paper, we will write Ej, for Ej(b, , p), and T}, for Ty (h, y, p), when-
ever the parameters are fixed by the context.

It is not hard to check that the maps T,’j are linearly independent, and so we may
define the degree of T,’j to be k. This gives a filtration of E, by degree:

E)CE CE C---CE.

It will be useful, because W acts on it by operators of degree 1. The basic properties
of Ey(b, y, p) and Ej(a, b, y, p) are summarized by the following lemma, whose proof
follows from Equation (1).

LEMMA 2.1. The p-weight space Ey(b,y,p), has basis {T[j:k € N}, and so it is
infinite-dimensional. Although the filtration E;f(b, y, p) is not invariant under W, it
does have weight spaces: the u-weight space E;f(b, 7, D), is the (k + 1)-dimensional
span of the T with 0 <j < k.

The adjoint action of W on T[f(h, v, p) is:

nn M n
o(e)TE = T (1 — ™) + Tﬁ+nn[z+p +y—(y+he h]-

o )
e[ ) +())
=0 -1 J

where we use the convention that gf) = 0forj < 0. Therefore, o(e,) maps E,’f(b, 75Dy
to E,’f“(b, Vs D)ysns and in particular, Ey(b,y, p) is invariant under o.

The space Ey(a, b, v, p) is also invariant under o, and the restriction map !, gives a
W-isomorphism from Ej(b,v,p) to Ep(a, b, vy, p), so the representation structure of

Ei(a, b, v, p) is independent of a.
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2.4. INTERTWINING MAPS AND SUBREPRESENTATIONS

In this section we exhibit some subrepresentations of the Ej(b,y,p), and some
intertwining maps between them. These will allow us to restrict the parameters
h, b, y, and p so as to eliminate most equivalences, and to explain the reducibility
of our representations at certain special values of the parameters.

EQUIVALENCES. First, Ej(b, v, p) and Eu(b + 1, y, p) are equal, and so henceforth
we assume 0 < Re(b) < 1. Here we will define a fundamental domain H for the
action of the equivalences we will define on the parameter 4. This will permit us
to assume that /i is in H for the rest of the paper.

Forne Z,let p,: € — & (see Section 2.2) be right multiplication by exp(2inney). It
is clear from Equation (2) that p, defines an equivalence from Ej, to Ej iz, mapping
Tr(h,y,p) to Ti(h+ 2inn,y, p). However, one should note that Ej(b,7,p) and
Ejain(b, y, p) are not the same space, as e*™ maps z* to e*™z*. This corresponds
to the fact that z* is multivalued unless A is in Z.

There is also an equivalence f from E,(b, v, p) to E_;(b, 1 — p — vy, p), defined by:

BT 7. p)] = npos [ (o) 7
= (—l)ke_l”‘rl_p_;,[Mpz”(?zo + ,u)ke_hz’o].

It satisfies > = 1, and may be understood as conjugation of differential operators, or
algebraically as the adjoint map corresponding to the following nondegenerate
Wh-invariant form on A, which explicitly identifies the dual of A(a,y) with
A(—a, 1 —y):

BM'z5, M7 ") =8(y + 7' — D3( + X).

The two equivalences p; and f§ generate a group of equivalences, which is isomorphic
to the semidirect product Z; x, Z. Its action on the parameter /4 is faithful, and it is
easy to see that the set

H = [he C:0 < Im(h) < 7, Re(h) = 0if Im(h) =0 orn}

is a fundamental domain for this action. Therefore, up to equivalence we may, and
henceforth do, assume that /4 is in H.

INVOLUTIONS. The only points of H that have a non-trivial stabilizer under the
action of Z, x 7 are 0 and in. Therefore there are equivalences which do not change
these values of 4, and when p = 1 — 2y they turn out to be non-trivial involutions.

The Case h = in. One checks that fop_; =e*™p, o, and so

o = e™p o En(b,y,p) = Ein(b,1 —p—7,p)
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is an equivalence such that o> = 1. Hence it is an involution of E (b, y, 1 — 2y), and
we define Ej; (b, 7,1 —2y) to be its £1-eigenspaces. Then there is a W-splitting:

Eiﬂ(b7 V’ 1 - 2’))) = Eiﬂ,+(ba ’yv 1 - 2’))) @ Eiﬂ,—(ba "/, 1 - 2?)’

and we can write explicit bases for the summands as follows. Define:
Sl]j(h, v, p) = ry[M”z"/z?zlgeh‘;“z“/z] = e”“ﬂr},[M”z“(éo + ,u/Z)kehEO];
then:
B[Sk 1. p)] = (=D Sk(=h. 7. ).
pn[S,’i(h, V,p)] = e ™S (h+ 2imn, ), p),

and so S,’j(in, y,p) is an eigenvector of « of eigenvalue (—1)"*~?. Therefore the
Sﬁ(in, 7,1 —2y) with k+u—»b even, and odd, form bases of
Eqn(b,y,1—=2y), and Eji _(b,y,1—2y), respectively. This can be pictured as
follows: if we think of the Sfj as points on a half-infinite lattice indexed by
u and k, and color the lattice as a chess board, then the decomposition into
Ei 1+ is along colors.

The Case h = 0. The other special value of / is 0. Here f is an equivalence from
Ey(b,y,p) to Eo(b,1 —p —1y,p), and hence an involution of Ey(b,y, 1 —2y). One
checks as above that its +1 and —1-eigenspaces are the spans of the maps
Sl’j(O, 7, 1 —2y) with k even and odd, respectively, and so here the picture of the
decomposition is along stripes of alternating color.

QUOTIENT AND SUBREPRESENTATIONS. The cases that y is 0 or 1 — p are
special: Ejp(b, 0, p) contains a copy of Ey(b,1,p—1), and E,(b,1 — p, p) contains
a copy of Ej(b,1 —p,p—1). In both cases, the quotient is equivalent to A(b, p),
and one case may be obtained from the other via the equivalence 5. These facts
are consequences of the equivalence A(a,0) =2 A(a, 1) for non-zero «; the details
are as follows.

The Case y = 0. It is immediate from Equation (2) that the subspace

E;(b,0, p) = Span {T[j(h, 0. pyueb+7, k> 0}
of E,(b, 0, p) is W-invariant, and

Ey(b,0,p)/E; (b, 0, p) = A(b, p),

by the map TS»—>M1’2“. This can be understood in terms of the isomorphism
A(a,0) =2 A(a, 1) for a #0, which in our language is the map ro(Mep): A(0) —
A(1). More precisely, the right multiplication operator R[ro(Mey)] is an injective
W-map from Ey(b, 1, p — 1) to E;(b, 0, p), whose image is E;°(b, 0, p). In this context,
let us simply write Me, instead of ro(Mey).
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The Case y =1 — p. Changing the sign of & and then applying f in the last
paragraph, we see that the left multiplication operator L(Mey) is an injective WW-map
from Ep(b,1 — p,p — 1) to Ep(b, 1 — p, p). Its image is ﬁ[Ei,?(b, 0, p)], and since f is an
equivalence, the associated quotient is again a copy of A(b, p).

The Case y =0, p=1. This is the only simultaneous occurrence of the two
preceding cases: L(Mey) injects Ej(b, 1, —1) into Ep(b, 1, 0), which is injected into
En(b,0,1) by R(Méep). In the remark on cohomology in Section 5, we prove that
the resulting quotient is trivial:

Ey(b, 0, 1) / (Méo[Eh(b, 1, —1)]Méo) =~ A(b, 1) ® A(b, 0).

The Caseh =in,y =0,p =1,b # 0. If E;;(b, y, p) admits both the involution & and
a quotient A(b, p) in either of the above ways, then necessarily y = 0 and p = 1. In this
case, we define:

E;%(b,0,1) = Ejr +(b,0,1) N E;°(b,0,1).

Suppressing the obvious parameters, one checks that when b # 0, the weight spaces
of EZ° , or E7" , are of codimension 1 in the weight spaces of Ei , or E° |
and that they have bases given by Sk — (,u/2)2Sfj*2, where k > 2, and k+ pu — b is
even, or odd, respectively. Both Ej; . and E;; _ have full image in the quotient
E,-,Z/E;l0 >~ A(b, 1), as Sfj and (u/2)" TS have the same image under projection. Similar
reasoning gives:

Ens/E = Ab, 1), EY, = MEO[E,»M(b, 1, —1)]Mé0.

The Caseh = in,y =0, p =1, b = 0. When furthermore b = 0, the only additional
change in the picture is that the 0-weight space E;, (0, 0, 1), is contained in E2°, and
so:

En (B = B [ (B @ EZ0 ) = 4.
Here E,;f{(o, 0, 1) contains Meg[Eir —(0, 1, —1)]Méy properly, and the quotient is a
trivial representation.

The Case h = 0. It will be useful to collect some elementary facts about Ey(b, 7, p).
It follows from Equation (2) that the filtration E(’)‘ is W-invariant, and the
subquotient Eg/Eg~" is equivalent to A(b, p — k), by the map Txi— M?~*z*. We have
seen that f is an equivalence from Ey(b, 7, p) to Ey(b,1 —p —y, p), and hence an
involution of Ey(b, y, 1 — 2y).

When y = 0, we have the W-splitting:

Ey(b. 0, p) = Eg(b,0.p) ® Eg (.0, p).

For future reference, note that Eg(b, 0, p) is equivalent to A(b, p), which is equivalent
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to the quotient Ey(b,0, p)/E;O(b, 0,p), for any h. Therefore there exists an
intertwining map from Ej(b, 0, p) to Ey(b, 0, p). Applying f gives a dual statement
at y =1 —p. As we saw above, E0>0(b, 0, p) is equivalent to Ey(b, 1,p — 1), and in
Ey(b,0,1) we have all of the subrepresentations of this paragraph and the last,
so it splits as the direct sum of A(b, 1), A(b, 0), and the images of the +1-cigenspaces
of 8 acting on Ey(b, 1, —1).

3. Irreducibility

In the first theorem of this section we prove that the representations Ej(b, y, p) are
irreducible, provided that % is not contained in a certain finite set F, and neither
of the roots of a certain quadratic, whose coefficients depend on y and p, lie in
7*. The idea of the proof is to use the Casimir operators Q, to construct operators
N_i(n) of weight 0, that lower the degree of elements of E, by 1. Since Q, itself
raises the degree by 2, we must use a linear combination of distinct Q, that cancels
the higher degree terms.

The other two theorems treat irreducibility when /& = 2inm’/m for m > 2, and
when /& = in. All three theorems impose certain conditions on y and p, which for
example rule out the cases that y is 0 or 1 — p, where Ej is known to reduce (see
Section 2.4). We begin by computing the action of 9, on T ,’j , modulo E,’ffz. For
convenience, we use the hyperbolic version of the classical function versine:
vershz =1 — cosh z.

LEMMA 3.1. Define
Ao(k) =y +p — 1) — 3k(k + 1 = 2p),
Ay(k) =y(r +p —1) = gk = D)k + 1 = 3p).
Then modulo E,I;’z, we have the formula:
—’a(Qu)T,
= 2T:f+2 versh nh+
+ 2TL‘Jr1 [(p —k — Dnsinhnh + ,uvershnh]—
— otk I:%(p — k) (p — k — 1)i? + Ag(k)n? versh nh + u(k + y)nsinh nh]+
+ 27! [kA_1 (kyn? sinh nh — L jk(2y + k — 1)n? cosh nh].
3)

Proof. One way to prove this is simply to write down the definitions of Q,, ¢, and
TZL‘ , and calculate. This is essentially what we will do, but with a few organizational
tricks to bring us down to the case that u=0. The first step is to calculate
—nzo(Qn)T(’f. Since ¢y annihilates vectors of weight 0, this is o(e,nen)Té‘. Use
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Equation (2) to write down a(e,) T modulo Ef~3, and apply a(e_,) to it to prove the
lemma for u = 0; this requires a long computation, which can be done with a com-
puter.

Now let us write L and R for the left and right actions of End(A) on itself: if r and
T are operators on A, then L(t)T = tT and R(t)T = T'z. The next step is to prove
that as operators on &,

120(0). L) = uL")| RE-) ad(z") + R(E,) ad(=™")] )

For this, recall that a(e,) = L(¢,) — R(¢,), which leads to [o(e,), L(z")] = uL(z*™).
Some computation gives:

[*a(Q,), L(z")] = #[n + 2ad(ey) — ad(e_,)L(z") — L(z™") ad(én)]-

Now replace ad(e_,)L(z") by L(z")[ad(e_,) + nL(z™")], replace each ‘ad’ by ‘L — R,
and expand: the terms involving only L’s will all cancel. Then move the L(z*") terms
to the right of the R(é,) terms, and replace each ‘L’ by ‘ad +R.” Expanding again
cancels all the terms involving only R’s, proving Equation (4).

Finally, apply the right hand side of Equation (4) to 7§ and calculate modulo Ef~2:

[7*0(Qn). LT
= 2ﬂ[_q§+l vershnh + Ty (k + p)nsinhnh 4} T<~'k(2y + k — 1)n? cosh nh].

Since L(z)T, (’,‘ =T l’j, combining this with the first paragraph of the proof gives
Equation (3). O

Next, we use difference operators to define linear combinations Ny(n), Ni(n),
No(n), and N_;(n) of the operators a(Q,), such that Nj(n)T,’j is of degree k + .
For any function f defined on some subset of N x C, let

Af(n)(h) = f(n+ 1, h) — f(n, h),
and define functions:
F(n, h) = nsinh nh/ versh nh,

G(n) = Ai—’i(n),

Hn) — AA(n2 / Ze;sh nh) .
1 = 20D,

_ A AU/6)
J(n) = AA(H/G)(n)'
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Now define operators:

Nao(n) = —n*a(Q,)/2 vershnh,

Ny = 2,

Non) = N,

AN
Ro = 36
N-1(m) = AR,

The action of these operators on Tl’f, modulo Ef~2, follows from Lemma 3.1:

NTy =T p—k—1)

1 A(n?/ versh nh) An?
= TH[5 0 =R — ke = =TI S agh) U+ the +9)
A(nzF )y 1 A(n?/vershnh) An®
T k=5 gk k= D(EH g - 5 |

NoT$ = ~TE[3 (0~ Ko — K — 1>§+Ao(k>]

+ T’H[kA_ (k)£ —luk(2v thk— 1)(% - 1)]

No(n)Tk———Tk(p p—k-1)
. AI/G) 1
+ 7! l[kA O3 517Gy~ 242 +k—1)]

NaAmT) = T, kA (k) ().

DEFINITION. For n € 77, let F,, be the set of & € C such that any of the following
conditions is satisfied:

(1) vershn'h =0 for some #' in {n,...,n+4}.
(2) AF(@)(h) =0 for some #’ in {n,...,n+ 3}.
(3) G()(h) =0 for some n’ in {n,n+1,n+2}.
@) AE)n)(h) =0 for some ' in {n,n+ 1}.
6) J)(h) =0
Note that each of these conditions makes sense only if # does not satisfy any of the

preceding ones. For example, G(n), G(n + 1), and G(n + 2) are only defined if / does
not satisfy (1) or (2). For the next lemma, recall the set H from Section 2.4.

LEMMA 3.2. First, if h & F, then N_(n) is a well-defined non-zero operator. Second,

for each n the set F, is a finite number of additive cosets of 2in7, in C, and so we have
the finite set: F = (ﬂ‘f"]—'n) NH.
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Proof. First, it follows from & ¢ F, that N, is defined at n, ..., n + 4, that N is
defined at n,...,n+ 3, that Ny is defined at n,n+ 1, n+ 2, that ]% is defined at
n,n+ 1, and that N_;(n) is defined and non-zero.

Second, let ¢ = ¢”". We show that for each n, the functions AF(n), G(n), A(H/G)(n),
and J(n) become well-defined rational functions of ¢ that are not identically zero. It is
clear that each of the functions in question is either rational in ¢ or undefined for all
g, and so it will suffice to prove that if |¢g| is a large enough positive real number,
all of them are defined and J(n) # 0. Given two functions #(n, g) and T'(n, g), let
us say that 7 is of Order(7'), or t = O(T), if there are constants C and ¢, independent
of n and ¢ such that |t(n, q)] < CT(n, g) for all n € Z* and all |¢| > |qo| (for our
purposes, it would be enough for C and ¢, to be independent of ¢).

Now we easily prove that:

P = =5 — (1 + 0 ),
AFG)() = =1+ Olng™),
2
G(n)(h) = Ai—nF =AQn+ 1)(=1+0ng™) = 24 O(n*q™").

Thus the functions arising in the first three conditions are defined, and not identically
zero. The same is true of the function A(H/G) arising in the fourth condition,
because:

A(n?/ vershnh)
AF o

A(%)(n)(h) = A[—n2q—"(1 n oq—‘)] — n2q"(1 + Og7Y).

Hn)(h) = A A[—anq_”(l 4 oq—‘)] — 22q~"(1 + Og™Y),

Finally, we find:

Hn)(h) = A = 6n+6+0(’q "),

A(R2F)
AF
A(é) (n)(h) = [A(—3n —34+ O(n3q_”)] — 3400,

AU/G) _

Jn)(h) = A TN

A[=3n72¢"(1 +0g™H]| = =301+ 1) (1 + Og ™).

Therefore J(n) is not identically zero in ¢ for any n.

To prove the second point of the lemma, it suffices to remark that F,, is the inverse
image under the exponential map of the finite set of poles and zeroes of the following
functions of ¢: vershw'hforn' =n,...,n+4,AF atn,...,n+3,Gatn,n+1,n+ 2,
A(H/G)atn,n+ 1, and J(n). In fact, the set of poles at each step is included in the set
of zeroes and poles of the previous step. O
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THEOREM 3.3. If h ¢ F and the roots of the quadratic A_(k) are not positive
integers, then W acts irreducibly on Eu(b,7, p).

Proof. Recall from Section 2.4 that we are assuming / € ‘H, and so /& € F implies
h¢ F, for some n. By Lemma 3.2 and our assumption on A_;, the operator
N_i(n) maps elements of weight u and degree k to elements of weight u and degree
exactly k — 1. Suppose that W is a non-zero W-subrepresentation of Ej; then
for some u and k, it contains an element Rﬁ of weight u and degree k. Then
R{l = N,l(n)k_-/ Rﬁ has degree exactly j, and so since N_;(n) is the image of an element
of the universal enveloping algebra U(W) under o, W contains the span of
(RS, ..., RE}, which is all of Ef . Finally, vershnh # 0 by the first condition above,
and so & & 2in7Z/n. Therefore by Equation (2), g(e+;) maps R’; to an element of
weight u + 1 and degree k 4+ 1, and so W contains elements of arbitrarily high degree
in every weight. The theorem follows. O

It seems likely that 2inm’ /m ¢ F for m > 6, and this could perhaps be verified by a
computer. However, we will prove the irreducibility of Eyzyy /s for m = 3 by a dif-
ferent argument, using the fact that the vector fields e,,, for n € Z act on it as they
do on Ey. Our proof will require different conditions on y and p. First, we need
a lemma describing the action of Q,,,. It is essentially Lemma 3.1 in the case that
h =0, extended to terms of degree >k — 2. Its proof is much easier than that
of Lemma 3.1, and we leave it to the reader.

LEMMA 3.4. Suppose that e = 1, and define:
Boo(k) =9(y +p— 1) — 5k = 2)(k + 1 — 4p).
Then modulo E,’j’3, we have the formula:
o(Qun)T, = T, (p = k)(p —k = 1)+ T, uk(2y + k = 1)—

_ 2Tfl‘72mzn2 <§> B_»(k). ©)
THEOREM 3.5. Let ¢’ be a primitive mth root of unity with m > 2. If the roots of the
quadratic B_,(k) defined in Lemima 3.4 are not integers greater than 1, then Ey(b, y, p)
is irreducible.

Proof. We adapt the proof of Theorem 3.3. Let M_>(n) = —a(AQ,m)/2m>(2n + 1).
Then modulo degree kK — 3, Lemma 3.4 gives:

M_(WTh =T, <’;> B_>(k).

Therefore, under our assumptions M_,(n) lowers the degree of any element of Ej, by
exactly 2, and so the proof of Theorem 3.3 goes through once we show that any
non-zero subrepresentation of Ej contains elements of arbitrarily high degree
and arbitrary parity in each weight. This follows from the fact that ey, and e,
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all raise the degree by exactly 1, because m > 2. For example, to raise the degree by 3
without changing the weight, apply ¢* e;. O

We remark that when ¢ # 1, the operator N;(1) from Theorem 3.3 is defined, and
it increases the degree by 1 except in degree p — 1. This can be used to prove
Theorem 3.5 in most of the cases that B_, does not have two consecutive integer
roots greater than 1, along the line of the proof of Theorem 3.7.

It remains to consider E;;(b,y, p), which we know decomposes when p = 1 — 2y.
Here e., does not raise the degree, and so we begin by constructing an operator
that changes the parity of the degree without changing the weight when p is not
0 or 1 —2y. The proof is a little longer than that of Lemma 3.4, but it is a direct
calculation so we omit it.

LEMMA 3.6. Let Py(n) = a(e,_y,e3, ,)/4, and let Pi(n) = A*Py(n)/16. Then modulo
degree k:

Pyn) T = T4+ [u F20n—1)k+3— p)]+
+ 275 [;ﬂ +un =)k + 547 —p)+22n— 12p(1 —p — 2«,)],
(6)

and so Pl(n)Tl’f = Tli‘“p(l —p—2y).

THEOREM 3.7. First, suppose that yisnot 0, (1 — p)/2, or 1 — p, and p # 0. If B_»(k)
does not have two consecutive integer roots greater than 1, then Ei(b,y,p) is
irreducible.

Second, suppose that p=1—2y. If B_, has no positive even roots, then
Ein +(b,y, 1 —2y) is irreducible, and if it has no odd roots greater than 1, then
Ein_(b,y, 1 —2y) is irreducible.

Proof. Let us begin by remarking that by Section 2.4, we know that E;(b, y, p)
reduces when y is 0, 1 — p, or (1 — p)/2: when y = 0 we have the subrepresentation
E;O(b, 0,p) = E;n(b,1,p—1), when y=1—p we have the subrepresentation
ﬂ[Efgz(b, 0,p)], and when y = (1 — p)/2 we have the involution «. However, we
do not know what happens in general when p = 0.

Now the first statement is proven just as Theorem 3.5 was, except that when
B_,(k) =0, we get down from degree k to degree kK — 2 by going up to degree
k + 1 with P;, then down to k& — 3 with Miz, and then up to kK — 2 with P;. Note
that under our assumptions, B_;(2)# 0, and so this always works. Use
Lemma 3.6 to prove that as long as pisnot 0 or 1 — 2y, E;(b, v, p) contains elements
of arbitrarily high degree and arbitrary parity in all weights. To prove the second
statement, it is enough to use ey to increase the degree and M_; to reduce it. []
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4. Equivalences

In this section we will prove that there are no equivalences between two different
irreducible representations from Section 3, unless both of them have & = ix; in this
case, the only possibility is the intertwining map o, defined in Section 2.4. Recall
from that section that we are restricting the parameters so that 0 < Re(b) < 1,
and £ lies in the fundamental domain H of the action of the group of equivalences
generated by p, and f on A.

Throughout this section, we consider two representations F = Ej(b, y, p) and
F =Ey,y,p) of W, and we write ¢ and o', respectively, for the two actions
of W. We begin by stating an elementary lemma; to prove it, use n-asymptotics
to come down to the case that C =0, and then use the identity versh2z/
vershz = 2(1 4 cosh z).

LEMMA 4.1. Suppose that hand I are in H, and A, B, and C are constants such that
A # 0 and Avershnh' = Bvershnh + Cnsinhnh for all n € N. Then either h =W,
A=B, and C=0;,orh=W =inand A=B; orh=W =0, or W =B=C=0.

The essential part of the next proposition is that if F and F’ are equivalent, then
h =F. In order to simultaneously handle equivalence questions regarding the sub-
representations Ej; . occurring at s =in (and any hitherto undiscovered sub-
representations occurring at the special values of the parameters not covered by
the results of Section 3), we have written it to apply to arbitrary subrepresentations.

PROPOSITION 4.2. Let V C F and V' C F' be W-subrepresentations, and suppose
that ©: V — V' is a non-zero intertwining map. First, b = b', and © maps the weight
space V, into V//r Second, I is either h or 0. Third, if T is an equivalence, then h = I'.

Proof. We introduce some notation. If V' is any subrepresentation of F, it is not
hard to see that we can pick elements Rﬁ of V,, such that Rz is either zero, or
of degree k and congruent to Tﬁ modulo degree k — 1, which have the property that
the set of non-zero Rﬁ form a basis of V. Note that if 7 #0 and Rﬁ # 0, then
R} cannot be zero by Equation (3), as a(Q1)R}, is an element of ¥, of degree k + 2.

Suppose in addition that 7 is a subrepresentation of F’, and let RZ‘ be a similar
basis of V’. Then if 7: V' — V"’ is an equivalence, whenever r(Rﬁ) # 0 we can define
scalars Ji(u) and 74 ;(u) by the equation:

. AN
(R = Rl (w).
Jj=0

where R/{) and 1 j, (1) are not zero, and 7 (1) = 0 whenever R] = 0. We will
usually suppress the u-dependence of these scalars.

The first statement of the proposition holds because T commutes with ¢y. For the
second, we retain the notation above, and begin with the case & # 0. Whenever
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R’; is non-zero, Equation (3) gives:

—%nzo(Qn)(Rﬁ) = Rﬁ*z vershnh + R,’j“ [(p — k — Dnsinhnh + Ci versh nh]
(N
modulo degree &, for some constant Cy. Choose K minimal such that T(R,If ) # 0, and
consider the equality o'(Q,)t(RX) = ta(Q,)(RY) modulo degree Jx + 1. We have:

R;;’ x+20y 1. vershnl

= I (Q)(RE) = —Ln’ta(Q)(RF)
= Z RZ(IKHJ« versh nh + IKHJ-[(p — k — Dnsinhnh + Cg Vershnh]),
J

®)

as T maps terms of degree < K to terms of degree < Jg. The sum over j is necessarily
of degree at most Jx + 2, and an application of Lemma 4.1 to the degree Jx + 2 term
of the equation gives #' = /h or 0.

Now if 7 =0, a(Q,) does not increase degree, and so Equation (7) becomes
J(Qn)Rﬁ =0 modulo degree k, which leads to ro(Q,,)(RIIf) =0 modulo degree
Jk + 1. Therefore Equation (8) becomes R;/***tg ; vershnk' =0, which gives
' = 0. Note that the case // = 0 does occur for all values of 4, for example when
y =17y =0, as we saw Section 2.4.

To prove the third statement, it suffices to apply the second to t!. OJ

In light of Proposition 4.2, we may assume henceforth that 4 = /' and b = »’. Now
we prove the main results of this section.

THEOREM 4.3. Suppose that F = Ey(b, v, p) and F' = Ey(b, ', p') both satisfy the
conditions of Theorem 3.3. If 1. F — F' is an equivalence, then F = F'.

Proof. Let us establish some notation. Define N;(n) and No(n) to be the operators
on F’ analogous to N;(n) and No(n) Note that since 1=/, we have Ni(n)t =
©N;(n) for all j. Fix ny so that / is not in the set F,, of Section 3, and durlng this
proof, write simply N; for N;(ng), and N/ for N’(no) and so on.

Given any map 0 from F to F', there are unique maps 0”: F — F’ and scalars
09(k, p), defined by:

0= XZ: 00, 00T = 00k, )TEH

We say that 01 is the degree i part of 0, and we usually suppress the u-dependence of
the scalars. This notation is cumbersome, but it expedites the proof that y = y’. Note
thatif k +i < 0, then 0”(k) = 0.1f 0 = 3", _ ; 0’ and 0”) # 0, we say that the map 0
is of degree I, and we will also use this terminology for endomorphisms of F and F’;
for example, N; and N} are of degree j.
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We begin by proving that p = p’. We have the following facts: tN*, = N’* 1, the
kernel of N*, is F*~!, the kernel of N’ is F*~! and 7 is invertible. These lead
to ©(FX) = F’* for all k, i.e., 7 is of degree 0. Therefore, the degree 0 part of the
equation Njt = T/, is:

MO0 — (O[O,

Since N(()O)(k) =— % (» — k)(p — k — 1), and similarly in the primed case, applying this
equation to T yields:

@ =@ —k—D1O%) = (p — k)(p — k — DrO(k)

for all k. Since t©(k) # 0, this gives p’ = p.

Now we prove that 9/ must be either y or 1 — p — 7, and that (k) is independent
of k. A analysis of the degree 0 part of Nyt =tN, similar to that above yields
Ay(k) = Ao(k) for all k, which proves that y’ is either y or 1 — p — y. Next, p’ = p gives:

N k)= NOky=p—k -1,

and so the degree 1 part of N{z = =Ny, applied to T7, gives t(k) = 1@(k + 1), unless

k=p—1. A similar argument, using the degree 2 part of Né(z)r = TN;Z), gives

Ok) = 1Ok 4 2), and so 19(k) is independent of k.

Finally, we prove that y is y’. To prove that it is not 1 — p — y, it is not enough to
consider only top degree parts as above. Applying the degree 1 part of
Nyt =1N; to T} gives:

N2 (e = 1)eD(k) + NSO O (k) = <Dk + 2N (k) + 1Ok + DN (k),
where:
NPy =NPwy =1, NPk =Nk =@ —k—DF(n)+
This leads to tV(k +2) = t"D(k), and at k =0, to "V (2) = 0. Therefore:
=Dk) =0, D2k + 1) = 1D,
for all k. Finally,
N{OG) = NP = u(y =),
and so a similar analysis of the degree 0 part of Njt = tNi, applied to Tﬁk, gives:

iy = 7)200) = (p = 2% — e =0(1)
for all k. Therefore V(1) =0, and " = . ]
THEOREM 4.4. Suppose that €' is a root of unity other than +1, and F = Ey(b, y, p)

and F' = Ey(b, V', p') both satisfy the conditions of Theorem 3.5. If ©: F — F' is an
equivalence, then F = F'.
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Proof. Define M’ ,(n) to be the operator on F’ analogous to M_»(n), and note that
M’ ,(n)t = tM_>(n). We may fix and suppress n. Since ker M*, = F?*~!, the equation
tM*, = M™%,z gives ©(F*~1)y = F%~1. Similarly,

ker[M’;';lNl(l)] N ker[M’ijl(l)Nz(l)] — F%

(unless 2k = p — 1, it is enough to use ker M*}'Ny), and so we get ©(F*) = F**.
Using this, the fact that p = p’ follows from ¢'(Q,;)t = 16(Qyn) and Lemma 3.4,
We find that t©(k) is independent of k just as before, and from this, tM_, =
M’ ,t gives B_, = B" ,, which implies that y’ is either y or 1 — p — 7. Finally, the
same argument used for Theorem 4.3 gives y =7'.

THEOREM 4.5. Suppose that h = in. First, if F = E(b,y,p) and F' = Eiz(b, V', p))
both satisfy the conditions of the first statement of Theorem 3.7, and 1: F — F' is
an equivalence, then either F = F’, or tis a multiple of e and F' = E(b,1 — p — 7, p).

Second, suppose that W is one of Egi(b,y,1—2y) and W' is one of
Ein(b,y,1 =2y, and that both satisfy the conditions of the second statement of
Theorem 3.7. If ©: W — W' is an equivalence, then W = W',

Third, Ei(b,y, p) is not equivalent to either of Eir +(b,y', 1 —2y").

Proof. First, we find that t(FX) = F’* just as in Theorem 4.4, except that we use P,
instead of N;. Then we get p=p from o' (Qy)rt =710(0Q2), and we get
1Ok +2) = tO(k) from Njt=tN,. Applying these facts to M’ ,t =tM_, gives
B, = B_,, which implies that 7’ is either y or 1 —p —y. This proves the first
statement: both cases are possible.

For the second statement, suppose first that W and W’ have opposite ‘signs,’ say
W = Ej;+ and W = E;; _. Then the equation M’ ,t =tM_, implies that 7 is of
degree 1 in weight u for u — b even, and of degree —1 in weight u for u — b odd.
Applying the equation ¢'(Q;)t = t6(Q,) to the case that pu—b is even gives
P =p-+1, but applying it to the case that u— b is odd gives p’ =p—1, so W
and W’ are not equivalent. If W and W’ have the same sign, these arguments show
that 7 is of degree 0 and p = p/, so W = W’. The third statement follows from a
consideration of the sizes of the kernels of M* , and MZ‘Z in each weight. [

5. Remarks

We conclude with a few remarks. First, in the works [CMZ, BOv, GaOv, Mat], the
eigenspaces of the Casimir operators Q, play a crucial role in the analysis of £,
but for nh not in 2in7Z, they act on E, without eigenvalues, because they raise
the degree. However, the operators ]%(n) defined in Section 3 leave the degree
invariant, and in fact they have the same eigenvalues on Ej that Q, has on Ej.
It would be interesting to find some analogy between Q, and Ng(n), perhaps by
explaining the significance of the eigenspaces of the latter.
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COHOMOLOGY. Here we show that E,(0, 1, —1) has a non-trivial 1-cohomology
group for all 4, and we justify the claim that Ej(b, 0, 1) has a quotient equivalent
to A(b, 1) ® A(b, 0), made in Section 2.4.

Recall from Section 2.4 that Ej(b, 0, p) is an extension of A(b, p) by Ej(b, 1,p — 1),
and that this extension splits when 4 = 0. It does not split for any non-zero value A
of h, for if it did, we could construct a non-zero intertwining map from
Ey(b, 0, p) to E; (b, 0, p), with kernel equivalent to Ey(b, 1, p — 1), and image equiv-
alent to 4(b, p), which is impossible by Proposition 4.2. Therefore the representation
on the space of maps from A(b, p) to E;(b, 1, p — 1) has non-zero 1-cohomology for
all non-zero /.

Since A(0,0) contains the trivial representation Dy, an extension of D, by
En(0,1, —1) is contained in E;(0, 0, 0). It is clear from Equation 1 that when / is
non-zero, Ej;(0, 0, 0) does not contain Dy as a subrepresentation, and so this exten-
sion cannot be trivial. Therefore Ej(0, 1, —1) has a non-trivial 1-cocycle d,,. However,
itis a subrepresentation of the representation on the space of maps from A(1) to 4(0),
and in [MP2] it is proven that up to coboundaries, all cocycles of this representation
take values in Ey(0, 1, —1). This means that ¢, must be cohomologous to an
Ey(0, 1, —1)-valued 1-cocycle, by a coboundary taking values in the larger space
of all maps from A(1) to A(0).

In fact, ; is trivial in the cohomology of this larger space. To see this, note that if
we regard Ej(0, 1, —1) as a subrepresentation of Ej(0, 0, 0), then unwinding the defi-
nitions gives &, = 3(e"®). Since the injection is right multiplication by Me, trans-
porting ¢"® back to E(0,1,—1) gives M~'e//z,, and so &, = M e/ /&)
whenever ¢;! is defined, i.e. on the weight spaces of A(1) of non-zero weight. A little
more work gives a formula valid on all weight spaces:

o = a[ﬁrl eheoéio_l]

Summarizing, we have the following proposition; its irreducibility statements are
corollaries of Theorems 3.3, 3.5, and 3.7, and its cohomology statement follows from
the above discussion.

PROPOSITION 5.1. The representation E;(0, 1, —1) is irreducible if either h & F or
el is a root of unity other than £1. The representation Ei(0, 1, —1) splits as the direct
sum of the two representations E;; (0,1, —1), both of which are irreducible. All

of these irreducible representations have non-trivial 1-cohomology groups.

Now recall our claim from the paragraph on the case that y=0 and p =1 in
Section 2.4: the quotient of Ej(b,0,1) by Meg[E,(b, 1, —1)]Me, is equivalent to
A(b, 1) ® A(b,0). To prove this, check that the images T(:L and T:l of T and T,
are a basis of the quotient, and that Tj + ,uT; projects to zero in the quotient. Hence
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by Equation (2), the quotient action is:

—, 50 0 "
a(enT, = (n+ Ty, + (1 — T, .

5(€n)71 =n+p— ne”")TﬂM +(1 - ehn)Tqun — ue””Tl

Deﬁne a linear bijection from the quotient to A(b, 1) ® A(b, 0) by T = Mz" and

”“T [—z*. This carries the quotient action ¢ to an explicit extensmn of A(b 1)
by A(b 0), and one checks that the associated cocycle is e,—M~!z"
e " (e~ — 1). Computation shows that this is in fact —6_;, and so the extension
is trivial.

THE ALGEBRA OF DIFFERENCE OPERATORS. Fix ¢ =¢”, and define D to
be:

d
D = Ey(0,0,0) = Clz,z7", &] = C|:Z, z !, E:|
the algebra of polynomial differential operators on S', i.e. the Weyl algebra with z~!
adjoined. In the paper [Kas] of Kassel, a g-analog D, of D is defined:

D, = Span {z"rg:u e’, ne N},

where in our notation, 7, is ", Note that 7,z = gzt,, and Jackson’s g-differentiation
operator is 9, =z '(t, — 1)/(¢ — 1), which satisfies the ¢-Weyl relation 9,z—
qz3, = 1. We remark that ¢’® may be adjoined to D to form the algebra D[e"®],
which may be written in various ways:

D[elzéo] — C[Z, Z_l, éOv ehéo] — @;ioEnh(O, 0, O) @k OD "'/c

DEFORMATIONS OF ALGEBRAS. First, note that when b and p are zero, the
domain and range spaces of tensor densities of Ey(0, y,0) are the same, and so it
is an algebra on which W acts by derivations. However, it is nothing new: the rep-
resentation structure of Ey(0, y, 0) depends on y, but its algebra structure does not;
it is easily seen to be isomorphic as an algebra to Ey(0,0,0). In this setting,
E,Ey = Ejy, and so @,E, is an algebra on which VW acts by derivations, and
Ej, is an Ey-bimodule.

Recently, Pinczon [Pi] introduced a non-commutative version of Gerstenhaber’s
theory of deformations of algebras [GS]: given any associative algebra L, and an
endomorphism t of L, there is a natural algebra structure on L[[#]] such that
0l = ()0 for all ] € L, and a t-deformation of L is a deformation of this structure
which preserves this equation. It is easy to check that D[e"®] is the trivial
Ad(t,)-deformation of D. Note that if m is an integer, e*™ is a central element
of D[e*™/™] and so the quotient of this algebra by the two-sided ideal generated
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by e¥™ — 1 is, as a vector space, ®"_ Eximm /m(0, 0, 0). The quotient algebra struc-
ture on this space is of course simply a truncated trivial Ad(z,)-deformation of D.

In [Pi], Pinczon defines a certain bimodule W/ of the Weyl algebra C[z, (d/dz)],
and in fact as a D-bimodule, E,(0, 0, 0) is nothing but W with z~! adjoined (the
reader may easily deduce the definition of W} from this fact). He computes the
Hochschild cohomology of W] for all ¢, and uses the result to prove that at
g = —1, the Weyl algebra has a unique Ad(r_;)-deformation, which is realized
as the universal enveloping algebra of osp(1, 2).

Let us remark that the case ¢ = —1 is also special in our setting: we saw in
Section 2.4 that Ej(0, 0, 0) contains a submodule equivalent to E,(0, 1, —1), which
by Proposition 5.1 is irreducible under the adjoint action of W for most 4, but splits
as Ei; +(0,1,—1) ® E;z —(0, 1, —1) when & = in. It would be interesting to relate these
two phenomena.

OTHER REPRESENTATIONS WITH INFINITE-DIMENSIONAL WEIGHT
SPACES. Chari and Pressley [CP] have remarked that one of Kirillov’s results
in [Ki] is that the representations of W in the symmetric and anti-symmetric
half-densities on S' x S! are both unitary, irreducible and have infinite-dimensional
weight spaces. At the algebraic level, this translates to the statement that the sym-
metric and anti-symmetric parts of A(0, %) ® A(0, %) are irreducible. These
representations belong to the family A(a, y) ® A(¢’, y’) and their subrepresentations,
which by the following proposition are not the same as the representations we have
constructed in this paper.

PROPOSITION 5.2. Let V be either A(a,y) ® A(d,y') for some a, d', y, and y’, or in
the case that a =d and v =7/, its symmetric or anti-symmetric part. Then V is
not equivalent to Ey(b, v, p) for any h, b, y, and p.
Proof. First, it is easy to check that the actions of e, and Q,, on A(a,y) ® A(d, ')
are:
(M2 @ M7Z") = (G4 m)(MZH" @ MY ") + (U + m/ (M7= @ M7=+7),
QUM @ M) = [P =y 442 = 7)) + 220 |(M7H @ M7 )
— G+ m)E = m (M @ M)~
— (A= m)(X + (M2 @ MY .

It follows from these equations that ¥ contains an element v with the property that

Span{ 0,(v):n e Z*]

is infinite-dimensional. Indeed, v = M7z* ® M?'z* will do, provided that we choose
4 #0if y =0, and similarly, 2’ # 0 if y = 0.
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On the other hand, Q, acts on Ej, by an operator of degree 2 with respect to the
filtration E,’f, which has finite-dimensional weight spaces, and so for any 7 in Ej,

Span{a(Qn)T: ne Z+}

is finite-dimensional. Therefore V" and Ej are not equivalent. O

Acknowledgements

The first author thanks the Laboratoire Gevrey de Mathématique-Physique of the
Université de Bourgogne for its hospitality during the course of this work, and grate-
fully acknowledges his deep debt to Moshé Flato, who tragically passed away during
his stay there. He was supported in part by the National Science Foundation. Both
authors thank G. Pinczon for his interest and suggestions.

References

[BOv] Bouarroudj, S. and Ovsienko, V.: Three cocycles on Diff(S') generalizing the
Schwarzian derivative, Internat. Math. Res. Notices 1998, No. 1, 1-15.

[CP] Chari, V. and Pressley, A.: Unitary representations of the Virasoro algebra and a
conjecture of Kac, Compositio Math. 67 (1988), 315-342.

[CMZ] Cohen, P., Manin, Y. and Zagier, D.: Automorphic pseudodifferential operators, In:
Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations
Appl. 26, Birkhduser, Boston, 1997, pp. 17-47.

[FF1]  Feigin, B. L. and Fuchs, D. B.: Invariant skew-symmetric differential operators on
the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16(2)
(1982), 114-126.

[FF2]  Feigin, B. L. and Fuchs, D. B.: Verma modules over the Virasoro algebra, In:
Topology (Leningrad, 1982), Lecture Notes in Math. 1060, Springer, New York,
1984, pp. 230-245.

[GaOv] Gargoubi, H. and Ovsienko, V.: Space of linear differential operators on the real line
as a module over the Lie algebra of vector fields, Internat. Math. Res. Notices 1996,
No. 5, 235-251.

[GS] Gerstenhaber, M. and Schack, S.: Algebraic cohomology and deformation theory,
In: Deformation Theory and Algebraic Structures, NATO-ASI Series C.297, Kluwer
Acad. Publ., Dordrecht, 1988.

[GoOl] Goddard, P. and Olive, D. (eds): Kac—Moody and Virasoro Algebras: A Reprint
Volume for Physicists, World Scientific, Singapore, 1988.

[Kal] Kac, V.: Contravariant form for infinite-dimensional Lie algebras and super-
algebras, In: W. Beiglbock, A. Bohm and E. Takasugi (eds), Lecture Notes in
Phys. 94, Springer, New York, 1979, pp. 441-445, and Highest weight represent-
ations of infinite-dimensional Lie algebras, In: Proc. Internat. Congr. Math.,
Helsinki 1978, Acad. Sci. Fennica Helsinki, 1980, pp. 299-304.

[Ka2] Kac, V.: Some problems of infinite-dimensional Lie algebras and their represent-
ations, In: Lecture Notes in Math. 933, Springer, New York, 1982, pp. 117-126.

[Kas]  Kassel, C.: Cyclic homology of differential operators, the Virasoro algebra and a
g-analogue, Comm. Math. Phys. 146 (1992), 343-356.

https://doi.org/10.1023/A:1017566220585 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017566220585

REPRESENTATIONS OF THE WITT ALGEBRA 175

[Ki] Kirillov, A. A.: Unitary representations of the group of diffeomorphisms and of
some of its subgroups, Selecta Math. Soviet. 1 (1981), 351-372.

[MP1] Martin, C. and Piard, A.: Indecomposable modules over the Virasoro Lie algebra
and a conjecture of V. Kac, Comm. Math. Phys. 137 (1991), 109-132.

[MP2] Martin, C. and Piard, A.: Classification of the indecomposable bounded modules
over the Virasoro Lie algebra with weightspaces of dimension not exceeding two,
Comm. Math. Phys. 150 (1992), 465-493.

[Ma] Mathieu, O.: Classification of Harish-Chandra modules over the Virasoro Lie
algebra, Invent. Math. 107(2) (1992), 225-234.

[Mat]  Mathonet, P.: Geometric quantities associated to differential operators, Preprint
No. 98.007 of the Institut de Mathématique, Université de Liége.

[Pi] Pinczon, G.: Noncommutative deformation theory, Lett. Math. Phys. 41 (1997),
101-117.

[Us] Ushirobira, R.: On the orbit method for the Lie algebra of vector fields on a curve, J.
Algebra 203(2) (1998), 596-620.

https://doi.org/10.1023/A:1017566220585 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017566220585

