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STEINER TRIPLE SYSTEMS HAVING A PRESCRIBED 
NUMBER OF TRIPLES IN COMMON 

C. C. L I N D N E R AND A. ROSA 

1. I n t r o d u c t i o n . A Steiner triple system (briefly STS) is a pair (S, 38) 
where 5 is a finite set and 38 is a collection of 3-subsets of S (called triples) such 
tha t every pair of dist inct elements of 5 belongs to exactly one triple of 38. T h e 
number | 5 | is called the order of (S, 38). I t is well-known tha t there is an STS of 
order v if and only if v = 1 or 3 (mod 6). Therefore in saying tha t a certain 
property concerning STS is t rue for all v it is understood tha t v = 1 or 3 (mod 6) . 
An STS of order v will sometimes be denoted by STS(v). 

Two Steiner triple systems (5, 38 \) and (S, 38f
2) are said to intersect in k 

triples provided \38x C\ 38\\ = k. If k = 0, (S, 38y) and (5, 38 2) are said to be 
disjoint, and if \38x C\ 382\ = 1 they are said to be almost disjoint. The existence 
of a pair of disjoint STS(v) of every order v ^ 7 has been shown by J . Doyen in 
[1], and the existence of a pair of almost disjoint STS(v) of every order v ^ 3 
has been shown by C. C. Lindner in [6]. Very little is known concerning the 
existence of STS intersecting in k ^ 2 triples. T h e purpose of this paper is to 
give a complete solution to this problem. 

2. Auxi l iary c o n s t r u c t i o n s a n d bas ic l e m m a s . The number of triples in 
any STS(v) will be denoted by /»; i.e., tv = v(v — l ) / 6 . We set 
Iv = {0, 1, . . . , tv — 6, tv — 4, /„} ; i.e., the set Iv contains all nonnegative 
integers not exceeding tv with the exception of tv — 5, tv — 3, tv — 2, and 
tv — 1. Fur ther , let J[v] denote the set of all integers k such tha t there exists a 
pair of STS(v) intersecting in k triples. The set J[v] is easily determined for 
v = 3 and 7 and is well-known for v — 9 (see, e.g., [5]). We record this as our 
first lemma. 

LEMMA 1. J[3] = {1},7[7] = |0 , 1,3, 7},7[9] = {0, 1, 2 , 3 , 4 , 0, 12}. 

A partial triple system is a pair (P , j§ ) where P is a finite set and j2 is a 
collection of 3-subsets of P such tha t every pair of dist inct elements of P 
belongs to a t most one triple of 21. Two partial triple systems (P , i2 i ) and 
(P , «S2) are said to be mutually balanced if any given pair of dist inct elements of 
P is contained in a triple of «Si if and only if it is contained in a triple of i2 2 . 
Two mutual ly balanced partial triple systems are disjoint if they have no triple 
in common. 

Received September 16, 1974. 
The research of the second author was supported by NRC Grant A-7268. 

1166 

https://doi.org/10.4153/CJM-1975-122-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-122-4


STEINER TRIPLES 1167 

LEMMA 2. For any v and n = 1, 2, 3, or f>, tv — n Q J[v]. 

Proof. If two STS(v) intersect in tv — n triples there are exactly n triples of 
one of the STS which do not occur in the other. Therefore the statement of our 
lemma is equivalent to saying that there are no disjoint mutually balanced 
partial triple systems containing 1, 2, 3, or 5 triples. It is seen instantly that 
this is so for n = 1, 2, 3, and a bit of reflection handles the case n = 5 without 
any undue difficulty. 

COROLLARY 3. For every v, J[v] Ç Iv. 

In what follows we will determine the set J[v] for all vy showing, that apart 
from a few exceptions, J[v] = Iv. We will need the following two well-known 
constructions (for undefined graph-theoretical notions and standard notation, 
see [4]; cf. also [7]). 

Construction A. Let (S, 38) be an STS(v) where 5 = [ai, a2, . . . , av\. Put 
v + 1 = 2n and let # " = {Ft\i = 1, 2, . . . , 2n — 1} be a 1-factorization of 
K2n with the vertex-set V(K2n) = T where 5 H T = 0. Put S* = S U T and 
38* = 38 \J ^ where ^ = {\au x, y] \[x, y] G Ft,i = 1, 2, . . . , 2n - I j .Then 
(S*,#*) is<mSTS(2v + 1). 

Before describing the second construction we need one more auxiliary device. 
An {A, &)-system is a set of k disjoint pairs (pr, qT) covering the elements of 

{1, 2, . . . , 2k} exactly once and such that qr — pr = r for r = 1, 2, . . . , k. 
Similarly, a (B, &)-system is a set of k disjoint pairs (pr, qr) covering the 
elements of {1, 2, . . . , 2k — 1, 2& + 1} exactly once and such that qr — pr = r 
for r = 1, 2, . . . , k. It is known (see, e.g., [9]) that an (A, &)-system exists if 
and only if k = 0 or 1 (mod 4), and a (B} &)-system exists if and only if k = 2 
or 3 (mod 4). Observe that an (A, k)-system and a (B, k)-system are essentially 
the same things as what have been called in [11] a Skolem (2, k)-sequence and a 
hooked Skolem (2, &)-sequence, respectively. 

Construction B. Let (S, 38) be an STS(v), v ^ 7, with 5 = {ai, a2j . . . , av\. 
Let U = {fti, 62, • • • ,bv},X = {oot\i = 1,2, . . . ,7} , and (X,@) an STS(7). 
Let (v — l ) / 2 = m and let L = {(pr, qr)\qr — pr = r, r = 1, 2, . . . , m\ be an 
(̂ 4, ra)-system or (5, m)-system according to whether m = 0, 1 (mod 4) or 
m = 2, 3 (mod 4). Set F = t / \W where W = {fc,|i = pror qr, r = 4, 5, . . . , ra, 
(/>r,gr)G£}. Let F = {bu\i = 1,2, . . . ,7} . Put S* = 5 U I / U Z and 
^ * = ^ U ^ U ^ U J r U ^ where 

{ { 0 0 , , ^ , &J t+*_i}|i = 1 ,2 , . . . ,7;k = 1 , 2 , . . . ,1;}, 

{{ak,bPr+k-i,bqr+k-i}\k = 1,2, . . . ,v ; r = 4, o, . . . , ra; (pr, gr) G £} 

{{6f, bi+1, bi+s}\i = 1, 2, . . . , » | , 

with subscripts reduced modulo 2; to the range {1,2 , . . . ,v} whenever necessary. 
Then (S*, 38*) is an STS(2v + 7). (Cf. [8; 10].) 

and ^ = 
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L E M M A 4. / / k 6 J[v] then k + s(v + l ) / 2 G L | > + 1] /or e^ ry 5 = 0, 1, 

2, . . . , v - 2, v. 

Proof. Let (S, Se \) and (5, ̂ 2 ) be two STS(v) intersecting in k triples and 
let S, T, S*, and J^~ be as in Construct ion A. Let a be any permuta t ion of 5 
fixing exactly s elements; obviously such an a exists for s = 0 , 1 , 2 , . . . , v — 2, v. 
Let now *$ be as in Construction A ; i.e., 

^ = {{cii, x, y}\[x} y] £ Fu i = L 2, . . . , 2n — 1}, and pu t 

tëa = {{did, x} y}\[x, y] G Fu i = 1, 2, . . . , 2n — 1}. 

Both (5*, J \ U # ) and (5*, SS% U ^ ) are STS(2v + 1). Since each 1-factor 
of F contains (v + l ) / 2 edges, ^ and ^a have exactly 5(1; + l ) / 2 triples in 
common so tha t 

| ( J i U ^ ) H ( J * 2 U <^a)| = k + s(v + l ) / 2 . 

LEMMA O. .For z; ^ 13, J[v] = /„ implies J[2v + 1] = 72î?+i. 

Proof. Taking into account t ha t tv — 6 ^ (z; + l ) / 2 for z; ^ 9 we obtain 
from Lemma 4, by putting consecutively s = 0 , 1 , . . . , v — 2, that k Ç L[2u + 1] 
for & = 0, 1, . . . , t2v+1 - (v + 7) [since tv - 6 + (1/ - 2) 0 + l ) / 2 = /2„+i -
(1/ + 7)] . On the other hand, tv ^ i; + 7 for 1; ^ 13 so t ha t /2 ,+ i — (fl + 7) ^ 
/ 2 r + i — tv, and applying Lemma 4 with 5 = y gives & £ L[2z; + 1] for k = 
hv+i — tVJ hv+i — /, + 1, . . . , hv+\ — 6, t2v+i — 4, /2H-1- Consequently, 
J[2v + 1] = 72 ,+ 1 . 

LEMMA 6. Le* v ^ 1. If k ^ J[v] then k + s(v + 7 ) / 2 + ôv + 7 £ L[2z; + 7] 

/or every s = 0, 1, 2, . . . , v - 2, 1/; 5 = 0, 1; 7 = 0, 1, 3, 7. 

Proof. Let (5, â? i ) and (5, ̂ 2 ) be two STS(v) intersecting in k triples and 
let S, U, X, and S* be as in Construct ion B. Let a be any permuta t ion of S 
fixing exactly 5 elements; i.e., s £ {0, 1, 2, . . . , v — 2, v). Wi th S and J^~ as in 
Construction £ , let <^a and &~a denote the set of triples obtained from S and 
de, respectively, by replacing every ak, k = 1, 2, . . . , v, by aka. Fur ther , 
denote 

^ = j ^ if 5 = 1, and 
5 " \{{bubw,bw}\i = 1,2, . . . ,»} if 5 = 0. 

Let further (X, 31 \) and (X, 2) 2) be two STS(7) intersecting in 7 triples. Set 
^ * = ^ U ^ U ^ a f U ^ and ^ 2 * = J 2 U ^ 2 U ^ U / a U ^ , . 
Then both (5*, ̂ 1 * ) and (5*, ^ 2 * ) are 5LS(2z/ + 7). Since there are exactly 
7 triples of <f and exactly (v — 7 ) / 2 triples of J ^ containing a fixed element «A., 
we have 

|((f U ^ ) n ( ^ B U / a ) | = s(v + l)/2. 
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Further , | ^ H <&h\ = Ôv and \9i C\92\ = y so tha t 

\@i* C\ 382*\ = k + s(v + 7 ) / 2 + to + 7-

LEMMA 7. P#r u ^ 15, J[v] = Iv implies J[2v + 7] = hv+i-

Proof. Taking into account tha t tv — 6 ^ (v + 7 ) / 2 for z; ^ 13, we obtain 
from Lemma 6 by put t ing consecutively s = 0, 1, . . . , v — 2 t ha t k £ J[ 2v + 7] 
fo r* = 0, 1 , . . . , t 2 , + 7 - (*> + 19) [since/, - 6 + (v - 2)(v + 7 ) / 2 + v + 1 = 
/2H-7 - (» + 19)]. On the other hand, tv è v + 19 for y ^ 15 so tha t 
/2t,+7 — (v + 19) ^ 2̂̂ +7 — £», and using now Lemma 6 with s = v gives 
k G /[2i; + 7] for k = /2v+7 - /„, *2t,+7 — /„ + 1, . . . , /2,+7 - 6, t2v+i - 4, t2v+7. 
Thus / [ > + 7] = /2rf7. 

3 . T h e se t s J[v] for s m a l l v. T o obtain the results of this section we will 
need the following lemma. 

LEMMA 8. If k £ J[v], then tu — tv + k £ J[u] for every u ^ 2v + 1. 

Proof. Let ( 5 , ^ ) be an S r S ( v ) . In [2], J . Doyen and R. AI. Wilson have 
shown tha t any STS(v) can be embedded into an STS(u) for every u ^ 2v + 1. 
Let (S*,38 U ^ ) be an STS(u) containing (S,38) as a subsystem and let 
(5, J \ ) and (5, ^ 2 ) be two STS(v) intersecting in k triples. Then (S*, ̂ \ W &) 
and (5*, i#*2 U

 cê) are two STS(u) intersecting in tu — t„ + k triples. 

LEMMA 9. 7[13] = / i 3 \ {15 , 17, 19}. 

Proof. I t follows from [1] and [6] tha t 0, 1 G 7[13]. An example in [3, p. 237], 
shows 22 e J[13], and trivially 26 £ J[13]. Let 5 = { 1 , 2 , . . . , 13} and let 
3S u i = 1, 2, . . . , 8, be the sets of 26 triples given in Table 1 written as columns 
(for brevity all brackets are omit ted) . Then (5, ̂ z ) , t = 1, 2, . . . , 8, are 
STS( 13), and we have: 

| ^ 4 n ^ 6 | = 2f | ^ 2 n ^ 4 | = 3, \38,r\38,\ = A, | ^ 2 n ^ 3 | = 5, 
| ^ 4 n ^ 7 | = G, | ^ 3 n J M = 7, | j ,

1 n ^ 4 | = 8, | ^ 2 n ^ 6 | = 9, 
| ^ 2 n ^ 7 | = 10, \38, C\ 38,\ = 11, \38, C\ 38,\ = 12, \38, C\ 38,\ = 13, 
\38Y c\ 38,\ = 14, \38x C\ 38 2\ = 16, \38, r\ 38,\ = 18, \38x r\ 38\\ = 20. 

In order to complete the proof, assume (S, %M) and (S, fé%) to be a pair of 
5TS(13) intersecting in 19 triples. Then there exist disjoint mutual ly balanced 
partial triple systems (P , ^ 0 and (P , g>2) with PQ S, £ t C 9 \ , and | &t\ = 7, 
i = 1, 2. I t follows tha t | P | = 7, and consequently (P , i2 i ) and (P , i22) are 
STS(7). However, an STS(7) cannot be embedded into an STS(13) and 
therefore 19 (? 7[13]. I t can be shown in a similar fashion (cf. also Lemma 10 
below) tha t 17 (? / [13] a n d l 5 g / [13] , although in the lat ter case there exist 
twro essentially different pairs of disjoint mutually balanced partial triple 
systems with 11 triples (neither of which, however, can be embedded into an 
STS(13)). This completes the proof of the lemma. 
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LEMMA 10. 7[15] = 7i 5 \{26j . 

Proof. Applying Lemma 4 to J[7] we get k £ J [15] for all k G lib except for 
k = 2 ,6 , 10, 14, 18, 22, 24, 25, 26. Let 5 = {au a2, . . . , a 7}, T = {1, 2, . . . , 8}, 
and let •#"= {F, | i = 1, 2, . . . , 7} be the 1-factorization of Ks with I7(i^8) = r 
given by: 

Fx = {[1,2], [3, 4], [5, 6], [7, 8]}, 

F 2 = {[1,3], [2, 4], [5, 7], [6, 8]}, 

F,= {[1,4], [2, 3], [5, 8], [6, 7] j , 

F,= {[1,5], [2, 6], [3, 7], [4, 8]}, 

F,= {[1,6], [2, 5], [3, 8], [4, 7]}, 

F 6 = {[1,7], [2, 8], [3, 5], [4, 6]}, 

F7 = {[1,8], [2, 7], [3, 6], [4, 5]}. 

Let a be a permutat ion of the set {4, 5, 6, 7} fixing exactly 5 elements (i.e., 
5 = 0, 1, 2 or 4) , and let ^ = {Gt\i = 1, 2, . . . , 7} be another 1-factorization 
of K8 on T given by: 

Gl = | [ 1 , 4 ] , [2, 3], [5, 6], [7, 8]}, 

G 2 = {[1,2], [3, 4], [5, 7], [6, 8]}, 

G3 = {[1,3], [2 ,4 ] , [5 ,8] , [6, 7]}, and 

Gi = F j , for i = 4, 5, 6, 7. 

Let (5, J \ ) and (5, J" 2) be two disjoint STS(T) and let 

^ i = {{at, x, y}\[x, y] € F „ i = 1, 2, . . . , 7 | , and 

^ 2 = {{a„* ,y} | [ * ,y ] € Giti = 1 , 2 , . . . , 7}. 

Then the two 5 7 5 ( 1 5 ) (5 VJ T,@X\J rif1) and (5 U 7\ J12 U rrf 2) intersect in 
45 + 6 triples. Hence 6, 10, 14, 22 £ 7[15]. 

Let J^7 = {i?!'|i = 1, 2, . . . , 7} be another 1-factorization of Ks on 7' given 
by Ht = f, for i = 1,2, 3, 6, 7, and 

ff4 = {[1,6], [2, 5], [3, 7], [4, 8]}, 

H>= {[1,5], [2, 6], [3, 8], [4, 7]), 

and let 

^ 3 = {{at,x,y}\[x,y] £Hui = 1 ,2 , . . . , 7 } . 

Then the two 5 7 5 ( 1 5 ) (5 \JT,@X\J ^ i ) and (5 U 7\ ^ 2 U <<f 3) intersect in 
18 triples so tha t 18 6 / [15] . If ( S , ^ \ ) and ( 5 , ^ 3 ) are two 5 7 5 ( 7 ) intersecting 
in 3 triples then (5 \J T, 38 X\J <£ x) and (5 \J T, 3SZ\J V2) (with 5 = 4) 
intersect in 25 triples so tha t 25 € / [15] . Let J = [Jt\i = 1, 2, . . . , 7} be 
another 1-factorization of K% on T given by Ji = Gi, J2 = 74 , ^3 = 75 , ^4 = 76 , 

-/5 = F-], JQ = U2, Jl — Gz, 
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and let 

^ 4 = {{ai9x,y}\[x,y] G Jt,i = 1,2, . . . , 7 } . 

Then (S \JT,@X\J <£ {) and (5 U T, J>2 U # 4 ) intersect in 2 triples so t ha t 
2 G J[15] . Finally, let i£ = {i£*|z = 1, 2, . . . , 7} be another 1-factorization of 
K8 on T given by: 

K, = {[1,3], [2, 4], [5, 6], [7, 8]}, 

# 2 = G2, i£* = Ft for i = 3, 4, 5, 6, 7, 

and let 

^ 5 = { { a „ x , y } | [ x , y ] 6 X i , i = 1 , 2 , . . . , 7}. 

Then (5 U T . ^ U ^ ) and (5 U T, &2U &6) intersect in 24 triples so 
tha t 24 G 7[15]. 

In order to complete the proof, assume (S, 3Î\) and (5, 3ë <L) to be a pair of 
STS(lo) intersecting in 26 triples. Then there exist disjoint mutual ly balanced 
partial triple systems (P, Qx) and (P, £?2) with P Ç S, £iQ&i, and 
|i2 t-| = 9, i = 1, 2. I t follows easily t ha t \P\ = 9, and elementary considera­
tions show tha t there is essentially only one pair of disjoint mutual ly balanced 
partial triple systems (P, £}t) with \P\ = | j2*| = 9 neither of which can be 
embedded into an ST5(15) . T h u s 26 S / [15] and the proof is complete. 

LEMMA 11. 7[19] = Iï9. 

Proof. Applying Lemma 4 to J[9] we get & G / [19] for every & G In except 
for k = 40, 42, 43, 44, 50 and 53. Since 0, 3 G 7[7] applying Lemma 8 with 
k = 0 and 3, v = 7, and w = 19 gives 50, 53 G / [ 1 9 ] . 

Let T = {1, 2, . . . , 10} and let ^ = {Ft\i = 1, 2, . . . , 9} be a 1-factoriza-
tion of i£io on T containing a sub-1-factorization of i£4 on {1, 2, 3, 4}. Let , 
without loss of generality, [1, 2], [3, 4] £ Fi, [1 ,3] , [2,4] £ F2 , and [1 ,4] , 
[2, 3] G F3 . Let ^ = {Gi\i = 1, 2, . . . , 9} be a 1-factorization of K10 on T 
such t ha t [1 ,2] , [3, 4] Ç G2, [1 ,3] , [2, 4] Ç Gi, and for all other edges [x, y], 
[x, y] e Gt if and only if [x, y] £ F*. Let Jt? = {Ht\i = 1, 2, . . . , 9) be a 
1-factorization of X 1 0 on T such tha t [ 1 , 2 ] , [3, 4] £ # 2 , [ 1 , 3 ] , [2, 4] G # 3 , 
[1 ,4] , [2, 3] G # 1 , and for all other edges [x, y], [x, y] £ Hi if and only if 
[x, y] £ Ft. Let 5 = {ai, a2, . . . , a9} and, as in Construct ion ^4, define three 
sets of triples *$ \, ^ 2 , ^ 3 as follows: 

^ 1 = l{at,x,y}\[x,y] e Fifi= 1 , 2 , . . . , 9}, 

<*f2 = {{a,, x, ;y}|[x, y] G Gi, i = 1, 2, . . . , 9 } , and 

^ 3 = {{af, * , ?} ! [* , ? ] G ffi,i = 1,2, . . . , 9 } . 

Clearly, \<gx C\ ^ 2 | = 41 and \(if1 H <^8| = 39. Let (5, @x) and (5, ^ 2 ) be 
two STS(9) intersecting in k triples. For k = 1, ( 5 U r , ^ i U ^ 1 ) and 
(5 U T , ^ 2 U 9%) intersect in 40 triples, and for k = 1, 2, 3, ( S U T, 3ë 2 U ^ 1 ) 
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and (S U T, Së2 VJ 9%) intersect in 42, 43 and 44 triples, respectively. Thus 
40, 42, 43, 44 G /[19] which completes the proof. 

LEMMA 12. 7[21] = I21. 

Proof. Taking into account that if v = 7 then (U, @), where U and & are 
as in Construction B, is itself an STS(7)} Lemma 6 can be modified to read in 
this particular case: "If k G J[7] then k + 7s + Ô + y £ J[21] for s = 0, 1, 2, 
3, 4, 5, 7, 5 = 0, 1, 3, 7, y = 0, 1, 3, 7." Applying this to 7[7] we get k G 7[21] 
for every & G 72i except for k = 47 and 61. Since 3 G J[9] applying Lemma 8 
with k = 3, i; = 9, u = 21 gives 61 G /[21]. Further, let A = {a1} a2, . . . , a9}, 
5 = {6lf 62, . . . , b9}} X = {*, y, «}, 5 = A U B U X, and let (A, QY) and 
(A, 2)2) be two STS(9) intersecting in 3 triples. Let further S a n d ^ be the 
following sets of triples: 

<f = {{x, y} z], [bi, 64, b7}, {̂ 2, 65, bs], {63, 6e, ^9}!, and 

#~ = {{x,a,,è.<}, {y^^fti+i}, {z,ai}bi+2}f {a,, &<+3, &<+5}» 
{ai,bi+A,bi+8\, {aubi+%,bi+1)\i = 1 ,2 , . . . , 9 } 

where the subscripts inJ^~ are reduced modulo 9 to the range {1, 2, . . . , 9}. It 
is seen easily that ( 5 , ^ , U S U«^~) is an STS (21) (where i = 1 or 2). 

Further, let Pi and P 2 be the following sets of 7 pairs each: 

P\ = {{x, ai}, {;y, a9}, {s,a8(, {a2, 66}, {a3, 69}, {«4,^2}, {a5, &8}},and 

P 2 = {{x, a4}, b , a3}, \z,a2}, {ax, b6}, {a5, &9}, {as, M» {a9, M } . 

Let 7\ and P2 be the following two sets of 14 triples each: 

3TX = {{buu,v}, {b4jw,t\\{u,v} G Pi, {w;,*} G P2},and 

jT 2 = {{6lfw^},{64,w,w}|{«,v} G Pi , {w,t} G P 2 j . 

Clearly, (5, <^~i) and (5, S~2) are disjoint mutually balanced partial triple 
systems a n d ^ i C jF'. Therefore the two triple systems (5, &iU (f W JF~) and 
(5, ^ 2 U ^ U (&\Ti) W ^ 2 ) intersect in 3 + 4 + 54 - 14 = 47 triples. 
Thus 47 G /[21] and the proof of the lemma is complete. 

LEMMA 13. J[2S] = J25. 

Proof. Applying Lemma 6 to 7[9] we get k G J[25] for every k G 725 except 
for & = 96. Since 3 G /[7] applying Lemma 8 with k = 3, v = 7, and w = 25 
gives 96 G 7[25]. 

LEMMA 14. J[27] = I27. 

Proof. Applying Lemma 4 to J[13] we obtain k G /[27] for every k G hi 
except for k = 106, 108 and 110. Since 0 G J[7] applying Lemma 8 with k = 0, 
v = 7, and u = 27 gives 110 G /[27]. Since 1, 3 G /[9] applying Lemma 8 with 
ife = 1 and 3, v = 9, and M = 27 gives 106, 108 G /[27]. 

LEMMA 15. J[v] = Ivfor v = 31, 33 and 37. 
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Proof. Applying Lemma 4 to 7[15] we get k £ / [31] for every k £ 73i except 
for k = 146. Applying Lemma 8 with k = 3, v = 9, and u = 31 gives 146 Ç 7[31]. 
Applying Lemma 6 to / [13] we get k £ J[33] for every k 6 IM except for 
k = 167. Applying Lemma 8 with k = 3, v = 9, and w = 33 gives 167 G / [33 ] . 
Applying Lemma 6 to J[1S] we get k £ / [37] for every k Ç ^37 except for 
& = 213. Applying Lemma 8 with k = 3, v = 9, and w = 37 gives 213 £ / [ 37 ] . 

4. M a i n re su l t s . 

T H E O R E M 16. For every v ^ 19, 7[y] = Iv. 

Proof. For v = 19, 21, 25, 27, 31, 33 and 37 our s ta tement follows from 
Lemmas l l - l o . Assume therefore A ^ 39, and assume tha t for all w < v{w ^ 19), 
J[w] = Iw. If v = 3 or 7 (mod 12) then (v - l ) / 2 = 1 or 3 (mod 6) and 
(v - l ) / 2 ^ 19. Therefore J[(v - l ) / 2 ] = I ( ,-i)/2 and by Lemma 5, /[>] = Iv 

as well. If v = 1 or 9 (mod 12) then (v - 7 ) / 2 = 1 or 3 (mod 6) and 
(v - 7 ) / 2 ^ 19. Therefore / [ (v - 7 ) /2 ] = J(r_7)/2 and by Lemma 7, / [>] = J , 
as well. 

Let k be a nonnegative integer. Define ck to be the smallest integer such tha t 
for all v ^ ck, k G /[tf]. Clearly, Theorem 16 shows tha t ck exists for all non-
negative integers k, and, in fact, the following theorem giving the values of ck 

for all k is an easy consequence of Theorem 16 and the results of Section 3. 

T H E O R E M 17. Let - ^ x r^- denote the least integer = 1 or 3 (mod 6) not less 
than x. Then 

ck = ^ è ( l + V I + 24fe) r^ + dk 

where 

S6 if k = 0, 5, 7 or 26, 
4 if k = 8 or if k = tit2 + 5/ — a for some positive integer t and 

a = 0, 1 ,2 ,4 , & ?* 7, 
<5,. = j2 if k = 15, 17 or 19 or if k = tit2 + / — a for some positive integer t 

J and a = 1,2, 3, 5, & 7e 5, uwd 
\ 0 otherwise. 

Let us remark in conclusion tha t we have considered pairs of STS(y) regard­
less of whether they are isomorphic or not. By analogy with J[v]} one could 
define J*[v] to be the set of all integers k such tha t there exists a pair of iso­
morphic STS(v) intersecting in k triples. Trivially J*[v] = J[v] for v = 3 , 7 , 9. 
On the other hand, for every v ^ 13, two STS{v) intersecting in /,, — 4 triples 
are necessarily non-isomorphic so tha t tv — 4 d J*[v]. Thus , for every v ^ 13, 
J*[v] is a proper subset of J[v]. T o determine the sets J*[v] for v ^ 13 remains 
an open problem. 
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