
J. Aust. Math. Soc. 75 (2003), 325-353

UNIFORM ASYMPTOTIC ESTIMATES OF TRANSITION
PROBABILITIES ON COMBS

DANIELA BERTACCHI and FABIO ZUCCA

(Received 20 November 2000; revised 14 August 2002)

Communicated by V. T. Stefanov

Abstract

We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on
the 2-comb. In particular, we obtain space-time uniform asymptotical estimates which show the lack of
symmetry of this walk better than local limit estimates. Our results also point out the impossibility of
getting sub-Gaussian estimates involving the spectral and walk dimensions of the graph.
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1. Introduction

Given a random walk (Zn)n>0 on a graph X, there are many related questions regarding
its behaviour when the discrete time parameter n goes to infinity. Classical questions
of this kind are, for instance: will the random walk visit a given vertex of the graph
only a finite number of times (with probability one)? Will it leave any bounded set
after a finite time (with probability one)? Moreover, if we denote by pw(x, y) the
n-step probabilities of the random walk from the vertex x to the vertex y of X, we can
study some features of the sequence (p(n) (x, y ))„, for instance, answer to the question:
is it asymptotic to some 'nice' numerical sequence?

Answers to the first two questions are theorems and criteria for recurrence and
transience; answers to the latter question are provided by local limit theorems, that
is, theorems which give a numerical estimate of pw(x, y) for fixed x,y as n tends
to infinity. Local limit theorems are widely studied (in many papers in literature) in
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FIGURE 1. The 2-comb.

various settings: for instance, the case of random walks on free products of discrete
groups was studied by Woess [17] and Cartwright and Soardi [5] (see also [4] or [6]
in the case of Cartesian product of discrete groups).

The present work studies the asymptotic behaviour of the transition probabilities
of the simple random walk on the 2-comb, which is a graph obtained attaching at each
point of Z another copy of 2 by its origin (see Figure 1).

A local limit theorem for the 2-comb (and in general for <i-dimensional combs) and
x = y is well known: here we observe how to extend it to the asymptotic estimate
of (p(n)(x, y))n for any x and v (equation (3.3)). The simple random walk on the
2-comb lacks symmetry (more precisely it is not isotropic—see [3]) and this feature
is not shown by local limit estimates. To stress the different behaviour the random
walk has in the two principal directions (vertical and horizontal) one needs space-time
estimates.

A space-time asymptotic estimate is a result which provides an estimate of p(n) (x, y)
as n tends to infinity, uniform with respect to the quotient d(x, y)/n lying in a suitable
range. Of course local limit theorems can be derived from space-time estimates. We
provide space-time asymptotic estimates for the p(n)(x, y) when y = o := (0, 0) and
x = (k, 0) or x = (0, k), that is, results of the form

where C, d are constants and / is a real valued function which all depend on the
range of d{x, 6)In. From these results all known limit theorems for the 2-comb can
be derived as a particular case.

The technique we exploit is essentially a Laplace-type estimate of integrals, since
the transition probabilities can be written as integrals thanks to the Cauchy formula
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[3] Uniform asymptotic estimates of transition probabilities on combs 327

for the coefficients of the power series of an holomorphic function:

f
2ni JY

where G{x, o\z) is the Green function (see (3.1)) associated with the walk and has an
explicit expression, and y is a positively oriented, simple closed curve in C surround-
ing 0. The basic idea is that the main part of the integral is given by integration on the
part of the curve which is closer to the singularity z = 1 of G(x, o\z). To develop this
idea into mathematical terms we first separate in the integrand the part with algebraic
behaviour and the part with exponential behaviour, then we choose a suitable curve
of integration and its parametrization. Afterwards, we write the Taylor expansion of
the argument of the exponential part of the integrand as a function of the parameter
of the curve and we finally show that it is possible to choose a piece of the curve on
which integration gives the asymptotic behaviour of the transition probabilities. It is
remarkable that the above mentioned Taylor expansions are very different in the two
cases x = (k, 0) and x = (0, k). This results in two different asymptotic behaviours
of the transition probabilities when d(x, o)/n tends to 0: in the first case

pw(x, 6) ~ d e\p(c2n(d(x, o)/n)4/3) n~v\
while in the second case

p(n)(x, o) ~ cjexpfontfOc, o)/n)2)n"3/4.

In particular, this shows that for the 2-comb it is impossible to give sub-Gaussian
estimates of the transition probabilities (see Section 10); the 2-comb seems to be the
simplest graph for which this happens.

We give a brief outline of the paper. In Section 2 we list the definition of uniform
estimate with respect to a parameter and two Lebesgue-type theorems which are
needed to obtain such estimates. Section 3 recalls local limit theorems and generating
functions for combs. Then in Section 4 and Section 5 uniform estimates are proved
for the vertical direction, while in Section 6, Section 7, Section 8 and Section 9 we
prove uniform estimates for the horizontal direction. In the last section we discuss the
obtained results and possible extensions.

2. Asymptotic estimates: definitions and technical results

In this paper we are concerned with asymptotic estimates of transition probabilities.
We then give some useful definitions and theorems. The first definition extends the
usual definition of asymptotic sequences (let X be a one point space and An = X for
all n € N).
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DEFINITION 2.1. Given two sequences (an(x))n and {bn(x))n of complex functions
defined on a space X and a sequence (An)n of subsets of X, we say that an is asymptotic
to bn (and we write an ~ bn) as n tends to infinity, uniformly with respect to x e An

if and only if there exists a sequence of complex functions (on(x))n and n0 e N such
that:

(i) an(x) = bn(x)(l + 0n(x)) for every n>no,xe An;
(ii) for every e > 0 there exists ne e N, n£ > n0, such that for every n > ne,

x e An we have |O«(A:)| < e.

The following definition extends the definition of uniform convergence (take An =
X for all n e N).

DEFINITION 2.2. Let us consider a sequence (an(x))n of functions defined on a
space X with values on a metric space (Y, d) and let (An)n be a sequence of subsets
of X. Let b : X -» K, we say that (an)n converges to b when n tends to infinity,
uniformly with respect to x e An if and only if for every £ > 0 there exists nB e N
such that for every « > nt, x e An we have d(an(x), b(x)) < s.

The following two technical results are the tools which we use to deal with integrals
of sequences and their uniform convergence. The first theorem provides an extension
of Lebesgue's bounded convergence theorem to the case of uniform convergence (with
respect to Definition 2.2).

THEOREM 2 . 3 . Let (X, E , fx) be a complete measure space, f n : X x Y - • C.for
all n e N, and f : X x Y —> C. Let (An)n be a sequence of subsets of Y. Suppose
that

(a) / „ is measurable with respect to x e X for every fixed y 6 Y;
(b) for every ye Y,fn(x, y) "-^ f (x, y), fi-a.e.;
(c) fnix, v) —> f (x, y), uniformly with respect to y € An, \x-a.e.\
(d) there exists g € Ll(fi) such that \f(x, y)\ < g(x), \fn(x, y)\ < g(x), ix-a.e.,

for every y 6 An, n € N.

Then f (-,y) is measurable for all y e Y and /„(-, y) —> / (•, y) in L1 (/z) uniformly
with respect to y e An.

PROOF. Measurability of / (•, y) is a standard fact. Let us fix e > 0. Since
g e Ll(fi), there exists X(e) e T, such that (j.(X(e)) < oo and Jx gd/j. < e, and
there is 8e > 0 such that fE g dfj. < e if E e S and (A(E) < 8e.

For/i e N, let

Xn(e) = {x eX(e):\fm(x,y)-f(x,y)\ < e/n(X(e)) for all yeAm,m>n}.
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Clearly, Xn(e) C Xn+1(e), and /z (X(s) \ (Jn Xn(s)) = 0. Thus we can find ne such
that n(X(s) \ Xn(e)) < Se for all n > nt. Then for y e An and n > ne,

[\
Jx

\fn(x,y)-f(x,y)\d»

\fn{x,y)-f(x,y)\dlL+ f \fn(x,y)-f(x,y)\dvL
y JX(e)

<2 [ gdn+ f \fn(x,y)-f(x,y)\dn<5e. •

Sometimes it will be impossible to exhibit a limit function for our estimates, but
we will be able to find a sequence of functions asymptotic to the given one and much
simpler. In that direction, the following theorem is useful.

THEOREM 2.4. Let (X, E, /x) be a measure space and let (/„)„, (hn)n, (on)n be
three sequences of complex-valued functions defined on X x Y which are measurable
with respect to x € X for every fixed y e Y. Let (An)n be a sequence of subsets of Y.
Suppose that

(a) hn(x, y) = fn(x, y)(l + on(x, y)), [M-a.e., for all y € An, n e N;
(b) on(x, y) —> 0 [1-a.e., uniformly with respect to y 6 An;
(c) there exist g e Ll (/x) such that \hn{x, y)\ < g(x), \fn(x, y)\ < g(x), /j,-a.e.,for

ally e An, n e N;
(d) there exists c > 0 such that \fxfn(x,y)dix\ > c, for ally € An, n e N.

Then

/ fn(x,y)dn~ / hn(x,y)dn
Jx Jx

uniformly with respect to y € An.

PROOF. Let us fix e > 0 and define Xn(e) = [x e X : \om(x, y)\ < e, for all m >

n,y e Am}. By the hypotheses, we have

_ fxhn(x,y)dfi

fxfn(x,y)d/x \fxfn(x,y)dfx\

\fxfn(x,y)d»\

<c~' (2 / gdfl+t [
\ JXMY Jx

for all y € An, n € N. Since /x(Xn(e)c) -> 0 as n -> 00, the theorem is proved. •
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The last (non-standard) lemma deals with the triangular inequality for power series:
we are interested in the cases where a strict inequality holds.

LEMMA 2.5. Let f (z) = YlT=o anz" be a power series with positive radius of
convergence R, and with an > Ofor all n. Then \f (z)\ <f (\z\) whenever \z\ < R. If
there exists n € N such that an > 0andan+i > 0, then | / ( z ) | < f (\z\) unless z = \z\.

PROOF. The inequality | / (z) | < f (\z\) is obvious. If equality holds for some z,
then there is a 6 e IR such that anz" = \anz"\e'e for all n. If an > 0 and an+i > 0, then
z" = \z"\ew and zn+1 = \zn+l\e'e. Dividing the second equation by the first, we get
z = \z\. •

3. Local limit theorems and generating functions

The 2-comb lattice Ci is a spanning tree of I?, that is, a subgraph of I? which is
a tree and contains all vertices. Thus there is a natural choice of coordinates on the
comb (that is, (x, y) e C2 indicates the same point of I}, now thought as belonging
to C2).

More generally, ^-dimensional comb lattices Q are the spanning trees of 1d ob-
tained inductively by attaching at each point of Q_i a copy of 1.

The estimate of the asymptotic behaviour of the transition probabilities of the
simple random walk on comb lattices passes through the knowledge of the generating
functions, which we now recall.

Recall that p(n\x, y) is defined as the probability that the random walk starting at
x is in y at time n. The Green function is then the power series

(3.1) G(.x,y\z) = 2^P
{n\x,y)zn, z e C,

while
oo

F(x,y\z) = ̂ 2f("\x,y)z'', z 6 C,
n=0

where / ( n ) (x, y) is the probability that the random walk starting at x reaches y for the
first time at time n. Then it is well known (see for instance, [18, Lemma 1.13])
that in the common domain of convergence of these power series G(x,y\z) =
G(y,y\z)F(x;y\z).

At least when x = y = o, the Green function Gd of the d-dimensional comb can
be obtained recursively by the following formula (see [8, 7])

(3.2) GAo, o\z) =
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recalling that G\(o, o\z) — 1/Vl — z2 (note that we will use no subscripts when
d = 2).

From (3.2), using techniques which can be found in [2], one can obtain local limit
estimates for the transition probabilities

(p(2n+1)(o, o) = 0 for all n). This was done by Weiss and Havlin [10] in the case
d = 2, 3, and in the general case by Gerl [8] and Cassi and Regina [7].

From this particular estimate one can easily derive an estimate of the general
transition probabilities (apply the results of [3, Section 6])

(3-3) P (x

where n + d(x, y) is even (p(n)(x, y) = 0 if n + d(x, y) is odd).
In (3.3) x and y are fixed: our goal is to obtain asymptotic estimates of pM(xk, o)

and of pM(yk, o), where xk = (k, 0), yk = (0, k), k > 0, uniform with respect to the
parameter £ = k/n (in order to avoid discussions about the parity of n and k we will
only deal with the case where they both are even, but this is no severe restriction—see
Section 4 and Section 10).

Since we are going to use formula (1.1), we need the explicit expressions of
G(xk, o\z) and G(yk, o\z)

G{xk, o\z) =

G(yk, o\z) =

The computation uses well-known techniques for the generating functions on graphs
involving explicit expressions of G(o, o\z), F(xk, o\z) and F(yk, o\z) (an example of
these techniques in the case of the homogeneous tree is [18, Lemma 1.24]).

For simplicity we denote by

G(z) := G(o, o\Vz) =

Fl(z):=F{yl,o\Vz) =

Fi(z) := F(xuo\Vz) =
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The first steps in the direction of obtaining estimates for p{2n)(x, o) are the same for
x = xk and x = yk, so we describe them here. We take y' having o in its interior and
1 in its exterior and we apply the substitution u = z2 in (1.1). When y' : z = z(t)
describes one circuit about o then y : u = u(t) describes two times the corresponding
circuit, hence

(3.4)

7n+\
Y *•

In order to stress the exponential part of the integrand, we write

z"

where f := k/n and

1 = 2.

Moreover, we will choose different curves of integration y with parametrization
z = z(£, f) and use this last substitution in (3.4). For simplicity we write

We note that the generating functions G, Fi and F2 all contain radicals, hence we
must pay attention to their polidromy.

REMARK 3.1. The functions G(z), f,2(z) and F2
2(z) are holomorphic in the open

ball with radius 1 centered in o, that is, o is not a singularity for any of these functions.
Moreover, z = 1 is a branch point for all of them and their only singularity in the
complex plane.

Choice of the determination of the square root. We choose the determination of
the square root with argument between — 7T/2 and 7r/2, that is, the function h{w) :=
VIw| exp(i arg(tu)/2), where arg(iu) is chosen in the interval [—it, n). That means
that y/\ — z is an holomorphic function defined in the open set A := <C\{z e R : z>l),
and we extend it to {z e R : z > 1} by continuity from the upper half plane (then we
will not have continuity from the lower half plane). Note that this choice allows us to
define y/l — z + \ / l — z as a holomorphic function in A as well.
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4. Estimates along the .y-axis: the case £ e [a, 1 — c]

We first deal with the case of the asymptotic estimate for the transition probabilities
/>(n)Cy*> o), which we will rename for the sake of simplicity pM(k, 0). We first note
that if n and k do not have the same parity, then p(n)(k, 0) = 0, while

(4.1) p(2n+n(2k +1 ,0 ) = Up(2n)(2k + 2, 0) + p(2n)(2k, 0)}.

Hence it will be enough to estimate p(2n)(2k, 0), which is given by the first equation
of (3.4) (in this and in the following section we drop the index 1 from Fu vl̂ 1 and * | ) .

LEMMA 4.1. The Junction ^ (z) has a unique minimum in (0, 1], namely zo{%) —
1 - £2. Let 0(f) be this minimum, then </>(£) = log ((1 - f )*"' (1 + I)-*"1).

Here is the first estimate of our transition probabilities.

THEOREM 4.2. Let a, c be positive numbers such that a < 1 — c. Then uniformly
with respect to £ e [a, 1 — c],

(ln 2k, 0)

PROOF. We first choose the curve of integration and split the integral into two parts
(Part I of the proof); then we evaluate the part which will prove to be asymptotically
negligible as compared to the other (Part II of the proof) and finally we estimate the
main part (Part HI of the proof).

Parti. The curve of integration is the circle with radius zo(£), centered in the origin

y • z{H, t) = ZoG)e", t 6 [-jr, n].

We note that since £ 6 [a, 1 — c], zo(f) e [a, 1 — c] for some a, c > 0. Thus

(4.2) pi2n)(2k, 0) = -L
27T

Now we want to write the Taylor expansion of ^ ( 0 with Lagrange remainder,
centered in t = 0. This is possible since the third order derivative of * ? (/) exists and
is continuous in t, for all £ e [a, 1 — c]. Hence we can write

**(/) = HH) - (l - £2)'2/4£2 + /?(£, 0,

where - (1 - £2)/2£2 = *j(0), the remainder is /?(£, r) = *£'(r) f3/3!, and F is a
point lying in the segment between 0 and t.
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We note that |*™(0)| > eforall£ e [a, 1 - c] and for some s > 0. Since v^'
we can choose a > 0 such that |/?(£, 01 < - * £ (0) t2/4 for all t e [-a, a].

Now we split the integral (4.2) into two parts

B := - i -

//. By the definitions of * f , (f>, and zo(£), we can write

2TT

The function \F(z)\/F(\z\) is continuous in the compact set K := {z € C : \z\ €
[a, 1 - c], a < arg(z) < n). By Lemma 2.5, maxz€jf \F(z)\/F(\z\) = A. < 1.
Moreover, again by Lemma 2.5, |G(zo(£)e")| < G(l — c), whence

(4.3) |B| <

and this estimate is uniform with respect to £ e [a, 1 — c].

Parr ///. Expand *$ (r) in the expression of A and perform the change of variable
6 := y/nb(£)t, where b(£) — ^/(l — ^2)/2^2 (this change stresses the main term of
the exponential)

A =

where tn := 0/(*/nb(%)). We want to give a uniform upper bound for the modulus of
the integrand in order to apply Theorem 2.3 . Since by our choice of a, \nR(t-, tn)\ <
02/4, the modulus of the integrand is bounded by exp{—92/4] for all n and f e
[a, 1 — c]. The integrand converges pointwise to exp{—92/2}, and the interval of
integration converges to R. Applying Theorem 2.3

uniformly with respect to £ e [a, 1 — c]. Finally, using (4.3) it is clear that |B/A|
tends to 0 when n tends to infinity, uniformly with respect to £ € [a, 1 — c]. •
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FIGURE 2. The segment in the n-plane. FIGURE 3. The curve in the z-plane.

5. Estimates along the j-axis: the case | e [0, a]

If £ is allowed to tend to zero, the preceding estimate is no longer true. Then we
have to choose a different curve of integration. We perform the change of variable
z = 1 - u2.

We note that, by our choice of the determination of the square root, if arg(w) e
[—7r/2, 7T/2) then u = VI — z (the expression of u in the other half plane will not
be needed). The desired curve in the M-plane is simply a vertical segment whose
parametrization is K(£, t) — «(£) — it where «(£) := y/\ — zo{%) = % and t ranges
from —a to a (a will be chosen in the sequel). The segment is oriented downwards
in order to produce a correctly oriented curve in the z-plane (see Figures 2-3).

The curve of integration in the z-plane will be the union of y\ '• z(%, t) = 1 —w(£, t)2

for |f| < a and y2 : z(£, s) := |z(£, a)\eis for arg(z(£, a)) <s <2n - arg(z(£, a)).
Hence

(5.1) p°»\2k,0) =
2ni L

G(z)F(z) 2k

.r/l+1 — I
2ni Jy2

G(z)F(z) 2k

vn+\
•dz.

Figure 4 shows how the contour of integration appears in the z-plane (the circle is
elliptic due to a different choice of measure units on the horizontal and vertical axes—
indeed the integral on y2 is equal to that on any convex curve surrounding o with the
same endpoints).

The integral still makes sense, since, as we observed in Section 3, our Green
functions can be extended to holomorphic functions defined in C \ (z e K : z > 1).

First we choose a depending on a such that for all £ e [0, a] we have |z(£, a)I >
1 + £,, for some fixed so > 0. This choice is possible since the mapping £ H-> Z(£, a)

is continuous and z(£, a) > 1 + a2.
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FIGURE 4. The curve of integration in the z-plane.

We observe that in this section we will make further choices of a, namely a will
be chosen sufficiently small in order to satisfy all the conditions we will find to be
necessary. In the sequel we will not stress that when a new condition is introduced, if
necessary a is chosen smaller than before.

Now we estimate B.

LEMMA 5.1. There exists a > 0 such that

G(z)F{z)2k

— [
2ni Jy,

Tn+1 dz

for some C > 0, X < 1 and for all £ e [0, a].

PROOF. Note that B can be written as

(5.2) L G(\zG,a)\e")
dt.

We want to give an upper bound for \G\ and \F2\, for all £ e [0, a] and |f| >
arg(z(|,a)) (this upper bound will depend on a). This is possible since K :=
{z = \z(%,a)\eil : £ € [0, a], |f| > arg(z(£, a))} is a compact subset of C. Since
d(K, 1) > eo, there exists C > 1 (depending on a) such that

(5.3) . max(|F2(z)|, \G(z)\) < C.

Hence the modulus of the integrand in (5.2) is bounded by

F(zAa))1) \l + eo)
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K

337

FIGURE 5. The compact set K.

We observe that if we take C = C(a) to be the smallest possible C > 1 sat-
isfying (5.3), then C(a) turns out to be a continuous increasing function. Since
(C(a)/F(zo(.a))2)a -> 1 as a -+ 0, then

C^ V ( < 1,

which leads to the conclusion.

Recalling that z(£, t) = 1 — (£ — i'r)2, we have to estimate

•

LEMMA 5.2. The function ^ (0 /ifiw a Taylor expansion centered in 0

, 01 < a// f € [0, a], |/| < a, and for some C > 0 (C depends
on a and a).

PROOF. We calculate the first derivative of ^ . Its Taylor series will lead us to the
Taylor expansion of the primitive function:
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where the series converges to the function itself, provided that | r / ( l ± £ ) | < 1 (but
this is true for a and a sufficiently small). Then, since </>(£) = *?(0),

^S + 3

where S(£, r) = E«>4»" ' [ ( - ' )7(1 - £)""' + ' 7 (1 + £)""'] '"~4- We want to show
that |S(£, r)| < C where C > 0 does not depend on £ e [0, a] nor on t e [—a, a].
But

m, ,„ <
It is easy to see that this power series converges if a < 1/2 and a < 1/4. •

The asymptotic estimate turns out to be different depending on whether f is allowed
to tend very fast to 0 or not, that is, we have to distinguish two subcases.

THEOREM 5.3. Fora > 0 sufficiently small, uniformly with respect to% € [n~1/4, a],

pi2n\2k, 0) ~

PROOF. We rewrite A using the Taylor expansion of

Let b($) = ^2/ (1 - £ 2 ) , and note that t(f) > \/2. As in the case £ > a, it is possible
to choose a such that

(5.5) |fl(£, 01 < ^ fr(f)V, V|r| < a, V£ e [0, a].

Perform a change of variable in order to stress the main term of the exponential
6 := Jh~b(H)t. If we put tn =

(5.6) A = f ^"^ f -^L'JMI e-^,^ _ itn)d6_

We want to give an upper bound (valid for all £ € [n~l/4, a]) for the modulus of the
integrand in order to apply Theorem 2.3. The exponential part is bounded by e~e'/A
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and £ — itn ~ f uniformly with respect to £ e [n 1/4, a], for every fixed 6, as n tends
to infinity. For all |r| < a and f e [n~l/*, a],

G(zn)
Zn

< 1.

Then if in (5.6) we extract the factor £ from the integral, the modulus of the new
integrand is bounded (for all £ 6 [n~1/4, a]) by <r"2/4(l + c\6\) and the integrand
converges pointwise to e~e2/1. Apply Theorem 2.3 to obtain

- I 2 )

uniformly with respect to £ e [n~1/4, a]. The theorem follows since, by Lemma 5.1,
|B/A| tends to zero as n tends to infinity, uniformly with respect to £ 6 [n~1/4, a]. •

When £ e [0, n~1/4] it is no longer true that £ — itn ~ £ and the technique will
be slightly different. A useful tool will appear to be the computation of the real and
imaginary parts of V£ — itn-

LEMMA 5.4. Let V£ - it = a(£, t) + ib(i-, t). Then

b(S,t) = -siia($, r) =

and both these terms are O(VF) +

THEOREM 5.5. Uniformly with respect to ij € [0, «~1/4],

V27T

/(f) := fne~e2/2J^/t2 + 62/2 + t dQ. Moreover for all e > 0, uniformly with

respect to f e [0, /i~I/2~e],

p(2n)(2k,0)~
ra/4)

PROOF. The integral we have to estimate is still A of (5.4). Choose a as in
Theorem 5.3 and let 6, b(tj), tn, an and zn be as defined there. Then we proceed
differently: in Part I we show a decomposition of G(z) into its singular and regular
parts; Part II is devoted to the estimate of the real part of the integrand in A: we stress
only the terms which are not o(£) or o(t2) (uniformly with respect to £ e [0, n~1/4]).
In Part III we write A = A] + A2 + A3. In Part IV we estimate A, and describe some
properties of / (r). Part V shows negligibility of B, A2 and A3.
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Part I. We write a decomposition for G(z):

(5.7) G(z) = (1 - z)"1/4//(z) + (1 - z)1/4K(z),

where //(z) := y/2 £n°°=o ( " ^ ) d - 0 " and K(z) := V 2 £ ~ o ( i $ ) 0 - z)" are
two holomorphic functions defined in a disc centered in z = 1 and with radius r
greater or equal to 2/3. Note that we need |1 — z\ < r, but this surely holds in the
integration domain if a is sufficiently small. Moreover, we decompose H and K into
their real and imaginary parts: H = Ho + iH\ and K = Ko + iK\.

Part II. In A we decompose G(z) as in (5.7), the remainder term R in its real and
imaginary parts Ro and /?i respectively:

A = C ! L f" ^ ^ ^ ^ ' " ^ ' ^ ' ^ ^ ^ ^ ( / / ( z j + (a. + ibn?K{zn))d6,
ny/nb($) J_an zn

where an = a(%, tn) and b = b(%, tn). Since the transition probabilities are non
negative quantities, we are interested only in the real part of the last integral (in fact
the imaginary part is 0, but taking into account only the real part of the integrand
avoids useless computation).

In order to apply Theorem 2.4, we estimate the function (depending on £, n and 6)
to which the real part of our integrand is asymptotic. In the following estimates every
o and O is understood to be uniform with respect to £ e [0, n~1/4].

First we estimate the main term of

(5.8) Re [e^W-^a,, + ibn){H(zn) + (an + ibn)
2K(zn))}.

Using the expression of Rt which can be deduced from the proof of Lemma 5.2, one
proves that Rt (£, /) = r3(0(£) + 0(0) , whence for every fixed 0

Then (5.8) can be written as

cos(ntf,(f, tn))anH0(zn) + cos(n/?,(£, tn))bntnK0(zn) + o($) + o(t2
n),

(the proof is tedious but straightforward). The only terms which cannot be immediately
seen as either o(£) or o(t2) are

(5.9) £0(71^1) = o(£), O(£)O(|rn|
3/2) = o(£), O(^)O(t2

n) = o(t2
n),

and these estimates are uniform with respect to £ e [0, n~l/*], since we consider n
tending to infinity, which implies that both £ and tn tend to 0 (for every fixed 6).

Finally, noting that z"1 = 1 + 0(£2) + O(t2) for every fixed 6,

A = •

f, tn))anH0(zn) + cos(n/?,(£, tn))bntnK0(,zn) + o(£) + o(t2)} dO.
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Part III. If in the preceding integral we write an and bn as functions of 6, f and n
and we extract from the integral the terms which do not depend on 9, we can split A
in three parts

_ t2\3/4 /•«,

* ; /A, = .1
V 2 it n3/4

/ <r«2/2+n*o«.o(1 + o ( | 2 ) + O(t2
n))

J-an

, rB))
\ (1 - H2)

4TT «5

A, =
,1/2 r O(fi)d9.

Part IV. We show that the integral in Ai is asymptotic to

t/R

62/2 dO.

We want to apply Theorem 2.4 to the integrand of Ai, but a new problem raises: the
quantity V"£ m a y t e nd to 0 or to +oo as well. Hence we introduce a new function,
namely Q(n, £) := max {1, ~/n%\. We rewrite A!

V2

X COS(/l/?i(|,/„)
\ 2Q\n^)

•dO.

We evaluate the (uniform) asymptotic value of the integrand (which we call fn(9, f),
defined for all 9 e R). Recalling that \nR0(%, tn)\ -> 0 for every fixed 9, uniformly
with respect to £ e [0, n~1/4], one shows that/B(0, | ) is asymptotic to

hn(9,$):=e-er-

Thus /„ and hn are both bounded, for every f 6 [0, n~1/4], by

Ce~
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Finally, \ J^hn(6, %) d6\ > c for some c > 0, for all n and £ e [0, / r 1 / 4 ] . By
Theorem 2.4,

Part V. By Lemma 5.1, |B/At ] tends to 0 uniformly with respect to £ e [0, n~1/4].

Observing that -Jy/x2 + 02/2 + x > 2~1/4|0|1/2 for all * > 0, one obtains that

|A2| < f
whence the negligibility of A2 with respect to A].

As for A3, one can prove that |A3| < Ce"*W)/i~3/4(£I/8 + n~1/4), once he observes
that every o(£) besides those in (5.9) is also equal to £1/8o(£), that \o(t*)\ < CO/n,
and that for the o(£) in (5.9)

The proof of the first estimate is now complete, the statement for £ € [0, n~1/2~e] is
proved in the same way, once we note that / (0 is continuous in 0, / (0) = \/2r(3/4),
andF(3/4) = (y/2n)/r(\/£). Note that the same holds under the weaker assumption
that -y/rt? -*• 0 uniformly in £ and that the estimate agrees with Theorem 5.3 for
£ = TJ~1/4 since I(t) ~ 2Vnr as t ->• oo. D

6. Estimates along the x-axis: the case £ e [a, 1 — c]

In this section we give an asymptotic estimate for the transition probabilities
p(n)(xk, 6), which we will rename pin)(k, 0). We first note that if n and k do not
have the same parity, then p(n)(/t, 0) = 0, but we cannot repeat the trick we used on
the y-axis to derive pi2n+l)(2k +1 ,0 ) from p(2n)(2k, 0). We estimate only the second
type of transition probabilities (the first ones can be derived in a similar way—see
Section 10). .

The basic idea underlying our proofs here is essentially the same as for the case of
the >>-axis, nevertheless much more technical difficulties arise and the techniques we
employ appear more involved. We drop the index 2 from F2, 4^ and 4^, so here we
use the same symbols (among which also <p) for functions and values which are not
the same but play the same role as the analogues for the y-axis.
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LEMMA 6.1. The function ^ (z) has a unique minimum (which we call 0(£)) in
(0, 1], namely zo(g) = 1 - HO(£)2, where «o(l) = £2'3[54 + 6^/81 -6%2]l'3/6 +

The following theorem is the analogue of Theorem 4.2 for the x -axis (and the proof
is just the same).

THEOREM 6.2. Ler a, c be positive numbers such that a < 1 — c. 77ien uniformly
with respect to £ € [a, 1 — c],

/7(2n)(2Jt, 0) ~ —

7. Estimates along the jc-axis: the case £ € [0, a]

We proceed as in Section 5, with the change of variable z = 1 — v* instead of
z = 1 — M2. The integral we are going to estimate has the same expression of (5.1)
(F of course here is F2) where y\ : z(£, i) — 1 — u(£, t)4 for \t\ < a (for any
fixed £, u(£, t) is a suitable curve in the v-plane) and y2 : z(£, s) = |z(£, a)\eis for
arg(z(£, a.)) < s <2n — arg(z(£, or)).

The desired curve in the u-plane is a line whose parametrization is

fv($) + e*r if / € [0, o];

I v(|) — e~lfit if r e [—a, 0),

where v(£) := *Juo(%) (MO(£) is defined in Lemma 6.1), and or and ft will be chosen
in the sequel.

If we look at the proofs of Theorem 5.3 and Theorem 5.5 we see that, once the
integration contour is fixed to be y\ U y2 and integration on y2 is proved to be negligible,
the first steps of the procedure are (roughly speaking):

(1) to write a Taylor expansion of * ? ( 0 := *?(z(f, r)) for \t\ < a;
(2) to find a change of variable 0 = f (n, | , t) such that n 'disappears' from one

term of the exponential in the integral and the remaining terms of the expansion are
negligible.

Our first task is to prove that * | (r) has a Taylor series expansion and to estimate its
first terms. This is a matter of quite long computations that we omit here, we simply
exhibit the results.

In case that the reader wants to perform these computations, we point out that one
:an write first the series in v of *$ (1 — v*) and then substitute u = u(£, t) to obtain the
series in t. In doing so, particular attention must be paid in computing the roots (for
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instance vu* is not necessarily equal to v2) whose explicit expressions depend on the
position of v in the complex plane, with respect to the two bisectors of the quadrants.

LEMMA 7.1. The function ^ (t) has a Taylor series expansion centered in 0, with
positive radius of convergence not depending on t-, and the following equality holds:

*«(0 = 4>G) + e2ifia2(i-)t
2 + f'aiMi* + e^a^t* + /?(£, t)

where the remainder term is /?(£, t) = O(t5), uniformly with respect to % e [0, a].
Moreover, if I- —• 0,

Now we have to choose the curve of integration (that is, f$) in order to obtain that

(a) the curve z(£, /) = 1 — v(£, r)4 has some 'good properties' (for instance there
exists a > 0 such that |z(£, a) | > 1 + £0 for some e0 > 0 and for every f in the
considered range);
(b) we can dominate exp{n^(f)} with an integrable function.

We observe that, as for the integral on ^ , we can consider only the piece of y\ lying
in the first quadrant (that is the one corresponding to t > 0). Indeed, since y\ is
symmetric with respect to the horizontal axis, it is easy to see that

= Aim f
Tt Jo , 0 +

Requirement (b) restricts the range of /5. In fact we require that the real parts of the
expansion in Lemma 7.1 have non positive coefficients, that is, that cos(2/J), cos(3/3)
and cos(4/J) are all non positive. This corresponds to ^ e A := [TT/4, 3;r/8] U
[-37T/8, -7T/4].

REMARK 7.2. Among the curves of the family & := (z(|, t) : t > 0, /3 e A},
the ones with fi = ±7r/4 have exactly one intersection with the real axis: z(£, 0) =
1 — u(£)4; while the others have exactly two intersections with the same axis: one
for t = 0 and the other for / = u(|)/(sin£ - cos/8) if /3 € (n/4, 3n/S] or for
t = -W(f )/(sin 0 + cos P) if 0 € [-3n/S, -n/4].

We present the plot of some of the curves we will use. Since the curve for y3 = 7r/4
turns clockwise (with respect to the origin), we will prefer its conjugate, that is, the
curve for 0 = —n/4 (see Figure 6).

Figure 7 shows the curve for /? = n/3, where we used a logarithmic scale on
the horizontal axis in order to show the 'pathological' behaviour of the curves of the
family with 0 ^ ±n/4.
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FIGURE 6. The curve yiv>o f°r P — —n/4.

FIGURE 7. The curve y\v,o for p = x/3.

The choice of a proper change of variable is between three substitutions, each
stressing a different piece of the exponential part of the integrand:

(a) = 62, or(b) = 03, or(c) na4(t-)t* = 9*.

LEMMA 7.3. In order to have an upper bou
tion (a) for £ > n~3/4, substitution (c)for £ < n~3/4.

PROOF. With substitution (a), e"*«(t) can be written as

, we must use substitu-
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Then for a sufficiently small and for every £ e [0, a],

which are all surely bounded if £ > n 3/4.
Similarly, with substitution (c), the coefficients of 62 and 03 are bounded for

£ < «~3/4, while the coefficient of 64 is e4ifi.
Finally, with substitution (b) the coefficient of 02 is bounded if £ < n~3/4, while the

coefficient of 64 is bounded if £ > «"3/4. This makes substitution (b) a not suitable
one. •

8. Estimates along the x-axis: the case £ € [0, n~3/4]

In this section we fix fi = -n/4 and z(£, t) = 1 - (u(£) + e-in/4t)4. The curve
of integration is similar to that in Figure 4, even if y\ is here the arc of the curve in
Figure 6 corresponding to t € [0, a], plus the arc obtained by symmetry with respect
to the horizontal axis.

We choose a depending on a such that for all £ e [0, a] we have |z(£, a)\ > l + eo

for some fixed so > 0. Thanks to this choice, the circular part of the curve of
integration will be far from the singularity z = 1. This choice is possible since the
mapping £ i-> z(£, or) is continuous and z(£, a) —• 1 + a4.

The proof of the following lemma is analogous to that of Lemma 5.1.

LEMMA 8.1. There exists a > 0 such that

G(z)
2ni Jn

for some C > 0, A. < 1 and for all £ e [0, a].

THEOREM 8.2. Uniformly with respect to £ 6 [0, n~V4],

p(2n\2k, 0) ~ -
n

where

:= r
Jo

f • 22/3t262 - 24/3^3)(2-'/3?2 + 62 + 24/3t0)
Jo

+" sin(3 • 22/3r2^2 - 24/3r6>3)(6»2 - 2"1/3r2)] dQ.

Moreover for all e > 0, uniformly with respect to % e [0, n"3/4~£],
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PROOF. Perform the change of variable (c), put tn = 0/^/na^), zn = z(£, tn) and
an = <yna4(i;)a. Then

(8.1) A = ; ^ Im'"Re)f Zn

Now we choose a such that |/?(£, t)\ < a4(%)t4/2 for all f e [0, a] and t e [0, a].
This choice is possible since |/?(£, r)| < C\t\5 and 04^) > c for all £ < a. Then

, rn)| < 6*/2 and the modulus of the integrand in (8.1) is bounded by

if f 6 [0, n"3/4] (we used |u(|) + e~"^tH\ < CO).
We proceed as in Theorem 5.5, we rewrite the decomposition of G(z(£, t))

0) = («(£) + <r/jr/40-'//(z(£, 0) + («(£) + e-'^OATfed, r)).

Using this decomposition and the one of the remainder term R in its real and imaginary
parts, the integral in (8.1) can be written as

Let M = exp{ - n'/4fl3(?)03/(>/5a«^)3/4) - 6* + nJ?0(?, O | , / i ^ f ) be the
integrand, and iAn = M(n, £, ^) be the function in the exponential in/n(#,
Explicit computation shows that/n(#, £)/M can be written as

t2
n)Ha(zn)

t2
n)H0{zn)

o(v(^)2) + o(t2
n)),

where, as in the rest of the section, o(u(£)2) and o(t2) are uniform with respect to
£ e [0, n-'/«].
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We extract the factor n~l/2 from the integrand: thus the exponent of the n outside
of the integral is —3/4 as predicted by local estimates. Moreover, ->/nv(%)2, +fnv(%)tn

and -Jnt\ are bounded since v(f) ~ £1/3 and % e [0, n~3/4]. We can write A as

( 8 . 3 )

x (1 + o(v(£)2) + o(t2
n))

x

In order to apply Theorem 2.4, if /„(#, £) is the integrand in (8.3), we have to evaluate
its uniform asymptotic hn(0, £). Using the asymptotic values of a,(£) and u(£), and
observing that H(zn) tends to -Jl as n tends to infinity,

hn(8, f ) = V^-2'"""4*"3*3-*4! cos (3

x (2-1/3«1/2^/3

+ sin (3 • 22/V/2£2/302 - 24/3n1/4£1/3 63) (62 -

The hypotheses of Theorem 2.4 are satisfied choosing

Now we put S := /i1/4£1/3: clearly 8 e [0, 1] and the requirement that

> c> 0

for some c and for every £ € [0, n 3 / 4 ] , is equivalent to /(<5) > c for every £ e [0, 1].
By numerical computation performed with Derive this appears obvious.

Hence by Theorem 2.4

it

and this is the uniform asymptotic estimate for the pi2n){2k, 0) since by Lemma 8.1
|B/A| tends to zero uniformly with respect to £ € [0, n~3/4].

As in Theorem 5.5 one proves the statement for £ € [0, n"3/4~£], noting that
1(0) = /0

+o° e2e-6' d0 = ny/2/4r(l/4). Observe that this last result can be obtained
under the weaker assumption that n'/4£1/3 —• 0 uniformly with respect to £. •
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. to)

FIGURE 8. The curve y\ |,€(0 a ] .

FIGURE 9. The curve of integration in the case ? > n~3/4.

9. Estimates along the x-axis: the case £ € [n~3/4, a]

We observe that since in this case we have to use substitution (a), the curve of
integration we used so far does not fit. In fact in the exponential, 02 would have a pure
imaginary coefficient. Hence we are forced to seek another solution, that is, a curve
of integration made of more pieces: the curve Y\ is z(£, i) = 1 — (t>(£) + e~'*/3t)* if
0<t<to,z(t;,t) = l — (v(£) + e'"/3t)* if to < t < a, plus the conjugate of these two
curves; while y2 is a circular arc which makes the whole connected. Figure 8 shows
how these curves appear. A sketch for the curve of integration is shown in Figure 9.

As we already remarked, by symmetry A, the integral over yi»is equal to

(9.1) - Im f

Thus we have to estimate
where 0(t) = -n/3 if r € [0, to], fi(t) = n/3 if t e (to, a] and to =

+ ^/3 ("«) +

— — Im f
K JO

x e-'"3
. 0

+
Perform the change of variable 9 = Vwa2(?) ? and write tn for O/y/naJX). Choose
a such that |/?(£, t)\ < a4(^)r4/4 for all £ < a and |r| < a. Moreover in order to
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obtain |z(f, a)\ > 1 + eo for some eo, we let a > max? /„ = 2/(\/3 — l)v(a), which
is surely true if a is sufficiently small.

We distinguish two subcases: £ € [«~3/4, n~3/4+£] and £ 6 [n~3/4+£, a].

THEOREM 9.1. For all e > 0 and for sufficiently small a, uniformly with respect to

(,} ^ ivci)3^)) /2 r - ^ t n ^ A de

PROOF. We apply Theorem 2.3, observing that the modulus of the integrand is
dominated by C(l + 9)3eel/2-ce3-ce\ for every 9 > 0, £ e [«-3/4+£, a] and «. More-
over, the integrand converges pointwise, uniformly with respect to £ € [n~3/4+c, a],
to e'^^e1'2""3"2. Negligibility of the integral on y2 is shown as in the preceding
cases. D

THEOREM 9.2. For all e > 0, uniformly with respect to $ € [«~3/4 n -

, 0) ^ / ( n r

7TV3

where I(t) is an integral function, defined as follows:

/

cos (-

- 22<3t2e2 -

PROOF. The substantial difference with the previous case is that we cannot find a
pointwise limit for the integrand, but only a pointwise asymptotic estimate. Hence we
apply Theorem 2.4, exactly as in the proof of Theorem 8.2. •

10. Final remarks

First, let us observe how one can obtain an estimate for the transition probabilities
with odd time and space parameters.
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From the results on the y-axis we obtain also p(2n+l)(yu+u o), thanks to (4.1), as
we noted in Section 4.

The estimate of p(2n+1)(x2k+u o) requires further calculation, but it is not much
different from what we did this far. We briefly point out what has to be done.

Let G(z), F(z) and *?(z) be as in Section 6, then

z z
Thus, if | e [a, 1 — c] the proof will differ from that of Theorem 6.2 because
one should multiply and divide the integrand by G(zo(£))F(zo(£))/zo(f )2 m s t e a d of
G(zo(f ))/zo(£)- The rest of the proof is completely analogous to that of Theorem 6.2.
The same can be done in the case £ > n~3/4.

In the case § e [0, n~3/i] one will need a decomposition (similar to the decompo-
sition (5.7) of G(z)) of F(z) Vi":

where 7(z) and L(z) are two holomorphic functions. Then

G(z)(l + V l - z - y/lyj1 - z + VT^I)
1 - z)l/\H(z) + K(z))

+ (1 — z)3/4AT(z) + holomorphic functions,

and one can proceed as in Theorem 6.2.
Moreover, by symmetry, translation invariance and reversibility from our estimates

ofp^'C**, o)&ndpw(yt, o)(fork > 0) one derives uniform estimates for pw(xk,xkl),
pin)((ku k), xkl),p

w(xkl, (*„ *)) for k, *, € Z.
We note that it is not possible to extend these estimates to uniform estimates for any

starting and ending point, as we did in (3.3) for local estimates since the asymptotic
we use (picked from [3, Section 6]) does not hold uniformly.

We now remark some particular features of the transition probabilities of the simple
random walk on C2 that appear after our calculations. We recall our estimates for
£ converging to zero with a 'controlled' speed, and we stress the dependence on £.
Uniformly with respect to £ e [n~v*+e, n~i/2~e],

,, > n \Ce-"?n-ilA if x =y2k;(10.1) p™(x,o)~\
\C e cn? n '/2£i/3 if x = x2k.
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It is worth noting that, these results show a different dependence on £ along the
two axes. In particular this results in the impossibility of finding for the transition
probabilities on C2 a sub-Gaussian estimate. Sub-Gaussian estimates of transition
probabilities have been studied on many graphs: by Jones [11] on the 2-dimensional
Sierpinski graph, by Barlow and Bass [1] on the graphical Sierpinski carpet and more
recently on rather general graphs by Grigor'yan and Teles [9, 16]. Iff = d{x,y)/n,
sub-Gaussian estimates have this expression:

c, n-^e-^""""" < p(n)(x,y) < c3 n^V*"*1"'--", Wx,y,

for some positive constants C1.C2.C3, c4 and for sufficiently large n. By definition 8S

is called the spectral dimension (which appears also in local estimates) and 8W is the
walk dimension. These two dimensions are in typical cases related by the so-called
'Einstein relation': 8S8W = 28/, where 8/ is the fractal dimension (see [14,15]). Since
for C2, 8S = 3/2 and 8/ = 2, one would expect 8W = 8/3. Nevertheless (10.1) shows
that if x = yu and y = o the estimate holds with 8W = 2, while if x = x^ and y = o
the estimate holds with 8W = 4.

We finally observe that the method we used here to provide a uniform asymptotic
estimate of transition probabilities has already been employed for homogeneous trees
and free groups (see [12,13,18]). One of the aims of this paper was also shedding new
light onto this method. It seems that one could use the described technique for more
general graphs and random walks (provided the knowledge of the Green function).
As we noted, the major difficulty appears to be the choice of a proper contour of
integration, for which no recipe is known (we investigated only a restricted family of
curves in our case).

A natural extension of our results could be the analogues for rf-combs. However,
technical difficulties increase notably already for d — 3, since

G3(z) =
1 - z2) + 2VT=z> + 2V2V1 - z2 + VT^z1
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