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Summary

The question of loss of genetic diversity in spatially structured populations has been considered by

many authors, who have either assumed symmetric migration between subpopulations or restricted

the analysis to two subpopulations and allowed asymmetric migration. In this paper we briefly

discuss the two-subpopulation case that has been dealt with by other authors and then find a

general formula for fixation probabilities for a population divided into three and four

subpopulations. The number of individuals in the subpopulations can be different, but the size of

each subpopulation is constant over time. Migration between the subpopulations may be

asymmetric, that is the number of migrants moving from subpopulation i to subpopulation j is not

the same as the number of migrants moving from subpopulation j to subpopulation i. When

migration is symmetric, the results of previous authors are confirmed. The result for asymmetric

migration shows that the influence a subpopulation has on the fixation probability for the whole

population is determined by its size and the net amount of gene flow out of the subpopulation,

directly and indirectly, to the whole population. The position of a subpopulation relative to the

other subpopulations (that is, edge versus centre) is only important in that it can determine the

amount of net gene flow from a subpopulation. Some examples are given of how this result can be

applied, and of applications to conservation genetics. We conclude that when considering a

management plan with the intention of maintaining genetic diversity, the relative strength and

direction of migration must be considered.

1. Introduction

The probability of fixation of an allele is a fundamental

question in the study of evolution. It was one of the

first questions addressed in theoretical population

genetics (Fisher, 1922; Wright, 1931). It is also a

fundamental question in the study of conservation

biology. One of the questions that arises regarding

fixation probability is ‘How does population structure

affect fixation probability? ’ This paper aims to answer

that question for a neutral allele in a subdivided

population with asymmetric migration.

The probability of fixation of an allele in a

subdivided population has been considered by many

authors. The problem was first considered by Pollak

(1966), who used branching processes to show that
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when migration is symmetric, the probability of

fixation is the same as for an unsubdivided population.

Maruyama (1970, 1974, 1977) used a Moran model

and a diffusion model to show that when migration is

symmetric a similar result holds. Tachida & Iizuka

(1991) considered a population divided into two

subpopulations in which selection is strong and

migration is asymmetric.

The question of asymmetric migration between

more than two subpopulations has been considered

using deterministic models to look at other problems.

For example, Hill (1974) uses a deterministic model

with overlapping generations to examine the effect of

artificial selection on improving populations (such as

herds of farm animals). In Hill’s model there are

multiple age groups and asymmetric ‘migration’

between the age groups. In finding the return from

improvement it is necessary to invert the migration

matrix in much the same way that the migration
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matrix is inverted in this paper. Despite the apparent

similarities between the models, there are fundamental

differences in the underlying mathematics between a

deterministic and stochastic model, and in the assump-

tions that go along with them. The most significant of

these is an implied assumption in the deterministic

model that genetic stochasticity has a relatively minor

effect on the genetic make-up of the population, that

is, that the population is large. Deterministic models

can be used to find the equilibrium distribution of

alleles for a large population but a stochastic model

must be used to find the fixation probability – a

quantity of greater relevance for the small populations

that we consider here (indeed an equilibrium dis-

tribution cannot exist in a small population where

genetic stochasticity has a relatively large effect on the

population).

This paper extends the results of these previous

authors to the more general case of three and four

populations where there is no selection and migration

is asymmetric and stochastic using a discrete time,

discrete state-space model. The results of previous

authors are confirmed in the case of symmetric,

stochastic migration.

An interpretation of the results is given using a

graph theory. Examples are given that demonstrate

the role of population structure in determining the

fixation probability. The implications of this result for

conservation genetics are also discussed.

2. Discussion of the two-subpopulation case

The two-subpopulation case will not be examined in

detail here as it does not show some of the more

interesting results that appear in the three- and four-

subpopulation cases. The fixation probability for an

allele is a weighted average of the initial frequency in

each subpopulation, where the weights are µ
ij
N

i
and

µ
ij

is the average number of successful migrants from

subpopulation i to subpopulation j in a given gener-

ation and N
i
is the population size of subpopulation

i. That is, the influence that a subpopulation has on

the fixation probability for the overall population is

dependent on its size and the amount of direct gene

flow out of the subpopulation. This means that if

a subpopulation is ‘upstream’ from another sub-

population then it will have a greater bearing on the

fixation probability for the whole population than the

‘downstream’ subpopulation.

3. Description of model for three subpopulations

The mathematical model used in this section involves

three subpopulations and is based on the Wright–

Fisher model, that is, it is a stochastic, discrete time,

N1

N3N2

l12 l31

l21 l13

l32

l23

Fig. 1. Diagrammatic representation of the three-
subpopulation migration model. N

"
, N

#
and N

$
are the

population sizes of the three subpopulations and the
µ values are the migration rates.

discrete state-space Markov chain. This assumes that

generations are non-overlapping and there is no

selection. One haploid locus is considered and at this

locus there are two alternative alleles, A
"
and A

#
. The

three subpopulations are of constant size N
"
, N

#
and

N
$
. Migration is allowed between the three sub-

populations. The population structure is represented

in Fig. 1. The probability of a successful migrant from

subpopulation i to subpopulation j in a given

generation is µ
ij
. (The mean number of successful

migrants is also µ
ij
). There is a maximum of one

successful migrant from any subpopulation, i, to any

other subpopulation, j, in a given generation. The

variable of interest is the number of alleles of type A
"

present in each subpopulation at a given time, t, where

X
t
is the number present in subpopulation 1, Y

t
is the

number present in subpopulation 2 and Z
t

is the

number present in subpopulation 3.

We assume that migration occurs by juveniles

moving from one subpopulation to another in pro-

portion to the migration rates. Individuals are then

recruited, approximately binomially, to the breeding

population from a very large pool of juveniles.

Migration is small compared with the size of the

subpopulations, which implies that the genotype of a

leaving individual does not affect the distribution of

gene frequencies of the remaining individuals. This is

equivalent to assuming that X
t+"

r (x
t
, y

t
, z

t
), Y

t+"
r

(x
t
, y

t
, z

t
) and Z

t+"
r (x

t
, y

t
, z

t
) are independent. This

assumption will be approximately correct unless the

number of juveniles per adult is very low and almost

all juveniles recruit to the breeding stock.

The model also applies to plant species, where

‘migration’ occurs by either seed dispersal or pollen

dispersal.

(i) Transition probabilities

The transition probability for a given subpopulation

can be found by considering the way in which that

subpopulation can have x
t+"

individuals with the A
"
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allele at time t­1. The number of migrants from

subpopulation i to subpopulation j in a given

generation is a random variable with the probability

of a migrant equal to µ
ij
. The distribution of the

number of migrants from subpopulation i to sub-

population j in generation t is denoted by M
ij
(t) and

the distribution of the number of these which have the

A
"
allele is denoted by the variable M !

ij
(t). The number

of migrants that occur in generation t is m
ij
(t) and of

these m!
ij
(t) have the A

"
allele. The transition prob-

ability for subpopulation 1 is :

P(X
t+"

¯x
t+"

rX
t
¯x

t
,Y

t
¯ y

t
,Z

t
¯ z

t
)

¯ 3
m!

$"
(t)

3
m!

#"
(t)

P(m!

#"
(t­1)A

"
alleles from pop 2,

m!

$"
(t­1)A

"
alleles from pop 3,

x
t+"

®m!

#"
(t­1)®m!

$"
(t­1)A

"
alleles from

pop 1), (1)

with similar formulae for subpopulations 2 and 3 (Y
t+"

and Z
t+"

).

Because of the assumed independence,

P(X
t+"

¯x
t+"

,Y
t+"

¯ y
t+"

,Z
t+"

¯ z
t+"

rX
t
¯x

t
,Y

t
¯ y

t
,

Z
t
¯ z

t
)

¯P(X
t+"

¯x
t+"

rX
t
¯x

t
,Y

t
¯ y

t
,Z

t
¯ z

t
)

¬P(Y
t+"

¯ y
t+"

rX
t
¯x

t
,Y

t
¯ y

t
,Z

t
¯ z

t
)

¬P(Z
t+"

¯ z
t+"

rX
t
¯x

t
,Y

t
¯ y

t
,Z

t
¯ z

t
).

4. Fixation probability

Theorem. The probability of fixation of an allele, when

the initial number of indi�iduals possessing the allele

present is x
!

in subpopulation 1, y
!

in subpopulation 2

and z
!

in subpopulation 3, is

α(x
!
, y

!
, z

!
)¯

γ
"
x
!
­γ

#
y
!
­γ

$
z
!

γ
"
N

"
­γ

#
N

#
­γ

$
N

$

, (2)

where

γ
"
¯µ

"$
µ
$#

­µ
"$

µ
"#

­µ
"#

µ
#$

,

γ
#
¯µ

#"
µ
"$

­µ
#$

µ
#"

­µ
#$

µ
$"

,

γ
$
¯µ

$#
µ
#"

­µ
$#

µ
$"

­µ
$"

µ
"#

. (3)

The proof of this theorem is given in the Appendix.

The coefficient γ
"

is the sum of three terms. Each

term is the product of the probabilities associated with

the transitions in Fig. 2. Each of the diagrams in Fig.

l12  l13 l12  l23 l13  l32

Fig. 2. The terms that make up the coefficient γ
"

in the
expression for the fixation probability correspond to these
three graphs. There are corresponding graphs for γ

#
and

γ
$
.

N1 N2 N3

l12 l23

l21 l32

Fig. 3. The three-subpopulation model with the minimal
number of connections between subpopulations and
asymmetric migration between subpopulations. N

"
, N

#
and N

$
are the population sizes of the three

subpopulations and the µ values are the migration rates.

Fig. 4. The coefficient γ
"

consists of only one term,
corresponding to the above graph, when there is the
minimal number of connections between the
subpopulations.

2 can be thought of as representing a path consisting

of two transitions that lead from the point of interest

to each other point, either directly or indirectly,

exactly once. A term for all the possible paths of this

type is included in the sum which makes γ
"
. So γ

"
is

‘ the amount of total population covering migration

out of subpopulation 1 ’. Thinking of γ
"

in this way

can be useful in calculating the coefficients when the

population structure is altered, such as when one of

the links joining two subpopulations is removed.

As an example of the application of (2) to calculate

the coefficients, γ
"
, γ

#
and γ

$
, consider the case where

the three subpopulations are arranged with two sub-

populations not directly connected, as in Fig. 3, and

there is no direct migration from subpopulation 1 to

subpopulation 3. Now to calculate γ
"

the only path

that goes from subpopulation 1 to each other sub-

population under the modified structure is the path

to subpopulation 2 and then from subpopulation 2

to subpopulation 3. Thus the coefficient for sub-

population 1 is γ
"
¯µ

"#
µ
#$

as shown in Fig. 4. By

looking at the paths for the other two subpopulations

it can be seen that the coefficients are γ
#
¯µ

#"
µ
#$

and γ
$
¯µ

$#
µ
#"

.

(i) Interpreting the coefficients

Taking the formula in (2) and defining f
"
¯x

!
}N

"
,

f
#
¯ y

!
}N

#
and f

$
¯ z

!
}N

$
, the probability of fixation

is

α(x
!
, y

!
, z

!
)¯

γ
"
f
"
N

"
­γ

#
f
#
N

#
­γ

$
f
$
N

$

γ
"
N

"
­γ

#
N

#
­γ

$
N

$

. (4)

Equation (4) shows that the fixation probability is

in fact the weighted average of the initial frequencies

of allele A
"
in each of the subpopulations, weighted by

the quantity γ
i
N

i
. Thus, all other things being equal,
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N1 N2 N3

2l 2l

l l

Fig. 5. Diagrammatic representation of directional flow in
the case where there is the minimum number of
connections between subpopulations. In this case there is
twice as much flow from the left to the right as there is
from the right to the left.

a subpopulation with a larger γ has a greater influence

on the fixation probability than a subpopulation with

a smaller γ.

5. Examples of the three-population case

(i) Example 1 : Symmetric migration between

subpopulations with all subpopulations directly

connected

In this example we will show that even when the

migration is symmetric but not equal, that is µ
ij
¯µ

ji

ci, j, the fixation probability of the A
"

allele is still

equal to the initial frequency of the allele in the whole

population.

Let µ
ij
¯µ

ji
ci, j, then γ

"
can be rearranged using

µ
ji
¯µ

ij
and we can show that γ

"
¯γ

#
¯γ

$
:

γ
"
¯µ

"$
µ
$#

­µ
"$

µ
"#

­µ
"#

µ
#$

¯µ
#"

µ
"$

­µ
#$

µ
#"

­µ
#$

µ
$"

¯γ
#

¯µ
$#

µ
#"

­µ
$#

µ
$"

­µ
$"

µ
"#

¯γ
$

so,

α(x
!
, y

!
, z

!
)¯

x
!
­y

!
­z

!

N
"
­N

#
­N

$

.

Once again all the coefficients are equal and the

fixation probability is equal to the initial frequency in

the whole population. This is also true for the case

where two of the subpopulations are not directly con-

nected and migration is symmetric, as µ
"$

¯µ
$"

¯ 0

is just a special case of the formula considered

above.

(ii) Example 2: Directional flow in the model where

two of the subpopulations are not directly connected

Suppose now that two of the subpopulations are not

directly connected with a constant directional flow.

For example, this could be thought of as a current or

a prevailing wind carrying twice as many seeds in one

direction as the other. In the example illustrated in

Fig. 5, the transition probabilities are µ
"$

¯µ
$"

¯ 0,

µ
$#

¯µ
#"

¯µ and µ
"#

¯µ
#$

¯ 2µ. Upon substituting

these transition probabilities into the equations for

the coefficients, we get γ
"
¯ 4µ#, γ

#
¯ 2µ# and γ

$
¯µ#.

Thus,

α(x
!
, y

!
, z

!
)¯

4x
!
­2y

!
­z

!

4N
"
­2N

#
­N

$

.

1 2

3

4

Fig. 6. Diagrammatic representation of the four-
subpopulation migration model. The subpopulation sizes
are N

"
, N

#
, N

$
and N

%
and the migration rates are µ

ij
.

This is fairly intuitive as it suggests that if the flow is

from left to right in Fig. 5, then the further left a

subpopulation is, the further ‘upstream’ it is and

hence the more important its initial allele frequency is

in determining the fixation probability.

6. Four subpopulations

(i) Description of the model

In this section we extend the three-subpopulation

model to the case of four subpopulations. The as-

sumptions are essentially unchanged and are as

follows. The mathematical model used is a discrete

time, discrete state-space Markov chain model. This

assumes that generations are non-overlapping and

there is no selection. One haploid locus is considered

and at this locus there are two alleles : A
"

and A
#
.

There are four subpopulations of constant sizes : N
"
,

N
#
, N

$
and N

%
. Migration is allowed between the four

populations. The population structure is represented

in Fig. 6. The probability that there will be a migrant

from subpopulation i to subpopulation j in a given

generation is µ
ij
. The variable of interest is the number

of alleles of type A
"
present in each subpopulation at

a given time, t. The mathematics of the model will not

be written out in full for the case of four subpopu-

lations as it is analogous to the case of the three sub-

populations. As in the case of three subpopulations,

it will also be assumed that the genotype of a leaving

individual does not affect the gene frequencies of

the remaining individuals. Clearly in practice this will

not be exactly true, but in most situations it will be

approximately correct.

(ii) Fixation probabilities

The fixation probabilities are given by the formula

α(w
!
,x

!
, y

!
, z

!
)¯

γ
"
w
!
­γ

#
x
!
­γ

$
y
!
­γ

%
z
!

γ
"
N

"
­γ

#
N

#
­γ

$
N

$
­γ

%
N

%

,

where w
!
, x

!
, y

!
and z

!
are the initial numbers of

individuals with the A
"
allele in populations 1, 2, 3 and

4 respectively.
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l12l13l14 l13l32l34 l13l34 l42 l12l23l34

l12l24 l43 l14 l43l32 l14 l42l23 l13l12l24

l13l14 l42 l12l13l34 l12l14l43 l14 l13l32

l14 l12l23 l13l32l34 l12 l23l24 l14 l42 l43

Fig. 7. The 16 terms that make up the coefficient γ
"

in the
expression for the fixation probability for the four-
subpopulation model.

1 2 3 4

5 6

Fig. 8. The different population structures possible with
four subpopulations. These are the only ways in which
four subpopulations can be linked.

Where there are four subpopulations the arithmetic

involved becomes far more complicated although the

physical interpretation of the coefficients is essentially

the same. Each coefficient can be thought of as being

the sum of a term corresponding to each ‘path’,

consisting of three transitions, which starts at the

point of interest and goes through each other point

exactly once. As an example, the paths that represent

the terms of γ
"

are shown in Fig. 7. The number of

terms involved in each coefficient is 16.

(iii) Different population structures

There are six different ways in which four subpopula-

tions can be connected if the magnitude of migration

between subpopulations is not considered. These are

represented in Fig. 8. The lines represent links between

two subpopulations. The actual physical distance

between two subpopulations in the diagram does not

represent the magnitude of migration between the two

subpopulations. The method discussed earlier of cal-

culating the coefficients under different population

structures by adding a term for each of the paths from

a subpopulation is a useful way of finding the coef-

ficients quickly. If the population does not have a

link between each pair of subpopulations then the

coefficients are simplified.

(iv) Fixation probabilities under equal migration

In each of the following cases a link exists between

subpopulations i and j. The numbers refer to the

diagram numbers in Fig. 8.

Structure 1 : This is the fully connected model where

each coefficient consists of the full 16 terms. Each

term contributes µ
$

to the coefficient so γ
"
¯γ

#
¯γ

$

¯γ
%
¯16µ$. The fixation probability is therefore

equal to the initial frequency in the population as a

whole.

Structure 2 : In this model two of the subpopulations

are connected to each of the other subpopulations and

two of the subpopulations are connected only to two

of the other subpopulations. For each subpopulation

there are eight paths connecting it to each of the other

subpopulations, each contributing µ$, so γ
"
¯γ

#
¯γ

$

¯γ
%
¯ 8µ$. Thus the fixation probability is equal to

the initial frequency in the population as a whole.

Structure 3 : In this model three of the sub-

populations are connected with each other and the

fourth subpopulation is connected with one of these

subpopulations only. Intuitively it would seem that

the subpopulation which is connected with only one

other should have less influence on the fixation

probability than the other subpopulations which are

all connected with each other. However, there

are three paths from each subpopulation so each

coefficient has three terms giving γ
"
¯γ

#
¯γ

$
¯

γ
%
¯ 3µ$.

Structure 4 : This model is equivalent to having four

subpopulations equally spaced on the corners of a

square. Intuitively it would seem that each subpopu-

lation should have the same effect on the fixation

probability as the system is symmetric. There are

four paths from each subpopulation to the other

populations, so γ
"
¯γ

#
¯γ

$
¯γ

%
¯µ$.

Structure 5 : One subpopulation is central and is

connected to each of the other subpopulations. Each

of the other subpopulations is connected only to the

central subpopulation. Once again it would seem
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that the central subpopulation would have the most

important effect on the fixation probabilities, but for

each subpopulation there is only one path connecting

it to all of the other subpopulations, so γ
"
¯γ

#
¯

γ
$
¯γ

%
¯µ$.

Structure 6 : The minimally connected model. The

subpopulations are arranged linearly and are only

connected to their neighbours. Once again, for each

subpopulation there is only one path connecting it to

all of the other subpopulations, so γ
"
¯γ

#
¯γ

$
¯

γ
%
¯µ$.

Thus for each of the population structures, γ
"
¯γ

#

¯γ
$
¯γ

%
. This means that in each case, the fixation

probability is just equal to the initial frequency in the

population as a whole when one-step migration

between connected subpopulations is equal.

(v) Unequal migration between subpopulations

There are endless possible combinations of migration

probabilities that could be considered, but only three

will be considered here : the minimally connected

model with directional flow; the case for structure

number 5 where the central subpopulation is most

productive ; and the case where two ‘clusters ’ of

subpopulations are connected by a weaker, directional

link. These examples will be compared with the three-

subpopulation case.

(vi) Example 1 : Constant flow of indi�iduals in one

direction

It is assumed that gene flow is twice as likely in one

direction as in the other. Thus

µ
"#

¯µ
#$

¯µ
$%

¯ 2µ,

µ
#"

¯µ
$#

¯µ
%$

¯µ,

Each point has just one path to the other three points,

so there is only one term in each coefficient. The

coefficients are :

γ
"
¯ 8µ$,γ

#
¯ 4µ$,γ

$
¯ 2µ$,γ

%
¯µ$.

Therefore as in the case of three subpopulations, when

the flow is from left to right, the populations on the

left are the most important in determining the fixation

probability. That is, subpopulations which are ‘up-

stream’ in terms of the migration have the greatest

impact on fixation probability.

(vii) Example 2: One central patch, three peripheral

patches, the central subpopulation is most producti�e

Consider a population structured as in diagram 5 in

Fig. 8 with the central subpopulation labelled popu-

lation 2. Once again there is only one path from each

of the subpopulations, so each coefficient has only one

term. The migration probabilities are :

µ
#"

¯µ
#$

¯µ
#%

¯ 2µ,

µ
"#

¯µ
$#

¯µ
%#

¯µ.

Thus,

γ
"
¯ 4µ$,γ

#
¯ 8µ$,γ

$
¯ 4µ$,γ

%
¯ 4µ$,

showing once again that the subpopulation which

produces the most migrants is the most important

subpopulation in determining the fixation probability.

(viii) Example 3: Two pairs of subpopulations that

are weakly linked to each other

Suppose that we have a population structure like

structure 6 but with minimally connected subpop-

ulations 1 and 2 close together. Each of these is

distant from subpopulations 3 and 4, which are also

close together. Let the migration probabilities be

µ
"#

¯µ
#"

¯µ
$%

¯µ
%$

¯µ,µ
#$

¯µ
a
,µ

$#
¯µ

b
,

where µ(µ
a
"µ

b
. Then γ

"
¯γ

#
¯µ#µ

a
and γ

$
¯γ

%

¯µ#µ
b
. This means that the subpopulations within

each pair have the same influence on the fixation prob-

ability. The pair that on average sends migrants to the

other pair has a greater influence on fixation prob-

ability than the other pair. This again demonstrates

that the subpopulations which produce the most

migrants have the greatest influence on fixation prob-

ability. Note also here that two subpopulations within

a pair which are symmetrically linked to each other

have the same influence on fixation probability.

7. Discussion

A formula has been found for the fixation probability

of a neutral allele, A
"
, for a population divided into

three or four subpopulations where migration is

asymmetric. This is a significant advance over the

existing theory for more than two subpopulations

(Pollak, 1966; Maruyama, 1977), which assumes

symmetric migration, and allows a wider range of

population structures to be considered with greater

variety in direction and strength of migration. This

paper also extends the results of Tachida & Iizuka

(1991) who considered the case where there is

asymmetric migration for a two-population model.

The conclusions relating to the fixation probability in

the case of symmetric migration support the con-

clusions of other authors who have considered the

problem using other models.

The fixation probability found here for the stoch-

astic model is equal to the equilibrium allele frequency

found for very large populations using an equivalent
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population structure with a deterministic model. This

result would not hold if selection were introduced into

the model as the equilibrium distribution is fixation of

the selected allele, but in a stochastic model there is a

chance that the selected allele will become extinct.

We draw two new conclusions from this work.

First, the position of a subpopulation within the

population is not important in determining its impact

on the fixation probability of the whole population.

That is, an edge and a centre subpopulation have an

equal impact on the fixation probability of the whole

population if they are each producing the same net

number of migrants.

Second, when migration is asymmetric then, in

general, the subpopulations that produce the greatest

surplus of migrants are the most important sub-

populations in determining the fixation probability.

That is, those subpopulations that send out a lot more

migrants than they receive are the most important

subpopulations in determining the fixation probability

of the whole population, provided the migrants are

Appendix. Proof of theorem

Using the backward Kolmogorov equations
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so (A1) can be written as
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going to subpopulations of equal importance. If one

of these subpopulations tends to send migrants to a

subpopulation that in turn has a large surplus of

migrants, whereas the other subpopulation tends to

send migrants to a subpopulation that does not have

a net surplus of migrants, then the first of these

subpopulations will have a greater impact on the

fixation probability of the population as a whole. This

is because the first of these subpopulations is indirectly

having its alleles spread more widely than the second

subpopulation.

This model would be difficult to parameterize in

practice but provides some useful insights into fixation

probabilities in subdivided populations, which have

implications for conservation genetics. It is clear that

when considering a management plan with the

intention of maintaining genetic diversity, the relative

strength of migration in different directions must be

considered to give a clear picture of the genetic

properties of the population and the likely genetic

consequences of management actions.
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Now substituting this back in to (A5) gives
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after substituting for γ’s and rearranging
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as required.
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