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STEINER TRIPLE SYSTEMS HAVING A PRESCRIBED
NUMBER OF TRIPLES IN COMMON

C. C. LINDNER AND A. ROSA

1. Introduction. A Steiner triple system (briefly S7'S) is a pair (S, &)
where S is a finite set and & is a collection of 3-subsets of S (called triples) such
that every pair of distinct elements of .S belongs to exactly one triple of Z. The
number |.S] is called the order of (S, &). It is well-known that there is an STS of
order v if and only if » = 1 or 3 (mod 6). Therefore in saying that a certain
property concerning S7'S is true for all v it is understood thatv = 1 or 3 (mod 6).
An ST'S of order v will sometimes be denoted by STS(v).

Two Steiner triple systems (S, &) and (S, &,) are said to intersect in k
triples provided |Z 1N By = k. 1f b = 0, (S, %) and (S, # ) are said to be
disjoint, and if |Z, M 4| = 1 they are said to be ulmost disjoint. The existence
of a pair of disjoint STS(v) of every order v = 7 has been shown by J. Doyen in
(1], and the existence of a pair of almost disjoint ST'S(¥) of every order v = 3
has been shown by C. C. Lindner in [6]. Very little is known concerning the
existence of ST'S intersecting in k£ = 2 triples. The purpose of this paper is to
give a complete solution to this problem.

2. Auxiliary constructions and basic lemmas. The number of triples in
any STS(w) will be denoted by {,; ie.,, ¢ = v(@ — 1)/6. We set
I,=10,1,...,t — 6,t, —4,t,}; i.e., the set I, contains all nonnegative
integers not exceeding ¢, with the exception of t, — 5, 1, — 3, {, — 2, and
t, — 1. Further, let J[v] denote the set of all integers % such that there exists a
pair of S7'S(v) intersecting in k triples. The set J[v] is easily determined for
v = 3 and 7 and is well-known for v = 9 (see, e.g., [5]). We record this as our
first lemma.

Lemma 1. J|3] = {1}, J[7] = {0, 1, 3,7}, ][9] = {0, 1, 2, 3, 4, 6, 12}.

A partial triple system is a pair (P, £) where P is a finite set and £ is a
collection of 3-subsets of P such that every pair of distinct elements of P
belongs to at most one triple of &. Two partial triple systems (£, &) and
(P, &,) are said to be mutually bulanced if any given pair of distinct elements of
P is contained in a triple of £, if and only if it is contained in a triple of Z..
Two mutually balanced partial triple systems are disjoint if they have no triple
in common.
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LEMMA 2. Foranyvandn = 1,2,3,0r 5, ¢, — n ¢ Jvl.

Proof. If two STS(v) intersect in ¢, — # triples there are exactly n triples of
one of the ST'S which do not occur in the other. Therefore the statement of our
lemma is equivalent to saying that there are no disjoint mutually balanced
partial triple systems containing 1, 2, 3, or 5 triples. It is seen instantly that
this is so for n = 1, 2, 3, and a bit of reflection handles the case n = 5 without
any undue difficulty.

CoroLLARY 3. For every v, J[v] C I,.

In what follows we will determine the set J[o] for all v, showing, that apart
from a few exceptions, J{v] = I,. We will need the following two well-known
constructions (for undefined graph-theoretical notions and standard notation,
see [4]; cf. also [7]).

Construction A. Let (S, &) be an SI'S(v) where S = {u, as, . .., «,}. Put
v+1=2nand let F = {Fli=1,2,...,2n — 1} be a 1-factorization of
K,, with the vertex-set V{(Ks,) = T where SN T = @. Put S* = SU T and
B* = B \J € where € = {{a,x,y}[x,y] € Fi,i=1,2,...,2n — 1}. Then

(S*, &*) is an STS(2v + 1).

Before describing the second construction we need one more auxiliary device.

An (4, k)-system is a set of k disjoint pairs (p,, ¢,) covering the elements of
{1,2,..., 2k} exactly once and such that ¢, — p, =r forr=1,2,..., k.
Similarly, a (B, k)-system is a set of k disjoint pairs (p,, ¢,) covering the
elementsof {1,2,...,2k — 1, 2k 4+ 1} exactly once and such thatgq, — p, = r
forr =1,2,...,k Itis known (see, e.g., [9]) that an (4, k)-system exists if
and only if 2 = Oor 1 (mod 4), and a (B, k)-system exists if and only if £ = 2
or 3 (mod 4). Observe thatan (4, k)-system and a (B, k)-system are essentially
the same things as what have been called in [11] a Skolem (2, &)-sequence and a
hooked Skolem (2, k)-sequence, respectively.

Construction B. Let (S, &) be an STS(®@), v = 7, with S = {ay, aq, . . ., @y}
Let U = {b1,by,...,0,},X = {0yt =1,2,...,7}, and (X, D) an STS(7).
Let (v — 1)/2 =mandlet L = {(p,, q:)l¢r — pr=r,7r =1,2,...,m} bean
(A, m)-system or (B, m)-system according to whether m = 0, 1 (mod 4) or
m = 2,3 (mod4). Set ¥V = U\W where W = {b,]1 = p,orq,,r =4,5,...,m,
(pryqr) € L} Let V=1{byli=1,2,...,7}. Put S*=SUUUX and
B* =B JD I EJF U Y where

& = ({0t bjatli = 1,2, ., k=1,2,... v},

F = {ag, bpppi—t, b}k = 1,2, .. o5r =45, ... ,m; (P, q,) € L}
and g = {{bi, bi-}-ly bi+3Hi = ]., 2, .. ,v},
with subscripts reduced modulo » to the range {1, 2, ..., v} whenever necessary.

Then (S*, &*) is an STS(2v + 7). (CE. [8; 10].)

https://doi.org/10.4153/CJM-1975-122-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-122-4

1168 C. C. LINDNER AND A. ROSA

LemMa 4. If k € J[v] then k + s(v + 1)/2 € J[2v 4 1] for every s = 0, 1,
2,...,9— 2,0

Proof. Let (S, %) and (S, #) be two STS(v) intersecting in k triples and
let S, 7, S*, and # be as in Construction 4. Let & be any permutation of S
fixing exactly s elements; obviously such ana exists fors = 0,1,2,. ..,2 — 2, v.
Let now % be as in Construction 4; i.e.,

€ = {{ay,x, y}|[x, 9] € Fi,i=1,2,...,2n — 1}, and put
Co = {a, x, y}|[x, 9] € Fii=1,2,...,2n — 1}.

Both (S*, Z, U %) and (S*, %, \J ¥.,) are STS(2v + 1). Since each 1-factor
of F contains (v 4 1)/2 edges, ¥ and %, have exactly s(v -+ 1)/2 triples in
common so that

(B )N (B2 J €)=k + s+ 1)/2.
LEMMA 5. For v = 13, J{v] = I, implies J[2v + 1] = ILs,41.

Proof. Taking into account that £, — 6 = (v 4+ 1)/2 for v = 9 we obtain
from Lemma 4, by putting consecutively s = 0,1,...,v — 2, thatk € J[20 + 1]
fork =0,1,...,t0001 — (w+ 7)[sincet, — 6 + (v — 2)(v + 1)/2 = toy1 —
(v + 7)]. On the other hand, {, =2 v + 7 forv = 13 so that fs,yy — (v + 7) =
tepr1 — by, and applying Lemma 4 with s = v gives & € J[20 + 1] for & =
boprr — by togpr — b+ 1, 0o tayyr — B, ta1 — 4, f2,01. Consequently,
J[20 + 1] = Ispp.

LeMMA 6. Letv = 7. Ifk € J{v] thenk + s(@ + 7)/2 + dv + v € J[2v 4 7]

foreverys =0,1,2,...,v—2,v;6=0,1;,vy=0,1,3,7.

Proof. Let (S, %,) and (S, &) be two STS(v) intersecting in £ triples and
let S, U, X, and S* be as in Construction B. Let @ be any permutation of .S

fixing exactly s elements;ie.,s € {0,1,2,...,v — 2,v}. With & and % asin
Construction B, let &, and.# , denote the set of triples obtained from & and
de, respectively, by replacing every «a,, B =1,2,...,v, by wa. Further,
denote
G, — 19 . i'f6=1,and
Vi{{bsy bio, bagstli = 1,2, ..., 0} if 6 = 0.

Let further (X, £,) and (X, &:) be two ST'S(7) intersecting in v triples. Set
B =B, VD, JEVF VG andD*=B.JD,\JE,JF,J G,
Then both (S*, & *) and (S*, #Zy*) are ST'S(2v + 7). Since there are exactly
7 triples of & and exactly (v — 7)/2 triples of # containing a fixed element «,,
we have

(EUF)YN(EJF) =5+ T7)/2
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Further, |9 M %;| = év and |21 M D] = y so that
(BB =k+sw+7)/2+ 8+ 7.
LemMA 7. For v = 15, J{v] = I, implies J[2v + 7] = [y,

Proof. Taking into account that ¢, — 6 = (v 4+ 7)/2 for v = 13, we obtain
from Lemma 6 by putting consecutivelys = 0,1,...,v —2thatk € J[ 20 + 7]
fork=0,1,...,ter— (@+19) [sincet, — 6+ (v — 2)(v + 7)/2 + v + 1 =
toper — (v + 19)]. On the other hand, ¢, = v + 19 for v = 15 so that
tager — (0 + 19) = fy,07 — £, and using now Lemma 6 with s = v gives
k E J[221 + 7] fork = t20+7 _ tv, t2v+7 - ¢, + 1, ceey 121,+7 - 6, t277+7 - 4, t-zv+7.
Thus J[20 + 7] = I3,41.

3. The sets J{v] for small . To obtain the results of this section we will
need the following lemma.

Lemma 8. If k € Jlv], then t, — {, + k € Jlu] for every u = 2v + 1.

Proof. Let (S, %) be an STS(v). In [2], ]. Doyen and R. M. Wilson have
shown that any S7S(v) can be embedded into an S7.S(x) for every u = 2v + 1.
Let (S*, & \U %) be an ST'S(u) containing (S, %) as a subsystem and let
(S,%,) and (S, Z,) be two STS(v) intersecting in k triples. Then (S*, &, U %)
and (§*, #,\U €) are two ST.S(u) intersecting in t, — ¢, + k triples.

LeEmMMA 9. J{13] = I15\{15, 17, 19}.

Proof. It follows from (1] and [6] that 0, 1 € J{13]. An example in |3, p. 237],
shows 22 € J[13], and trivially 26 € J[13]. Let S = {1,2,..., 13} and let
#Hi,i=1,2,...,8, be the sets of 26 triples given in Table 1 written as columns
(for brevity all brackets are omitted). Then (S, @), 7 = 1,2, ...,8, are
STS5(13), and we have:

B B =2, | BB =3, |B:N\B5| =41, |\ B.N\H, =5,
B B =6, |BsN\B:| =7, |B . NDB,| =8, |BN\H| =09,
(B NBo =10, B NNBy| = 11, B, N\NBy| =12, |%B:; N\ HBs = 13,
B NB| = 14,|B N\ Do = 16, | B 1N\ HB| = 18, |B, N\ DBy = 20.

In order to complete the proof, assume (S, €;1) and (S, €,) to be a pair of
STS5(13) intersecting in 19 triples. Then there exist disjoint mutually balanced
partial triple systems (P, Z:)and (P, Z,)withPC S, 2, C ¥, and | 2| =7,
i = 1, 2. It follows that |P] = 7, and consequently (P, £,) and (P, £,) are
STS(7). However, an STS(7) cannot be embedded into an S7°S(13) and
therefore 19 ¢ J[13]. It can be shown in a similar fashion (cf. also Lemma 10
below) that 17 ¢ J[13] and15 ¢ J{13], although in the latter case there exist
two essentially different pairs of disjoint mutually balanced partial triple
systems with 11 triples (neither of which, however, can be embedded into an
STS(13)). This completes the proof of the lemma.
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Lemma 10. J[15] = I;5\{26}.

Proof. Applying Lemma 4 to J[7] we get k € J[15] for all & € I,; except for

k=2610,14,18,622,624,25,26. LetS = {ar, as,...,a7}, T = {1,2,...,8},
andlet % = {F,|i = 1,2,...,7} be the 1-factorization of Kg with 1"(Kg) = 1’
given by:

Fyo= {11, 2], [3, 4], [5, 6], [7, 81},

Fe = {[1, 3], (2, 4], [5, 7], [6, 8]},

F; = {{1,4],[2, 3], |5, 8], [6, 71},

Fy = {[1,5], 12, 6], [3, 7], [4, 8},

Fs = {[1, 6], [2, 51, |3, 8], [4, 71},

Fe = {[1,7],]2, 8,13, 5], |4, 61},

F,=1{1,8],[2, 7], [3, 6], [4, 5]}.

Let a be a permutation of the set {4, 5, 6, 7} fixing exactly s elements (i.c.,
s=0,1,20r4),and let ¥ = {G,i = 1,2,...,7} be another 1-factorization
of K on T given by:

= {[1, 4], [2, 3], |5, 6], [7, 8]},

= {[1, 2], (3, 4], [5, 7], [6, 8]},
Gs = {[1 31,12, 4], 15, 81, [6, 7]}, and
G;=F; fori=456,7.

Let (S, %) and (S, #,) be two disjoint ST'S(7) and let

Cr= oy 2, yx, 9] € Fyi=1,2,...,7}, and

Cg? = {{U/iy X, y}Hxv y] E Givi = 11 2v L] 7}
Then the two STS(153) (SUT,%.\J F 1) and (S\U T', %, \J %) intersect in
4s + 6 triples. lence 6, 10, 14, 22 € J[15].

Let# = {HJi=1,2,...,7} be another 1-factorization of K5 on 7" given
by H;, = F;for1=1,2,3, 6,7, and

= {11, 6], 12, 5], (3, 71, 4, 8}},
INE

H; = {[1, 5], 12, 6], [3, 8], [4, 71},
and let
€y = {{a,x, y}lx, 9] € Hyt=1,2,...,7}.

Then the two STS(15) (SU T, %, \J &) and (S\U 1, %4 ,\J % ;) intersect in
18 triples so that 18 € J[15]. If (S,% ) and (S, #3) are two ST'S(7) intersecting
in 3 triples then (S\U T, #,\J %)) and (S\J T, Z;\J ¥,) (with s = 4)
intersect in 25 triples so that 25 € J[15]. Let J = {J,i = 1,2,...,7} be
another 1-factorization of Kson T given by J; = G, J. = F, J3 = Fs, J4 = Fg,
Ja = F7, -]6 = GzY J7 = Gs,
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and let

Cy= {{ay,x, y}llx,y] € Ty, =1,2,...,7}.
Then SUT,#,\U €1)and (S\U T, %, U ¥,) intersect in 2 triples so that
2 ¢ J[153]. Finally, let K = {K,|¢ = 1,2, ..., 7} be another 1-factorization of

K on T given by:
Ky = {[1, 3], [2, 4], [5, 6], [7, 8]},
Ky =Gy K; = Fifor1=3,4,5,6,7,
and let
Cs = {Hay,x, 9}|[x, 9] € Kiyyi=1,2,...,7}.

Then (SUT, #,\J %) and (SU T, #,\J €5) intersect in 24 triples so
that 24 ¢ J[15].

In order to complete the proof, assume (S, &) and (S, &) to be a pair of
STS(15) intersecting in 26 triples. Then there exist disjoint mutually balanced
partial triple systems (P, £,) and (P, &,) with PC S, £,C %, and
|2 = 9,7 =1,2. It follows easily that [P| = 9, and elementary considera-
tions show that there is essentially only one pair of disjoint mutually balanced
partial triple systems (P, £,) with |P| = |Z,] = 9 neither of which can be
embedded into an S7.S(15). Thus 26 ¢ J[15] and the proof is complete.

LeMMA 11. J[19] = Iy,.

Proof. Applying Lemma 4 to J|9] we get & € J[19] for every k € Iy except
for k& = 40, 42, 43, 44, 50 and 53. Since 0, 3 € J[7] applying Lemma 8 with
k=0and 3,v = 7, and u = 19 gives 50, 53 € J[19].

Let 7’ = {1,2,...,10} and let-# = {F,Ji = 1,2,...,9} be a l-factoriza-
tion of Ky on T containing a sub-1-factorization of K, on {1, 2, 3, 4}. Let,
without loss of generality, [1, 2], [3, 4] € Fy, [1, 3], [2,4] € Fs, and [1, 4],

[2,3] € F3. Let 9 = {G,Ji = 1,2,...,9} be a 1-factorization of K;; on 7°
such that [1, 2], [3,4] € G, [1, 3], [2,4] € G, and for all other edges [x, ¥],
[x,v] € G, if and only if [x,y] € F,. Let # = {Hyji = 1,2,...,9} be a

1-factorization of Ky on 7" such that [1, 2], (3, 4] € H,, [1, 3], (2, 4] € H,,
[1,4], [2,3] € Hy, and for all other edges [x, y], [x,y] € H, if and only if

(%, ¥] € Fi. Let S = {a1, aqz, ..., as} and, as in Construction 4, define three
sets of triples @), €, €3 as follows:

(gl = {{(Liy x;}’”[xyy] E F1v1 = 1,2, L] 19}7

Gy = {{anx, y}llx, 3] € Gyi=1,2,...,9}, and

%3 = {{(Zi, x,y}|[x, y] E Hhi = 172v- ,9}

Clearly, |€1 M %] = 41 and |61 N €3] = 39. Let (S, #Z,) and (S, %) be
two STS(9) intersecting in k triples. For k=1, (SUT,%,\J %)) and
(S\UT,Z,\J %) intersect in 40 triples, and fork = 1,2,3, (S\U T, %, \J 1)
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and (S\U T, %,\U %,) intersect in 42, 43 and 44 triples, respectively. Thus
40, 42, 43, 44 € J[19] which completes the proof.

LEmMa 12. J[21] = Iy

Proof. Taking into account that if v = 7 then (U, 9), where U and ¥ are
as in Construction B, is itself an ST.S(7), Lemma 6 can be modified to read in
this particular case: “If k € J[7] then k + 7s + 6 + v € J[21] for s = 0, 1, 2,
3,4,5,7,6=0,1,3,7,vy=0,1, 3,7 Applying this to J[7] we get & € J[21]
for every & € s except for B = 47 and 61. Since 3 € J[9] applying Lemma 8
with 2 = 3,2 = 9, u = 21 gives 61 ¢ J[21]. Further,let 4 = {ay, as, . . ., as},
B = {by,by ... 0o}, X =1x,7,2), S=A4AUBUX, and let (4,Z,) and
(4, D,) be two STS(9) intersecting in 3 triples. Let further & and # be the
following sets of triples:

(9@ = {{xv Y, Z}y {blv b4v b7}) {b2y b.")‘ bg}, {b3y b69 bg}}, and

F = Hx,anbad, {1y, a0 bt} 2, a4 baga}, (@, biss, bags),
{a'i) bi+4, bH—S}y {aiy bite, bi+7}l’i =12,... ,9}
where the subscripts in# are reduced modulo 9 to the range {1, 2, ..., 9}. It

is seen easily that (S, Z,\U & \UF ) is an STS(21) (where ¢ = 1 or 2).
Further, let Py and P, be the following sets of 7 pairs each:
‘Pl = {{JC, al}) {yv 0’9}7 {Z, aB}, {a% bﬁ}y {(13, b9}1 {(141 bz}, {(15, bg}},and
Py = {{x, as}, {3, a3}, {3, as}, L@, bs}, {as, be}, {as, ba}, {as, bs}}.
Let 7y and 7', be the following two sets of 14 triples each:
‘7-1 = {{blyu,v}y {b4,w,t}]{u,v} E Ply {wvt} E P2},al’ld
Ty = {{by,w, t}, {by, u, v} |{u, v} € Py, {w, t] € Pyl
Clearly, (S, 9 1) and (S,.9,) are disjoint mutually balanced partial triple
systems and.7 ; € # . Therefore the two triple systems (S, Z,U & \U.%# ) and

(S, 2,V & U (F\T ) UT,) intersect in 3 + 4 + 54 — 14 = 47 triples.
Thus 47 € J[21] and the proof of the lemma is complete.

Proof. Applying Lemma 6 to J[9] we get k € J{25] for every k € I,; except
for £ = 96. Since 3 € J[7] applying Lemma 8 with 2 = 3,9 = 7, and u = 25
gives 96 € J[25].

LeMMmA 14. J[27] = s

Proof. Applying Lemma 4 to J[13] we obtain & € J[27] for every k € I
except for k = 106, 108 and 110. Since 0 € J[7] applying Lemma 8 with 2 = 0,
v =7,and u = 27 gives 110 ¢ J[27]. Since 1, 3 € J[9] applying Lemma 8 with
k= 1and 3,v = 9, and u = 27 gives 106, 108 € J[{27].

Lemma 15, J{v] = I, for v = 31, 33 and 37.
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Proof. Applying Lemma 4 to J[15] we get k € J{31] for every & € I3 except
for k = 146. Applying Lemma 8 withk = 3,v = 9, and u = 31 gives 146 € J[31].
Applying Lemma 6 to J[13] we get k& € J[33] for every k € I;3 except for
k = 167. Applying Lemma 8 with 2 = 3,9 = 9, and 4 = 33 gives 167 € J[33].
Applying Lemma 6 to J[15] we get &k € J{37] for every k € I;; except for
k = 213. Applying Lemma 8 with £ = 3,v = 9, and u = 37 gives 213 € J{37].

4. Main results.
THEOREM 16. For every v = 19, J|v] = I,.

Proof. For v = 19, 21, 25, 27, 31, 33 and 37 our statement follows from
Lemmas 11-15. Assume therefore v = 39, and assume thatforallw < v(w = 19),
Jw] =1, It o=23o0or 7 (mod 12) then (# — 1)/2 =1 or 3 (mod 6) and
(v — 1)/2 = 19. Therefore J{(» — 1)/2] = I(,_n,2and by Lemma 3, J[v] = I,
as well. If 2 =1 or 9 (mod 12) then (v — 7)/2 =1 or 3 (mod 6) and
(v — 7)/2 = 19. Therefore J{(v — 7)/2} = I(,_7»,2and by Lemma 7, J{v] = I,

as well.

Let & he a nonnegative integer. Define ¢; to be the smallest integer such that
for all v = ¢, B € Jv]. Clearly, Theorem 16 shows that ¢; exists for all non-
negative integers k, and, in fact, the following theorem giving the values of ¢,
for all & is an easy consequence of Theorem 16 and the results of Section 3.

THrOREM 17. Lei % x * denote the least integer = 1 or 3 (mod 6) not less
than x. Then

CA-:iI%U‘*‘\/Tm)%‘f‘ék
where
6 1fk=20,5,70r 26,
4 if k= 8Sorif k =62+ 5t — « for some positive integer t and
a=0,1,2,4k #7,
8, = Y2 ufk = 15,1Tor 190rif kb = 6> + t — « for some positive integer t
and a = 1,2,3,5, k # 5, and
0 otherwise.

Let us remark in conclusion that we have considered pairs of ST S(v) regard-
less of whether they are isomorphic or not. By analogy with J{v], one could
define J*|v] to be the set of all integers & such that there exists a pair of iso-
morphic STS(v) intersecting in k triples. Trivially J*|o] = J[v] forv = 3,7, 9.
On the other hand, for every v = 13, two S7.S(v) intersecting in {, — 4 triples
are necessarily non-isomorphic so that ¢, — 4 ¢ J*v]. Thus, for every v = 13,
J*[v] is a proper subset of J|#]. To determine the sets J*[v] for v = 13 remains
an open problem.
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