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1. Introduction. It is known [4] that the finite two-

2
dimensional unitary group U(2,p lq) is generated by two
reflections if p # 2. The present note completes that result

2
by giving two generating reflections for U(2,2 n), n>1.
As in [4] this implies that the points of the "unit circle"

- - 2
xx + yy =1 in the unitary plane over GF(2 n), n> 1, are the
vertices of a ""regular unitary polygon' whose group of auto-

2
morphisms is U(2,2 n).

The final section gives abstract definitions for the
4 2
particular groups U(2,2 ) and U(2,5 ) in terms of their
generating reflections.

The terminology is that of [4].

2. The generating reflections. As in [4] we write

n -1
q=2 and put & = )\q , where )\ is a generator of the

multiplicative group GF*(qZ) of GF(qZ). For each

X € GF(qZ), % = xcl by definition, so that §6=1. An element
r of GF(qZ) is called real if r =r. The real elements
constitute a subfield GF(q) of GF(qZ). Since there are q

2 2
real elements in GF(q ) there are q distinct elements of

2
the form a + bd, a,b real. Thus each element x¢ GF(q )
has a unique representation x=a + bd, where a and b are
real. In fact, by considering x+ x and x6 + x6 it is found
that
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(x6 + x6) (6 +E)'1 ,

Y]
1]

b

(x + x) (6+38) 1.

By analogy with [4] we hope to find two generating unitary

reflections R=|__ 2~ ) and S = (1 O) each having character-
vo x6 0 6

istic roots 1,86 . In particular x+ x6=1+ 6. If x=a+ bd
this reduces to (a + b)(1+ 8) =1+ & ; hence a+ b =1. That
is, the solutions to x+ X6 =1+ & are all of the form a + (a+1)§,
where a is real. The only choice of y which satisfies
xx+ yy =1 (so that R is unitary) and gives powers of R
analogous to those of [4]is y =c + c§, where c=a+ Na.

2
(In fact, to prove this one needs only to consider R .) It is

readily verified by induction that for such a choice of x and vy,

**x Yk

k
where xk=a+ (a+1)d , yk

(k=1,...,q9+1).

k
=c+cd, and uk=a+ 1+a6k.

The symmetry of R suggests that a suitable choice of
2
m may make the diagonal entries X, and u, 6" of STRS
2
equal, and hence make (Sm R Sm) scalar. Equating these,

and solving for a, yields

2 2 2mid -1
a = (6+6 ) (1+6+ 6 st

which is always real. Then (Sm R Sm)2 = E)Zn’H-'1 1. Wealso

take Z2m+1 relatively prime to g+ 1 (e. g., 2m =3 (mod g+1)

2
if n>1). This guarantees that (Sm R Sm) generates the
centre (i.e., the cyclic group of scalar matrices

. 2 -
8, i=1,...,q+1) of U(2,q°) . We write P=s (ZF1)gmp ™2

We proceed to verify that with this choice of m (and hence
a) the group G ={R,S} generatedby R and S has order
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2
|G| >q(q -1)(q+1)/2. That is, the order of the subgroup G
2 2
of U(2,q ) is greater than half the known order of U(2,q ),
2
so that G £U(2,q ). Itis sufficient to verify that the matrices

2
in G have more than q(q -1)/2 distinct first rows, since left
multiplication by powers of S yields q + 1 different matrices
for each first row.

In fact, there are q(q+1)2/2 distinct first rows in the
matrices RkPiSj (k=1,...,9/2;1i,j1,...,9+1). For if two
first entries of RkPi are equal, say xkéi =xr6s , we have,
on multiplying each side by its conjugate and simplifying,
6+ 5 =6 435 . This can be written (5 " +1)(5°4+87)=0.

k+
But § t # 1 in the range considered, hence k=r. Thus
there are q(gq+1)/2 different first entries in rows of Rk Pl

k_ij
Since in R P SJ each first row has its second (non-zero) entry
multiplied by the g+ 1 powers of 6 we have the required result.
It is summarized in the

2 ,
THEOREM. The group U(2,q )(q = Zn,n > 1) is generated
by the two (unitary) reflections

a+ (a+1)6 c+ cb 1 0
R = , S =
c+cd a+ 1+ ad 0 6
q-1

2 2 2 -
Here 6=23"1, a=(6+ ™)1+ 6+ 6° 74 o)1

(where 2m =3 mod q+1), and c =a + Na.

2
We note that U(2,2 ) is not generated by unitary reflec-
tions, for the only reflections are diagonal matrices, which

2
generate a group of order 9, while U(2,2 ) has order 18.

4 2
3. Defining relations for U(2,2 ) and U(2,5 ).

4 2
i) U(2,2"). Taking m =1, so that 2m + 1 =3(mod 2 +1),

5 4
we have a =X , where \ generates GF*(2 ) and satisfies
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)\4 =\ + 1 (mod 2). (It is convenient to use the table on p. 160

of [1].) Then

R= ’ S:
)\14)\ 0 X\

4
generate U(2,2), of order 300. They satisfy

5
(1) R =1, RSR=SRS.

This is an abstract definition [2, p.96] of the group 5[3]5, of
order 600, in which (RS)E}0 =1 and (RS)15 # I. However, in
our group (RS)3 = (RSR)(SRS) = (SRS)2 is scalar, of period
5= 22 + 1, so that (RS)15 =1. Since

5 15
(2) R = (RS) =1, RSR = SRS

4
defines a group of order less than 600 it must define U(2,2) .

2 2
ii) U(2,5 ). The group U(2,5 ) of order 720 is
generated by [4, p.501]

1{1+86 1-5 1 0
R'z(i-a 1+6)’ S‘(o 6)'

4 2
If we take 6§ =N, where \ satisfies X =2\ + 2 (mod 5)
[1, p.159] then

23,2 L o
R =13 23] S = 4
A A 0
These satisfy
6 22222 2
(3) R =1, R SZR SR = sZst stz ,
and
2 -2.-2 .2 2 2-10
(4) RS = SR S R (SR .
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To show that (3) and (4) together constitute an abstract definition

2
of U(2,5 ) we note that the subgroup {T,U} generated by

2 2 A
T=R , U=S is of order < 360, since T3 =1, TUTUT =UTUTU

is an abstract definition of the group 3[5]3 of order 360 of auto-
morphisms of a regular complex polygon (see [2], [4]).
Enumeration of the (two) cosets [3, p.12] of {T,U} in the
group defined by (3) and (4) shows that the latter group has

2
order < 720. Hence it is exactly U(2,5 ).
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