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Abstract

Let G be a compact abelian group and 1 < p < oo. It is known that the spectrum a(T^,), of a Fourier
p-multiplier operator Tf acting in LP(G), may fail to coincide with its natural spectrum xj/(P) if p ^ 2;
here f is the dual group to G and the bar denotes closure in C. Criteria are presented, based on geometric,
topological and/or algebraic properties of the compact set a(T^,), which are sufficient to ensure that the
equality <r(7^) = ^r(T) holds.

2000 Mathematics subject classification: primary 43A22,47A10.

1. Introduction

Let G be a compact abelian group with (discrete) dual group F. The Fourier transform

/ ( ¥ ) • = f f ( g ) ( - 8 , y ) d g , y e r
Jc

is defined for all / G L\G). According to Hausdorff-Young's inequality, the Fourier
transform map / y-*- f is linear and continuous from LP(G) into f (F), where
1/p + l/p' = 1 and 1 < p < 2. In the above formula for / , replacing f(g)dg
with dn(g) gives the definition of the Fourier-Stieltjes transform /x : F -> C for any
finite regular Borel measure fi on G. An element T from j£?(LP(G)), the Banach
algebra of all continuous linear operators from LP(G) into itself, is called a (Fourier)
p-multiplier operator if it commutes with each translation operator Th, for h 6 G,
where xhf : g !->• fig — h). Equivalently, there exists f e ^ ( F ) , necessarily
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unique, such that ff - ty f for / e L2 D LP(G). The function f : T -> C is
called a p-multiplier for G and the corresponding operator T is denoted by 7^; the
p-dependence of 7^ is suppressed since p will always be clearly identified. The
space of all p-multipliers for G is denoted by J?P(G) c (,°°{T) and the space of all
p-multiplier operators by OP{G) c S£(LP{G)). The inequality

is well known. If we equip MP{G) with the norm \ty\p := II7V 11-̂ (̂ (0)). tr*en
^P{G) is a unital commutative semisimple Banach algebra for pointwise multipli-
cation. For each rfr e Jip{G), the functions Re(i/r), I m ^ ) and \jr (the complex
conjugate of VO also belong to ^(P{G) with \fr (->• i/r being an isometric involution
on J(P(G). Since ^SCP(G) is isometrically isomorphic to J(p'{G) we will restrict
attention to 1 < p < 2. It is known that /i 6 ^fp(G) for every 1 < p < oo and every
finite regular Borel measure /i on G. As a general reference for p-multipliers, see [9].

The spectrum a(T), of an operator 7* € Jz?(LP{G)), is defined by

a(T) := {A. € C : T - XI is not invertible in 5f(Lp(G))}.

For elements T^, € OP(G), a basic fact is that

(1)

for every 1 < p < oo, [13, Lemma 2.1], where the bar denotes closure in C.
Fundamental work of Igari [7] and Zafran [14] established that (1) fails to be an
equality in general, even for such a 'nice' group as G = J (the circle group) and for
every 1 < p < 2. Indeed, there even exist elements \}r e -#P(T) n co(2) which fail
to satisfy (1).

We will say that \j/ e MP{G) satisfies the spectral mapping property if (1) is
an equality. The class of decomposable operators (in an arbitrary Banach space)
was introduced by Foia§ [5]; see also [2]. In [1], Albrecht made a detailed study of
decomposability for the particular class of p-multiplier operators acting in lea groups;
see also [4]. Using a functional calculus approach and local spectral theory he showed
that the class of decomposable p-multiplier operators is rather extensive and, most
importantly, that all such operators must satisfy the spectral mapping property, [1,
Lemma 3.2].

The purpose of this note is to present criteria of a rather different nature, which
ensure the spectral mapping property. The criteria are based directly on geometric,
topological and/or algebraic properties of the spectrum itself. Given a compact set
K c C, let y(K) denote the set of all isolated points of K. We can now state the
main result.
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THEOREM 1.1. Let G be a compact abelian group, 1 < p < lander e Jtp{G).

(i) V satisfies the spectral mapping property if and only if\/r does.

(ii) Ifo-(T$) = y(o-(Tf)), then \jr satisfies the spectral mapping property.

(iii) Suppose that cr(7^) is totally disconnected. Then T^ is decomposable and

hence, satisfies the spectral mapping property. This is the case if either:

(a) a(Tf) is countable.
(b) o(Ty) is independent, as a subset of the abelian group R2.
(c) o(Ty) is a Kronecker set.

(iv) lfyjr{T) is totally disconnected, then T^ satisfies the spectral mapping property
if and only ifT^ is decomposable.

(v) Let fi be a finite regular Borel measure on G such that (JL{T) has capacity zero.
Then p, satisfies the spectral mapping property.

(vi) The following statements are equivalent:

(a) Tj, fails the spectral mapping property.
(b) o-(T$) \ i/(V) is an uncountable set.

(c) a (T$) \ is (F) is a non-empty perfect set.

The proof is via a series of steps.
For T € j£f(Lp(G)), let apl(T),ar(T) and ac(T) denote the point, residual and

continuous spectra of T, respectively, in which case the three sets are pairwise disjoint
and have union equal to a (T), [3, page 580].

LEMMA 1.2. Let 1 < p < 2 and f e Jtp(G). Then

(2) ac(Tj) = {l:Xe ac(7V)}

and also

(3) apl(Tj) = { l : k J

In particular,

(4) a ( 7 y ) = {X:A.

PROOF. For any <p 6 ^P(G), it is routine to check that Tv is injective if and only
if 0 £ <p(r). It follows easily that

(5) <rpl(Tv) = <p(T), <pe^"(G).

Putting <p equal to \jr and ^ in (5), we can deduce (3).
Suppose that A. e ac(J^,). Then (5) implies that k i \j/{T) and hence, X i ir(F).

For each y € F, the function fY:g\-+ {g, y) • (is(y) — k)~l, for g e G, belongs
to Lp{G) and satisfies (Tj - X/) / y = hY, where hy(g) := {g, y), for g e G. This
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shows that all trigonometric polynomials belong to the range of Tj - XI and hence,
that this range is dense in LP(G). Accordingly , X e o-c(Tj) which shows that the
right-hand side of (2) is contained in ac(Tj). The reverse inclusion is established
similarly.

Since ar(J^) = 0 = ar(Tj), [13, Lemma 2.4], (4) follows. •

Given any xjf e J%P{G) it is routine to verify that

This observation, together with Lemma 1.2, imply (i) of Theorem 1.1.
To establish Theorem 1.1 (ii) we require the fact that every isolated point of a (7^)

belongs to o-pl(T^,). But, since all elements of J(P(G) are continuous on the discrete
space T, this follows from [13, Theorem 2.3]. In view of (5), we can conclude that

(6) /(^))

Under the particular hypothesis that ./(cr(7^)) = CT(7^), we see from (6) that \jr
satisfies the spectral mapping property. This completes the proof of part (ii).

REMARK. It is straightforward to exhibit compact sets K c C which satisfy
= K, but K is not totally disconnected. So, (ii) of Theorem 1.1 does not

follow from part (iii). Of course, there also exist totally disconnected, compact sets
K for which J*(K) £ K (for example, the Cantor set, where J{K) = 0).

Concerning the proof of Theorem 1.1 (iii), it is known that decomposability of
7^ always follows from the total disconnectedness of <7(7^); see the proof of [10,
Lemma 2.2 ] which also applies to arbitrary compact abelian groups G.

For the definition of a subset of R2 ~ C being an independent set (an algebraic
notion) or a Kronecker set, we refer to [ 11, Chapter 5]. Compact, independent subsets
of K2 are always totally disconnected, [11, Theorem 5.2.9], and every Kronecker set
is independent, [11, Theorem 5.1.4]. So, (b) and (c) of part (iii) are valid. To verify
(a), let C be a connected subset of o(T^). Since metric spaces are completely regular
and C is countable, it follows that C is actually a singleton set, [8, page 129]. So,
o(T^,) is totally disconnected whenever it is countable. This completes the proof of
part (iii).

For part (iv), we have seen that decomposability of 7^ always implies the spec-
tral mapping property, even if \jf(T) is not totally disconnected. On the other hand,
the spectral mapping property means that cr(7^) = \j/(V) and so (T{T^,) is totally
disconnected whenever \jf(T) is totally disconnected. Then part (iii) yields the de-
composability of T$.
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For the notion of capacity, which is relevant to (v), we refer to [12] and the
references therein. When p = 2, it is known that a(rA) = /t(r) , [14, page 357]. This
observation, together with [12, Corollary 2.2], establishes (v). For related criteria
which also imply the spectral mapping property see [6, Section 4].

REMARK. If F is discrete and countable (that is, G is metrizable) and \x is a finite
regular Borel measure on G with jl € co(F), then /t(F) is countable and hence, has
capacity zero. It follows from (v) of Theorem 1.1 that jl satisfies the spectral mapping
property for all 1 < p < oo; see also [12, page 309]. The condition /x e co(F) is
not necessary for this conclusion to hold, [12, Examples 2 and 3]. There also exist /x
(even on T) which satisfy the spectral mapping property for all 1 < p < oo but, /t(F)
is uncountable, [12, pages 310-312].

Finally, part (vi) of Theorem 1.1 follows from (6) and the following result (with
the choice J := ^(F) and K := o{T+)).

LEMMA 1.3. Let K c C be non-empty and compact.

(i) y(K) is a countable set, possibly empty.

(ii) K is countable if and only if the set s^(K) of all accumulation points of K is

countable.

(iii) Let J be a closed subset of K with J(K) C J. Then either J = K or K\J

is a non-empty perfect set (that is, K \ J = srf(K \ J)). If J ^ K, then K\J (hence,
also K\ J) is uncountable.

PROOF, (i) K is a separable metric space and so has a countable base for its
topology. Since each set [x], for x € J^(K), belongs to this base, it follows that
<#(K) is countable.

(ii) Since K is the disjoint union of J(K) and srf(K), (ii) follows from (i).
(iii) Suppose that K \ J ^ 0 and let x e K\J.
Ifx$K\ J, then JC e */(K \ J) c s/(iT\7).
If x € K \J, then K \ J being open in K ensures the existence of a ball Bx (centre

x and positive radius) which is open in K and satisfies Bx c K\J. Since ^f(K) c J
it follows that x e srf(K). Choose any sequence {^n}^i, in K \ [x] which converges
to x. Then all but finitely many of the xn must belong to Bx. Remove these finitely
many points leaves a sequence in (K\J)\ {x} which converges to x. Accordingly,
x e srf(K \J)Q s/(K\7).

This establishes that K \ J is a perfect set whenever J =£ K.
Suppose now that J jL K. The set K \ J is open in K and each singleton set {x},

forx G K \ J, is nowhere dense in K (because J(K) c J). So, if K \ J is countable,
then it is of first category in A". By Baire's Theorem J = K\(K\J) would be dense
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in K, that is, K = J (= J) contrary to the assumption that J ^ K. Hence, K \ J is
uncountable. •

As a concluding remark, we point out that Theorem 1.1 (vi) is an extension of a
result of Zafran, [13, Lemma 2.6], proved for \j/ e MP(G) nco(P). Our result shows
that the condition \jr e co(V) can be omitted.
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