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1. Introduction. It is known [4] that the finite two-
2n 

dimensional unitary group U(2,p ) is generated by two 
reflections if p 4 2. The present note completes that resul t 

2n 
by giving two generating reflections for U(2,2 ), n > 1. 
As in [4] this implies that the points of the "unit circle '1 

- - 2n 
xx + yy = 1 in the unitary plane over GF(2 ), n > 1, a re the 
ver t ices of a "regular unitary polygon" whose group of auto-

2n 
morphisms is U(2,2 ). 

The final section gives abst ract definitions for the 
4 2 

par t icular groups U(2,2 ) and U(2,5 ) in t e rms of their 
generating reflections. 

The terminology is that of [4]. 

2. The generating reflections. As in [4] we write 
n q-1 

q = 2 and put 6 = X , where X is a generator of the 
2 2 

multiplicative group GF*(q ) of GF(q ). For each 
2 - q -

x€ GF(q ), x = x by definition, so that 66 = 1. An element 
2 -

r of GF(q ) is called rea l if r = r . The rea l elements 
2 

constitute a subfield GF(q) of GF(q ). Since there a re q 
2 2 

rea l elements in GF(q ) there a re q distinct elements of 
2 

the form a + bo, a ,b rea l . Thus each element x€ GF(q ) 
has a unique representat ion x'= a + bô, where a and b a r e 
rea l . In fact, by considering x + x and x6 + xô it is found 
that 
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a = (xô + xô) (6 + 6)"" 

- - -1 
b = (x+ x) (6 + 6) 

By analogy with [4] we hope to find two generating unitary 
* / l Oi 

and S = i each having cha rac te r -
i x 

reflections R = | __ . 
yo xôj istic roots 1 , 6 . In par t icular x + xô = 1 + ô . If x = a + bô 

this reduces to (a + b)(l + 6) = 1 + 6 ; hence a + b = 1. That 
i s , the solutions to x + xô = 1 + ô a re all of the form a + (a-f l )ô , 
where a is rea l . The only choice of y which satisfies 
xx -f yy = 1 (so that R is unitary) and gives powers of R 
analogous to those of [4] is y = c + cô, where c = a + \Ta. . 

2 
(In fact, to prove this one needs only to consider R . ) It is 
readily verified by induction that for such a choice of x and y, 

\ y k u k 

k k k 
where x, = a + (a+l)ô , y, = c + cô , and u = a + 1 + aô . 

k k k 
(k = l , . . . , q + l ) . 

The symmetry of R suggests that a suitable choice of 
i 1 i • * • i r 2 m m _ m 

m may make the diagonal entr ies x and u o of S R S 
1 1 

equal, and hence make (S R S ) sca lar . Equating these , 
and solving for a, yields 

r 2 n \ / . r . 2 m 2m+l -1 a = (6 + 6 ) (1 + 6 + 6 + 6 ) 

- , . • , . - » m , ,~m ni 2 2m+l 
which is always rea l . Then (S R S ) = ô I . We also 
take 2m+l relatively pr ime to q + 1 (e. g. , 2m = 3 (mod q+1) 
if n > 1). This guarantees that (S R S ) genera tes the 
centre (i. e. , the cyclic group of scalar ma t r i ces 

6XI, i = l , . . . , q + l ) of U(2,q2) . We write P = S ~ ( 2 m + 1 ) ( S m R S m ) 2 . 

We proceed to verify that with this choice of m (and hence 
a) the group G = {R, S} generated by R and S has order 
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. , 2 
| G | > q ( q - l ) ( q + l ) / 2 . Tha t i s , the o r d e r of the s u b g r o u p G 

2 2 
of U(2 ,q ) i s g r e a t e r than half the known o r d e r of U ( 2 , q ) , 

2 
so tha t G = U ( 2 , q ). It i s sufficient to ve r i fy tha t the m a t r i c e s 

2 
in G have m o r e than q(q - l ) / 2 d i s t i nc t f i r s t r o w s , s ince left 
m u l t i p l i c a t i o n by p o w e r s of S y i e ld s q + 1 di f ferent m a t r i c e s 
for e a c h f i r s t r o w . 

2 
In fac t , t h e r e a r e q(q+l) / 2 d i s t i nc t f i r s t r o w s in the 

k i j 
m a t r i c e s R P S (k = 1, . . . , q / 2 ; i, j= l , . . . , q+1). F o r if two 

k i i s 
f i r s t e n t r i e s of R P a r e equa l , say x 6 = x ô , we h a v e , 

k r 
on mu l t i p ly ing e a c h s ide by i t s conjugate and s impl i fy ing , 

k "•—k T* ——T* k"4" i* k Y 

ô + 6 = 6 + ô . Th i s can be w r i t t e n (ô + l ) (ô + 6 ) = 0 . 
k+r 

But ô ^ 1 in the r a n g e c o n s i d e r e d , hence k = r . Thus^ 
t h e r e a r e q ( q + l ) / 2 d i f ferent f i r s t e n t r i e s in r o w s of R P 1 . 

k i j 
S ince in R P S e a c h f i r s t r ow has i t s second ( n o n - z e r o ) e n t r y 
m u l t i p l i e d by the q -I- 1 p o w e r s of Ô we have the r e q u i r e d r e s u l t . 
It i s s u m m a r i z e d in the 

2 n 
T H E O R E M . The g roup U(2 ,q )(q = 2 , n > l ) i s g e n e r a t e d 

by the two (un i ta ry) r e f l e c t i o n s 

a + (a+ l )6 c + cô 
R = I I , S = 

c + cô a + 1 + aô 

Xe!"* /c f 2 m w i r 2 m r 2 m + l - l 
H e r e ô = X^ , a = ( 6 + 6 )(1 + 6 + 6 + 6 ) 
( w h e r e 2 m = 3 m o d q+1), and c = a + \Ta. 

2 
We note tha t U(2, 2 ) i s not g e n e r a t e d by u n i t a r y r e f l e c ­

t i o n s , for the only r e f l e c t i o n s a r e d iagonal m a t r i c e s , which 
2 

g e n e r a t e a g r o u p of o r d e r 9, while U ( 2 , 2 ) h a s o r d e r 18. 

3. Defining r e l a t i o n s for U(2 ,2 ) and U(2, 5 ). 

4 2 
i) U ( 2 , 2 ) . Taking m = 1, so tha t 2m + 1 = 3(mod 2 + 1), 

5 4 
we have a = \ , w h e r e X g e n e r a t e s GF*(2 ) and s a t i s f i e s 
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X = X + 1 (mod 2). (It i s conven ien t to use the t ab l e on p . 160 

o f [ l ] . ) Then 

R = 

x 7 x 1 4 

x 1 4 x 
s = 

1 0 

0 X' 

g e n e r a t e U(2, 2 ), of o r d e r 300. They sa t i s fy 

(1) R = I , RSR = SRS 

T h i s i s an a b s t r a c t def ini t ion [2 , p . 96] of the g r o u p 5[3]5 , of 
30 15 

o r d e r 600, in which (RS) =1 and (RS) ^ L H o w e v e r , in 
3 2 

our g r o u p (RS) = (RSR)(SRS) = (SRS) i s s c a l a r , of p e r i o d 
2 15 

5 = 2 + 1 , so tha t (RS) = 1 . Since 

(2) 
5 15 

R = (RS) = I , RSR = SRS 

def ines a g r o u p of o r d e r l e s s than 600 it m u s t define U ( 2 , 2 ) . 

2 2 
ii) U ( 2 , 5 ) . The g r o u p U(2, 5 ) of o r d e r 720 i s 

g e n e r a t e d by [ 4 , p . 501] 

j . 1 + 0 1 - 6 
" 2 1 1 - 6 1 + 6 

S = 
1 0 
0 6 

4 2 
If we t ake 6 = X , w h e r e X s a t i s f i e s X =2X + 2 (mod 5) 
[ 1 , p . 1 5 9 ] t h e n 

K " l l 2 x " • ' " o I*1 

T h e s e sa t i s fy 

(3) r^6 r ^ 2 ^ 2 0 2 2 J 2 2 2 2 
R = 1 , R S R S R = S R S R S , 

and 

(4) 
Jl - 2 - 2 2, 2 2 - 1 0 

RS = S R S R (S R ) 

216 

https://doi.org/10.4153/CMB-1964-019-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-019-0


To show that (3) and (4) together constitute an abs t rac t definition 

of U(2,5 ) we note that the subgroup {T ,U} generated by 
2 2 3 

T = R , U = S is of order < 360, since T = I, TUTUT = UTUTU 
is an abs t rac t definition of the group 3[5]3 of order 360 of auto­
morphisms of a regular complex polygon (see [2], [4]). 
Enumeration of the (two) cosets [3, p. 12] of { T,U} in the 
group defined by (3) and (4) shows that the lat ter group has 

2 
order < 720. Hence it is exactly U(2, 5 ) . 
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