
J. Plasma Phys. (2022), vol. 88, 895880603 © The Author(s), 2022.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution
and reproduction, provided the original article is properly cited.
doi:10.1017/S0022377822000940

Plasma image classification using cosine
similarity constrained convolutional neural

network

Michael J. Falato 1, Bradley T. Wolfe1, Tali M. Natan 1, Xinhua Zhang1,
Ryan S. Marshall2, Yi Zhou2, Paul M. Bellan 2 and Zhehui Wang1,†

1Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA

(Received 16 May 2022; revised 13 September 2022; accepted 14 September 2022)

Plasma jets are widely investigated both in the laboratory and in nature. Astrophysical
objects such as black holes, active galactic nuclei and young stellar objects commonly emit
plasma jets in various forms. With the availability of data from plasma jet experiments
resembling astrophysical plasma jets, classification of such data would potentially aid
in not only investigating the underlying physics of the experiments but also the study
of astrophysical jets. In this work we use deep learning to process all of the laboratory
plasma images from the Caltech Spheromak Experiment spanning two decades. We found
that cosine similarity can aid in feature selection, classify images through comparison
of feature vector direction and be used as a loss function for the training of AlexNet
for plasma image classification. We also develop a simple vector direction comparison
algorithm for binary and multi-class classification. Using our algorithm we demonstrate
93 % accurate binary classification to distinguish unstable columns from stable columns
and 92 % accurate five-way classification of a small, labelled data set which includes three
classes corresponding to varying levels of kink instability.

Key words: plasma confinement, plasma applications, plasma instabilities

1. Introduction

Big data and machine learning are monumental to the furthering of science. With
many existing large image data sets (Deng et al. 2009; Deng 2012), machine learning
and deep learning have become extremely effective at classifying such data (An et al.
2020; Dai et al. 2021). Data sets for classification consist of different object types, or
classes, and the true class labels for the images are known as the ‘ground truth’. The task
of classifying images given the ground truth of a training data set is known as supervised
classification. In this study we perform classification of greyscale images from the Caltech
Spheromak Experiment (Bellan 2018), where plasma jets and spheromaks are created and
photographed in a vacuum chamber. Initial classification of data from this experiment
is desirable in that it provides a starting point for further investigation into machine

† Email address for correspondence: zwang@lanl.gov

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4510-7325
https://orcid.org/0000-0002-7703-6701
https://orcid.org/0000-0002-0886-8782
mailto:zwang@lanl.gov
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377822000940&domain=pdf
https://doi.org/10.1017/S0022377822000940

2 M.J. Falato and others

FIGURE 1. We conduct classification using the cosine similarity between feature vectors that are
extracted from images. In order for classification to be conducted, the vectors must greatly align
for images in the same class compared with images in different classes. Classification reduces to
probing if a vector lies within a particular range in the binary classification case (shown above)
or choosing the closest target region in the multi-class classification case. In this example, the
similar image would be classified in the same class as the target image, while the dissimilar
image would be classified out of the class.

recognition of the underlying physics in the experiment from optical images, as well as
extrapolation from laboratory plasma jets to our understanding of astrophysical plasma
jets.

Convolutional neural networks (CNNs) are known to excel at supervised image
classification (see Sharma, Jain & Mishra 2018), where they achieve state-of-the-art
accuracy on benchmarks such as the ImageNet benchmark (Russakovsky et al. 2015).
Feature engineering is another common practice in machine learning and classification,
where hand-defined, or engineered, features of images are often used in classification tasks
to differentiate between images. The values of these features are organized into an array,
which is used as a feature vector representing an image in the feature space. This study
classifies both engineered feature vectors and output feature vectors from CNNs through
the angle between feature vectors or similarly, the cosine of the angle between feature
vectors known as the cosine similarity. Figure 1 displays a mock example of how this is
done.

Cosine similarity has been used in face verification (Nguyen & Bai 2011), it can
replace the dot product between output layers and weight vectors before activation layers
in multi-layer networks (Luo et al. 2017), and it has been used to select robust feature
subsets in genomic data analysis (Xie et al. 2021). Cosine similarity has also been used to
adaptively refine clustering results in a pairwise binary classification scheme (Chang et al.
2017), and it is used in natural language processing to compare word embeddings (see

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 3

Young et al. 2018). Cosine similarity has not yet been used to classify laboratory plasma
images, and an algorithm that performs well using it to classify feature vectors is desirable
given its simplicity. In this work we describe laboratory plasma image classification using
cosine similarity.

In addition, this study uses AlexNet (Krizhevsky, Sutskever & Hinton 2012), one of
the most well known CNNs, to achieve notably accurate transfer learning. Furthermore,
we use cosine similarity of image feature vectors as a loss function for our instance of
AlexNet to select relevant features, and to classify images directly. If cosine similarity
shows reasonable results in the ability to characterize similarity/difference between vectors
in different classes based on specific features, then it should also be able to perform
in a simple classification algorithm using vector direction comparison akin to the mock
example from figure 1. This work validates this idea by selecting features that distinguish
the feature vector directions for images in a specific class from others. We train an instance
of AlexNet to increase the cosine similarity of output feature vectors of images in the
same class while attempting to orthogonalize feature vectors of images in different classes.
We find that using a simple direction comparison algorithm with the output vectors from
this instance of AlexNet achieves classification accuracies notably higher than those of
traditional transfer learning with cross-entropy.

The remainder of this work is organized as follows. In § 2 we give the details of the
algorithms and image processing procedures while noting results obtained in using cosine
similarity for feature selection and classification with AlexNet, in § 3 the results and
implications are assessed and future avenues are discussed and in § 4 the key ideas from
the paper are summarized.

2. Methods and results
2.1. Data sets

Our goal is to classify plasma jet images from the Caltech Spheromak Experiment
(Hsu & Bellan 2003), where laboratory plasma jets are created and rich phenomena
including kink instabilities are observed. Thus, our data sets consist of images sorted from
this experiment. We create two data sets, one small data set (about 1000 images) with
ground-truth labels and one large data set (about 45 000 images) with no ground-truth
labels.

For our small data set we sort the data into five classes, pertaining to five types of images
that appear frequently in the experiment. Figure 2 shows a representative image from each
class as an example, with a false colour map on each greyscale image. The classes are as
follows: haze, which corresponds to a general diffuse and spread-out plasma configuration;
spider, which corresponds to an initial eight plasma arcs tracing a background poloidal
magnetic field occurring near the inception of a plasma jet; column, a straight plasma jet
showing little kink instability; kink, an unstable column showing kink instability akin to
a corkscrew shape; and sphere, corresponding to anomalous spherical arrangements of
pixels and plasma columns breaking off from the jet to form spheromaks. The number of
images in each class for this small data set is 226, 111, 130, 295 and 390 for haze, spider,
column, kink and sphere, respectively. We split each class in this set with a randomly
distributed fractional split of 0.5, 0.25 and 0.25 and compile the corresponding splits of
each class for training, validation and test sets, respectively.

For our large data set, we separate images from the total data of about 300 000 raw
images using an instance of ResNet152 (He et al. 2015) to distinguish between images
based on quality. We select 45 000 high-quality images for our large, unlabelled data set.
We set aside this large data set without labels for use in § 2.6 at the end of this work. For

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

4 M.J. Falato and others

FIGURE 2. An example image from each of the five classes in the small data set. The classes are
haze, spider, column, kink and sphere. Each class contains 226, 111, 130, 295 and 390 images,
respectively. Note that the images feature a false colour map.

(a) (b)

FIGURE 3. An example of an image from the kink class with the four distributions yielded to
extract features. Note that the image features a false colour map. Distributions P(x, y), P(x) and
P(y) are distributions of the intensity (a), while P(v) is a histogram of pixels with particular
values (b). Features are extracted from statistical and information theoretic quantities of these
four distributions.

a thorough introduction to the experiment yielding these images and the theory involved,
see Bellan (2018).

2.2. Feature selection using cosine similarity
To classify our small data set, we first turn to statistical and information theoretic features
of images. We conduct feature extraction on our data set, inspired by the ability to view
a greyscale image as a two-dimensional intensity distribution. We transform each image
into four statistical distributions, P(x, y), P(x), P(y) and P(v), for the collection of features
from these distributions. An example of these distributions obtained from an image can be
seen in figure 3, which displays an image, projections to the three distributions, P(x, y),
P(x) and P(y), and an example of the P(v) distribution retrieved from the image. The
quantitative description of each distribution is expressed in the Appendix. In order to
obtain P(x, y), the greyscale image matrix is normalized by dividing by the full intensity
value of the image. Distributions P(x) and P(y) are obtained by summing along the y axis
and x axis of the image, respectively, then normalizing by the total intensity of the image.
Distribution P(v) is obtained by taking a histogram of pixel values of an image.

With four distributions, we extract nineteen basic features from statistical and
information theoretic quantities of the distributions, and we also include the total intensity
value of each image as a feature. The quantitative description of each feature is expressed
in the Appendix. The features are quite natural and easily calculable from an image and

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 5

its distributions. They are as follows: the total intensity of the image (one feature), the
raw mean and central variance of the P(x), P(y) and P(v) distributions (six features),
the third and fourth standardized moments of the P(x), P(y) and P(v) distributions (six
features), the entropy of each distribution (four features), the conditional entropies of the
P(x, y) distribution (two features) and the mutual information between the P(x) and P(y)
distributions (one feature). These features can be computed on different pixel value ranges,
allowing more features to be computed. We opt to compute the features on pixels valued
from 200 to 300.

In order to search for features that can distinguish classes, we create ‘cosine similarity
matrices’ which display the pairwise average cosine similarity of classes. Generally, for
each pair of classes, we compute the cosine similarity (= û · v̂) for each pair of vectors
between the classes and calculate the average. We then display the results in a cosine
similarity matrix, where the cross-sections display the average cosine similarity value
obtained between classes. It is expected that a proper feature set will have a matrix
with diagonals, which include the similarity of each class with itself, with higher values
compared with the off-diagonals, such that a matrix with diagonals of 1 and off-diagonals
of −1 would be the perfect result.

Specifically, we compute cosine similarity matrices yielded from all subsets of two
features from the original twenty features and exhaustively search for a well-behaved
cosine similarity matrix indicating features geared towards a specific classification task.
In figure 4 we show a selection of a cosine similarity matrix from this search, with
the mutual information of the P(x) and P(y) distributions, I(x, y), and the mean of the
P(y) distribution for the features. From the cosine similarity of class one (spider) with
itself compared to the cosine similarity of class one with the other four classes, these
two features show potential for a binary, class one versus non-class one (spider versus
non-spider) classification simply using comparison of feature vectors with a representative
sample of class one vectors. Unfortunately, we do not see any matrices optimized for a full
five-way classification of the data set from cosine similarity matrices of all possible feature
vectors of length two, three and four from our list of twenty features. Thus we conclude
that these features are not good choices for our five-way plasma image classification goal.

2.3. A binary classification algorithm using cosine similarity of feature vectors
We opt to construct a simple classifier using feature vector direction comparison for
the following two reasons: one, to demonstrate the uses of cosine similarity for feature
extraction by using the algorithm on the feature vectors that yielded figure 4; and two,
for the potential of the algorithm to be used with vectors that yield a more well-behaved
cosine similarity matrix and potential for multi-class classification.

Our binary classification algorithm is diagrammed in figure 5 and outlined in the
Algorithm 1 block. It is essentially a vector direction comparison algorithm. We first
‘train’ the algorithm by selecting a representative sample of training images from the
class. We extract feature vectors from each image in the training sample, and we compute
the average cosine similarity of a large number of random pairs of feature vectors within
the sample. Here the algorithm ‘learns’ the similarity of images belonging to that class.
The cosine similarity values calculated from ‘training’ have a distribution with a training
mean, μ, and training standard deviation, σ . A test image, to be classified as in the class or
not, is introduced to the algorithm, where its features are extracted and its cosine similarity
is calculated with a satisfactory number (usually all) of the training samples. These new
cosine similarity values have a test mean, μ∗, which can be compared with the training
mean. The training mean is representative of the average similarity an image in the class
should have with its members, and the test mean represents the average similarity of the

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

6 M.J. Falato and others

FIGURE 4. Example of a cosine similarity matrix indicating a potential feature selection for
the task of class one or non-class one (spider versus non-spider) binary classification. The two
features used as components for vectors to construct the matrix were the mutual information,
I(x, y), and the mean of the P(y) distribution. Classes are labelled as 0 through 4 corresponding
to the classes shown in figure 2. Since the matrix is normally symmetric, the bottom left half is
set to the minimum value and crossed out.

Algorithm 1 Binary classification with cosine similarity
Given: iterations N, a number γ , a training set U, a test set P and a vector-valued function
f (x).

1. for i in N: � ‘Training’
2. u

iid∼ Unif(U) ; v
iid∼ Unif(U)

3. xi ←− f (u) · f (v)

‖f (u)‖‖f (v)‖

4. μ = 1
N

N∑
i=1

xi ; σ =
√∑N

i=1(xi − μ)2

N

5. for p in P: � ‘Testing’
6. for u in U:
7. xu ←− f (p) · f (u)

‖f (p)‖‖f (u)‖
8. μ∗ = 1

‖U‖
‖U‖∑
u=1

xu

9. if μ∗ > μ− γ σ :
10. p is in class
11. else:
12. p is NOT in class

test image with the class. Classification is reduced to a threshold function, τ(μ,μ∗, σ),

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 7

FIGURE 5. A diagram of the binary classification algorithm based on cosine similarity. We
start with a ‘training’ stage, such that enough vectors are sampled from the spider class that
an approximate average cosine similarity, μ, of members in the class is retrieved, along with
a standard deviation, σ , of the distribution of cosine similarity values in the class. With this
information we introduce a test image to the algorithm and compute its average cosine similarity,
μ∗, with the training samples. Then a threshold function, τ(μ, μ∗, σ), which considers an image
a member in the class if μ∗ is greater than μ− γ σ , determines whether the image is in the spider
class or not. Note that the plasma images feature a false colour map. This algorithm is used to
achieve notable results (shown in figure 6) with the features from figure 4.

which simply decides an image is in the class if μ∗, the test mean, is greater than μ− γ σ .
Parameter γ is the only parameter featured in the algorithm.

This binary classification method is used on the small data set with the same features
from figure 4 as a feature vector of length two for each image. We implement the method
with 50 training samples from the spider class and 50 test samples from each class totalling
250 images to be classified. We choose to sample 1000 random pairs in the training set for
the computation of μ, and every vector in the training set is compared with the test images
for the computation of μ∗. Parameter γ is chosen to be 0.01 for optimal results. The results
of spider versus non-spider binary classification using these presets are shown through an
extended confusion matrix in figure 6, where the algorithm performs surprisingly well
despite its simplicity. Given a spider image, the algorithm classifies it as a spider with
80 % accuracy. For the remaining classes, the algorithm correctly classifies images as
non-spider with 87.5 % average accuracy. In order to test the need for large amounts of
training data, the same confusion matrix is calculated using 100 training pairs instead of
1000 with which the algorithm correctly classifies spiders and non-spiders with 94 % and
83 % accuracy, respectively.

2.4. Transfer learning using cosine embedding and cross-entropy loss
The results of the binary classification algorithm motivated us to conduct transfer
learning on our plasma data set using both the cosine embedding loss function and the
cross-entropy loss function. This was done to attempt the full five-way classification of
our data set and to probe how the training on our data set with different loss functions,
specifically one related to cosine similarity, would allow for a well-behaved cosine
similarity matrix from output vectors of the network.

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

8 M.J. Falato and others

FIGURE 6. Confusion matrix of the results using the binary classification algorithm on the
features from figure 4 for spider versus non-spider classification. The matrix displays fractional
accuracy for each class in the first row and the fractional inaccuracy for each class presented in
the second row. The algorithm achieves an average accuracy of 86 %, and the total number of
images classified is 250.

We start AlexNet with the pretrained weights from PyTorch (Paszke et al. 2019),
which pertain to weights obtained upon the training of AlexNet on the ImageNet data
set (Deng et al. 2009). The training, validation and testing fractional split of our data
is 0.5, 0.25 and 0.25. We use Amazon Web Service’s Sagemaker for training along
with hyperparameter optimization. For cross-entropy training we choose to optimize the
learning rate, epoch number and batch size with ranges 0.001 to 0.2, 5 to 100 and 10 to
60, respectively. We achieve five-way classification accuracies of 88 % for validation and
84 % for testing. For cosine-similarity-trained AlexNet, we choose the cosine embedding
loss function, which works to maximize cosine similarity for objects in the same class and
orthogonalize objects in different classes. We implement the cosine embedding loss by
using a hyperparameter, λ. In our classification, image labels are conventionally one-hot
vectors, such as (0 0 1 0 0) corresponding to an image in class three from one to five. We
then take predictions of the same form, where we simply take the maximum input in a
vector, set it to one and set the remaining inputs to zero. However, the cosine embedding
loss between one-hot vectors results in gradients of one when the prediction is correct and
zero when the prediction is incorrect. By setting all of the zeros in one-hot vectors to equal
λ, we achieve the ability to conduct gradient descent, and thus minimize the loss while also
adding a parameter that tunes the direction of output vectors. If we set λ to a constant −1,
we can perform gradient descent, but we heavily weighed the direction of vectors through
the inputs of −1. We implement λ with a range of −0.4 to −0.05 while using the same
hyperparameter ranges from cross-entropy training for all other hyperparameters, and we
achieve five-way classification accuracies of 89 % for validation and 82 % for testing.

For a visualization of the activation differences between the trained versions of AlexNet,
we employ the gradient-weighted class activation mapping method (Selvaraju et al. 2019).
The method highlights key areas of an image that allow the network to recognize a class
by using the incoming gradients to the last convolutional layer of a network. Since the last
convolutional layer contains the last instance of spatial information before being flattened
in the fully connected layers, it ideally contains the most relevant class-specific feature
activations which contribute to the fully connected layers and classification. The method
is implemented using readily available code,1 with results shown in figure 7. We note that

1https://github.com/utkuozbulak/pytorch-cnn-visualizations

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 9

FIGURE 7. Differences in the activations between the cosine-similarity-trained AlexNet
(labelled as CS) versus the cross-entropy-trained AlexNet (CE). Gradient-weighted class
activation mapping (Grad-CAM) was performed on the five representative plasma images from
figure 2 for both versions of AlexNet. Here GT stands for ‘ground truth’. The second and third
rows display the outputs of the Grad-CAM method on the first row for the corresponding models.
Note that the ground-truth images are displayed using a false colour map.

the cross-entropy-trained model prioritized fewer of the total shapes for recognition of the
column and kink images as opposed to the cosine-similarity-trained model, which uses the
majority of the kink and column shapes for their recognition.

In addition to training using the cross-entropy and cosine embedding losses, we also
perform gradient descent using the cosine embedding loss on the final 4096-dimensional
ReLU layer of AlexNet, with the aim of yielding a model that retrieves outputs with a
well-behaved cosine similarity matrix of embedded vectors for use with our classification
algorithm. The general training process is shown in figure 8. We perform gradient descent
with no classification results due to the final layer of the network no longer being a fully
connected layer with outputs corresponding to classification.

We then use the three trained models and compute cosine similarity matrices on output
vectors from the final ReLU layer to display the differences in the cosine similarity of the
final vectors before classification. Note that we perform this using the images from the
test set only. Figure 9 shows these results, which demonstrate that conventional transfer
learning of AlexNet does not necessarily include an optimization of cosine similarity
between the final ReLU layer for images in the same class. Training by performing
gradient descent on the embeddings themselves potentially gives the model the ability to
perform with our vector direction comparison algorithm, so much so that vector direction
comparison using cosine similarity could potentially be used to conduct full five-way
classification of the test data set.

2.5. Binary and five-way classification using our algorithm
Since mere vector direction comparison seemed to work effectively with binary
classification based on a cosine similarity matrix optimized towards one class (i.e.
figure 4), we expand the algorithm to include multi-class classification to use with the

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

10 M.J. Falato and others

FIGURE 8. A diagram of the cosine embedding training on the final ReLU layer of AlexNet.
We use the base AlexNet model from Torchvision and remove the final linear layer, outputting a
4096-dimensional vector for each image. These vectors are used as feature vectors for the loss.

(a) (b) (c)

FIGURE 9. Cosine similarity matrices computed after performing transfer learning on AlexNet
using a cosine embedding loss or cross-entropy loss. Note that the vectors used to construct the
matrices were from the final ReLU layer of each network and that the matrices were computed
using images from the test set only. (a) The cosine similarity matrices of the cross-entropy
trained, (b) cosine embedding trained and (c) cosine embedding trained on the final ReLU layer
models. Since the matrices are normally symmetric, the bottom left half is set to the minimum
value and crossed out.

output vectors of AlexNet when trained on embeddings. Given figure 9(c), which shows
the cosine similarity matrix obtained from the output vectors from this instance of AlexNet
on the test set, the results should be notably better than the binary results for the engineered
features (figure 6). Now vectors in the same class, on average, are relatively aligned
compared with vectors in different classes which have a comparably large angle between
them.

From our previous cosine similarity matrices obtained with engineered feature vectors
and the traditionally trained cross-entropy and cosine similarity models, there had yet to be
a cosine similarity matrix indicating a strong distinction between kink and column images.

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 11

(a) (b)

FIGURE 10. Confusion matrices of the test results using both the binary classification algorithm
(a) and multi-class modification to the binary classification algorithm (b) on feature vectors
obtained from AlexNet when trained on vector embeddings instead of the final layer. For the kink
versus non-kink binary classification matrix, the fractional accuracy for each class is displayed
in the first row and the fractional inaccuracy for each class is presented in the second row. For
the five-way classification results, the diagonal values show the fractional accuracy of each class,
while the off-diagonal values show the fractional inaccuracies, displaying the fraction of each
class in the x axis that was classified incorrectly as a class in the y axis. The total amount of
images classified for each case is 285.

Figure 9(c) displays a strong distinction of kink and column images. This is important
since there is a key physical distinction between kinks and columns which depends on the
ratio of the current in the plasma divided by the flux of the background poloidal magnetic
field through an inner plasma gun electrode (Bellan 2018, see (2.17)). As an example of
how the algorithm should perform better given a more well-behaved set of vectors, we
perform kink versus non-kink classification using the binary algorithm from § 2.3 with
γ set to 100 for optimal results and 1000 randomly sampled training pairs. We display
the results via a confusion matrix in figure 10(a). Given a kink image, the algorithm
notably classifies it as a kink with 92 % accuracy. For the remaining classes, the algorithm
correctly classifies images in our test set as non-kink with 96 % average accuracy. It should
also be noted that in distinguishing between stable columns and columns exhibiting kink
instability, the algorithm is 93 % accurate. With 10 training samples instead of 1000, the
accuracies are robust at 92 % and 97 % for kink and non-kinks, respectively.

Since a binary classification of vectors with well-behaved cosine similarity achieved
notable results, we modify the binary classification algorithm to perform multi-class
classification based on an image being classified to the class to which it is most similar.
The modified algorithm is shown in the Algorithm 2 block. To change the algorithm for
multi-class classification, we compute the average cosine similarity of one image with
50 samples from the training sets of each class to get five corresponding test means,
μi. We classify an image in the test set by assigning it to the class with the highest μi.
The results for full five-way classification of the test data (total of 285 images classified)
are displayed in figure 10(b) through a confusion matrix. The average accuracy for full,
five-way classification of our test set is 92 %, roughly 10 % greater than our traditional
transfer learning results of 82 % and 84 %. The results are identical when we compute the
test means μi with 10 training samples from each class instead of 50.

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

12 M.J. Falato and others

Algorithm 2 Multi-class classification with cosine similarity
Given: a number of classes I, a set of classes C = {Ci}i∈I , a training set for each class Ui,
a test set P and a vector-valued function f (x).

1. for p in P:
2. for i in I:
3. for u in Ui:

4. xu ←− f (p) · f (u)

‖f (p)‖‖f (u)‖

5. μi = 1
‖Ui‖

‖Ui‖∑
u=1

xu

6. p ∈ Ci; where i = argmax
i

(μi)

2.6. Applying previous methods to the large data set
Our large data set from § 2.1 contains about 45 000 unlabelled images. The instance of
AlexNet trained using the cosine embedding loss on the final ReLU layer from § 2.4 is
used to obtain feature vectors for each image in the large data set, and we classify the data
set using the multi-class algorithm from § 2.5. We note the split of the data as 8 % haze,
15 % spider, 10 % column, 24 % kink and 43 % sphere after classification is performed.

With feature vectors for each image, we represent a significant portion of the data in two
dimensions using T-distributed stochastic neighbour embedding (tSNE) (van der Maaten
& Hinton 2008), which is shown in figure 11. We note that the classes are joined in
a common centre point which could be representative of the fact each class is almost
orthogonal to each other class in the feature space, and by using the vectors alone we do
not get a representation based on the actual purpose of the network. Thus, we also perform
tSNE on the normalized feature vectors in order to give a better idea of the grouping based
on direction alone, which is shown in figure 11.

In order to investigate the distribution of data from each class, we plot the distribution of
vectors about the average vector for a given number of samples in each class. An example
of this can be seen in figure 12(a), for the kink class. We note that the distributions all
heavily skew towards an angle of 0◦, meaning the vectors for each class mostly populate a
small angular region, with few outliers relatively misaligned with the class. In order to get
an idea for the quality of accuracy for a class, despite not having ground truth, we display
the closest images to the average vector, randomly sampled images from 0◦ to 10◦, and
randomly sampled images from 45◦ to 55◦ in figure 12(b) for the kink class. Given the
network was trained to align vectors in the same class, these qualitative results suggest the
images with vectors further away from the average vector should become more frequently
classified incorrectly or be images that fall outside of the five predefined classes.

3. Discussion

This study is motivated by the goal of classifying a data set of plasma images from the
Caltech Spheromak Experiment through feature extraction, transfer learning and a vector
direction comparison algorithm. We demonstrate the use of cosine similarity to select
relevant features for binary classification with a well-behaved cosine similarity matrix,
which displays a representative average cosine similarity of vectors between each pair of

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 13

(a) (b)

FIGURE 11. (a) The tSNE for 2000 sampled images from each class. The tSNE parameters
of perplexity and verbosity are set to 350 and 2, respectively. We note that when the
4096-dimensional vectors are reduced to two dimensions the data appear to be generally
separated appropriately. (b) We conduct the same tSNE with normalized feature vectors, where
instead of five lines of classes, we see five clusters of classes. The classes are labelled as 0, 1, 2,
3, 4 corresponding to the labelling convention from the previous sections in this work.

(a) (b)

FIGURE 12. (a) Distribution of 2000 randomly sampled vectors in the kink class about the
average vector of the samples. (b) The closest five images to the average vector, images randomly
sampled from 0◦ to 10◦ and images randomly sampled from 25◦ to 35◦ are displayed. Here 75 %
of images in the class are within the 0◦ to 10◦ range, while the remainder of the data lie outside
of this range.

classes. While the engineered features did not yield cosine similarity matrices indicating
distinction among all five classes in our data set, simple vector direction comparison with
no gradient-descent-based training was able to perform sufficiently well in the spider
versus non-spider binary classification case. The idea of an extremely well-behaved cosine
similarity matrix inspired the use of AlexNet to train and yield one itself. We then use the
embedding-trained model to conduct binary classification more accurately than the use of
engineered features by 10 % from 86 % to 96 % simply because the feature vectors from
this version of AlexNet were more well-behaved. Based on the cosine similarity matrix
in figure 9(c), when AlexNet is trained by the using the cosine embedding loss on the
ReLU layer embeddings rather than the output layer, it seemingly groups image vectors in

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

14 M.J. Falato and others

the same class together in the output space, so much so that representative average cosine
similarity between test images in the same class is on average 0.84, corresponding to a
relatively thin grouping for each class. Meanwhile the classes are separated enough for no
class to share a similarity greater than 0.15 with another class. Thus, the image vectors
from the final ReLU layer are divided into classes where each class is greatly separated
by an angle relatively large compared to the angle between vectors in the class. This was
exploited to expand our binary classification algorithm to a multi-class algorithm, and the
five-way classification results are better than our traditional transfer learning results by
about 10 % from 82 % and 84 % to 92 %. When applying this uniquely trained version of
AlexNet to the unlabelled data set, we can still see a propensity of the network to organize
classes in thin groupings. In the ideal case with ground-truth labels for a larger data set,
the certainty an object belonging in the class as a function of angle away from the average
vector can be probed quantitatively. This can potentially be used in the future to probe for
subclasses and outlier groupings corresponding to dense areas outside of the peak of a
distribution. Preliminary developments of this idea are summarized in figure 12.

While the method has been tested by our data sets, a possible new direction could be
changing activation functions at the end of AlexNet to allow the outputs to access a larger
domain, the use with more CNNs and different truncations of them and the extension of
the method for testing with more than five classes (and larger data sets in general). In our
case using AlexNet and the final ReLU layer was sufficient for five classes.

4. Summary

The work performed in this study focuses on the classification of images from the
Caltech Spheromak Experiment using a feature vector direction comparison algorithm and
a modification of traditional transfer learning with AlexNet. With two engineered features,
we demonstrate the vector direction comparison algorithm to perform binary classification
with 86 % accuracy. We improve the accuracy of the algorithm to 96 % by using vectors
from an instance of AlexNet trained to align vector embeddings in the same class while
separating vector embeddings among different classes. Full five-way classification of the
data set is performed with the output vectors from the embedding-trained AlexNet and a
modification to the binary algorithm, which achieves a test accuracy of 92 %. This was
larger than our test accuracies with transfer learning using cross-entropy loss (84 %) and
cosine embedding loss (82 %) on the final layer of the network for traditional five-way
classification.

Acknowledgements

Editor William Dorland thanks the referees for their advice in evaluating this article.

Funding

M.J.F. was supported in part by a US DoE Science Undergraduate Laboratory
Internships (SULI) award. This work was also supported in part by the US Department of
Energy through the Los Alamos National Laboratory (ICF program). Los Alamos National
Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security
Administration of US Department of Energy (Contract No. 89233218CNA000001).

Declaration of interests

The authors report no conflict of interest.

Appendix

Section 2.2 uses engineered features, which are defined in table 1.

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000940

Image classification with cosine similarity 15

Given G(x, y), the pixel value at x, y, and g(v), the number of pixels with value v

Feature or distribution Equation

Intensity, V V =
∑
x=1

∑
y=1

G(x, y)

P(x, y) distribution P(x, y) = 1
V

G(x, y)

P(x) distribution P(x) = 1
V

∑
y=1

G(x, y)

P(y) distribution P(y) = 1
V

∑
x=1

G(x, y)

P(v) distribution P(v) = g(v)∑
v=1 g(v)

Raw mean, μ1 μ1 =
∑
x=1

xP(x)

Central variance, μ2 μ2 =
∑
x=1

(x− μ1)
2P(x)

nth standardized moment, μn μn = 1√
μ2

∑
x=1

(x− μ1)
nP(x)

Entropy, H(x, y) H(x, y) =
∑
x=1

∑
y=1

−P(x, y) log2(P(x, y))

Conditional entropy, H(x | y) H(x | y) = H(x, y)− H(y)

Mutual information, I(x, y) I(x, y) = H(x)+ H(y)− H(x, y)

TABLE 1. Equations to obtain features from § 2.2.

REFERENCES

AN, S., LEE, M., PARK, S., YANG, H. & SO, J. 2020 An ensemble of simple convolutional neural network
models for MNIST digit recognition. arXiv:2008.10400.

BELLAN, P.M. 2018 Experiments relevant to astrophysical jets. J. Plasma Phys. 84 (5), 755840501.
CHANG, J., WANG, L., MENG, G., XIANG, S. & PAN, C. 2017 Deep adaptive image clustering. In 2017

IEEE International Conference on Computer Vision, pp. 5880–5888. doi: 10.1109/ICCV.2017.626.
DAI, Z., LIU, H., LE, Q.V. & TAN, M. 2021 Coatnet: marrying convolution and attention for all data

sizes. arXiv:2106.04803.
DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K. & FEI-FEI, L. 2009 Imagenet: a large-scale

hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

DENG, L. 2012 The mnist database of handwritten digit images for machine learning research. IEEE Signal
Process. Mag. 29 (6), 141–142.

HE, K., ZHANG, X., REN, S. & SUN, J. 2015 Deep residual learning for image recognition. CoRR.
arXiv:1512.03385.

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://arxiv.org/abs/2008.10400
https://arxiv.org/abs/2106.04803
https://arxiv.org/abs/1512.03385
https://doi.org/10.1017/S0022377822000940

16 M.J. Falato and others

HSU, S.C. & BELLAN, P.M. 2003 Experimental identification of the kink instability as a poloidal flux
amplification mechanism for coaxial gun spheromak formation. Phys. Rev. Lett. 90, 215002.

KRIZHEVSKY, A., SUTSKEVER, I. & HINTON, G.E. 2012 Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25 (ed. F. Pereira,
C.J.C. Burges, L. Bottou & K.Q. Weinberger), pp. 1097–1105. Curran Associates.

LUO, C., ZHAN, J., WANG, L. & YANG, Q. 2017 Cosine normalization: using cosine similarity instead
of dot product in neural networks. arXiv:1702.05870.

NGUYEN, H.V. & BAI, L. 2011 Cosine similarity metric learning for face verification. In Computer Vision
– ACCV 2010, Lecture Notes in Computer Science, vol 6493 (eds. R. Kimmel, R. Klette & A.
Sugimoto), pp. 709–720. Springer.

PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN, T., LIN, Z.,
GIMELSHEIN, N., ANTIGA, L., et al. 2019 Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32 (eds. H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox & R. Garnett), pp. 8024–8035. Curran
Associates.

RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S., MA, S., HUANG, Z., KARPATHY,
A., KHOSLA, A., BERNSTEIN, M., et al 2015 ImageNet Large Scale Visual Recognition Challenge.
Intl J. Comput. Vis. 115 (3), 211–252.

SELVARAJU, R.R., COGSWELL, M., DAS, A., VEDANTAM, R., PARIKH, D. & BATRA, D. 2019
Grad-cam: Visual explanations from deep networks via gradient-based localization. Intl J. Comput.
Vis. 128 (2), 336–359.

SHARMA, N., JAIN, V. & MISHRA, A. 2018 An analysis of convolutional neural networks for image
classification. Procedia Comput. Sci. 132, 377–384.

VAN DER MAATEN, L. & HINTON, G. 2008 Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605.

XIE, J., WANG, M., XU, S., HUANG, Z. & GRANT, P.W. 2021 The unsupervised feature selection
algorithms based on standard deviation and cosine similarity for genomic data analysis. Front.
Genet. 12.

YOUNG, T., HAZARIKA, D., PORIA, S. & CAMBRIA, E. 2018 Recent trends in deep learning based natural
language processing. arXiv:1708.02709.

https://doi.org/10.1017/S0022377822000940 Published online by Cambridge University Press

https://arxiv.org/abs/1702.05870
https://arxiv.org/abs/1708.02709
https://doi.org/10.1017/S0022377822000940

	1 Introduction
	2 Methods and results
	2.1 Data sets
	2.2 Feature selection using cosine similarity
	2.3 A binary classification algorithm using cosine similarity of feature vectors
	2.4 Transfer learning using cosine embedding and cross-entropy loss
	2.5 Binary and five-way classification using our algorithm
	2.6 Applying previous methods to the large data set

	3 Discussion
	4 Summary
	A Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

