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ABSTRACT. Data assimilation techniques are one method by which to improve the quality of model
simulations of sea ice. The availability of daily gridded fields of sea-ice motion makes this field one that
can be readily assimilated. These fields are generally of higher resolution than forcing values such as
atmospheric wind which are used to drive the model, and on any given day may depict ice circulation
that is dramatically different than what the model solution represents. Typically, a blending method such
as optimal interpolation (OI) is used and corrections are applied to the initial modeled velocity field
such that the new solution corresponds better with actual observations. However, care must be taken in
such a technique, as the corrections are not applied directly to the model physics, and the underlying
physical assumptions in the ice dynamics may be violated. Previous studies have shown that
improvements in the ice-motion solution come at the cost of the quality of other modeled fields. The
strength parameterization in sea-ice models controls the ice velocity in the model, and is obtained in
part by comparison with observed motions. Here we investigate the sensitivity of the sea-ice model to
variations in the strength parameterization, and determine the effect of using data assimilation to
impose observed velocities. We find that the alternation of the frictional loss parameter has limited
effect on model performance. Rather, it is the assimilated data that overwhelm and degrade the solution,
bringing into question whether underlying physical assumptions in the model may be compromised.

INTRODUCTION
Data assimilation techniques are one method by which to
improve the quality of model simulations of sea ice. The need
for data assimilation arises from the facts that, first, physical
models are far from perfect and data assimilation can
compensate model errors; and second, assimilation tech-
nique provides the mechanism for extracting useful informa-
tion from noisy data, while the model provides the
mechanism for constraining data and carrying information
forward. The techniques used for assimilation can be divided
into two broad categories: sequential and model-trajectory
methods. Direct insertion, nudging, optimal interpolation
(OI) and Kalman filter are examples of sequential methods.
Because this paper focuses on sequential methods, especially
OI, model-trajectory methods are not discussed here. For ice
data, Maslanik and Maybee (1994) assimilated Advanced
Very High Resolution Radiometer (AVHRR)-derived ice
motion into a dynamic–thermodynamic ice model using
direct insertion; Thomas and others (1996) assimilated
Special Sensor Microwave Radiometer (SSMR)-derived ice
concentration into an ice-thickness distribution model using
a Kalman smoother; and Meier and others (2000), Arbetter
and others (2002) and Zhang and others (2003) assimilated
Special Sensor Microwave/Imager (SSM/I)-derived ice mo-
tion using OI. Lindsay and Zhang (2005) assimilated ice
motion and ice concentration using OI and nudging.

Previous studies have shown that assimilation of observed
ice motion significantly improves the calculation of ice
motion (Meier and others, 2000; Zhang and others, 2003).

However, it has mixed effects on the quality of other
modeled fields. Zhang and others (2003) showed that
assimilation of ice motion improved the model performance
on ice thickness. They believe that the strengthened spatial
gradients of velocity after assimilation are likely to be the
reason. Arbetter and others (2002) showed excessive
summer ice melting after assimilating observed ice motion.
A significant difference between the Arbetter and others
(2002) approach and the previous studies is that Arbetter and
others assimilated motions through the summer melt season,
while the other studies assimilated motions only during fall
through spring. Arbetter and others concluded that the
increased open-water creation through enhanced diver-
gence provides a mechanism during summer to accelerate
the ice melting. Their results implied that modeled ice-
motion fields (without assimilation) differ from the observed
ice-motion field in such a way as to be significant enough to
violate the underlying physical assumptions of the model.

In this study, we first try to verify the difference between
modeled and observed ice-motion fields. Then we investi-
gate the model sensitivities to some physical processes or
parameterizations to provide clues for further fine-tuning of
the model. The strength parameterization in sea-ice models
controls the ice velocity in the model (Flato and Hibler,
1995) and is obtained in part by comparing modeled with
observed ice motions. Thus, it is logical for us to study the
sensitivity of the sea-ice model to variations in the strength
parameterization.

MODEL, FORCING DATA AND DATA
ASSIMILATION
The sea-ice model used here is similar to that described by
Flato and Hibler (1995). It is implemented on a 166� 161
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Cartesian grid derived from the Equal-Area Scalable Earth
(EASE) projection (Armstrong and others, 1997) with a grid
size of 25 km. Each gridcell contains 12 ice categories, each
category having a fixed mean thickness (Thorndike and
others, 1975; Hibler, 1980). A viscous–plastic rheology
(Hibler, 1979) is used here, with the alternate-direction
implicit solver employed (Zhang and Rothrock, 2000).
Ridging and vertical redistribution of the sea ice within
each gridcell are determined using formulations for ice
strength (Rothrock, 1975) and ice divergence within each
cell (Thorndike and others, 1975; Hibler, 1980).

The ice-strength parameterization reads

p ¼ CfCp

Z 1

0
ð!r þ !uÞh2 dh, ð1Þ

where Cp ¼ 1=2ð�i=�wÞgð�w � �iÞ is a constant in which �i
and �w are the densities of ice and water, respectively, and g
is the acceleration due to gravity. !r and !u are so-called
ridging modes, which describe the transfer of thin ice into a
distribution of thicker, ridged ice (Rothrock, 1975; Thorndike
and others, 1975; Hibler, 1980; Flato and Hibler, 1995). h is
ice thickness, and frictional parameter Cf is defined as the
ratio of total energy loss to potential energy change and is
the parameter that controls the compressive strength of the
ice cover. Cf is a tunable parameter and is determined by
comparing the computed and observed ice drift. Cf ¼ 2 is
used by Hibler (1980), while Cf ¼ 17 is used by Flato and
Hibler (1995) in their baseline simulation.

The forcing data used are the US National Centers for
Environmental Prediction (NCEP) re-analysis (Kalnay and
others, 1996), and the observed ice motion used in this study

is the Polar Pathfinder daily 25 km EASE-Grid sea-ice motion
vectors (C. Fowler, http://nsidc.org/data/nsidc-0116.html).
Daily ice-motion vectors are computed from AVHRR,
Scanning Multichannel Microwave Radiometer (SMMR)
and SSM/I using a maximum cross-correlation technique
(Emery and others, 1991). Daily ice motions are also
calculated from International Arctic Buoy Programme (IABP)
(Rigor and Colony, 1995) buoy data. Daily gridded fields
combine data from all sensors (for a detailed technical
description of the ice-motion data, see C. Fowler, http://
nsidc.org/data/nsidc-0116.html). An optimum interpolation
method is used to assimilate this daily gridded ice motion
into the ice model (Meier and others 2000; Meier and
Maslanik, 2001).

RESULTS
We ran a total of five cases, as summarized in Table 1, to test
the sensitivities of the model to variations in the strength
parameterization and the effects of data assimilation.

We first compare the modeled ice motions with the
observed ice motions (experiments 1–3). We use the basin
average ice speed as the baseline of comparison, where the
Arctic basin is defined following Gloersen and others
(1992). The modeled (without assimilation) basin average
ice speed is defined as the spatial average of ice speed at any
gridcell where ice concentration is >15%. The observed
basin average ice speed is defined as the spatial average of
ice speed from the daily gridded ice-motion dataset
mentioned in the previous section. As shown in Figure 1,
we can see that the modeled ice speed is significantly
different from the observed ice speed. The 10 year mean of
the modeled basin average ice speed is 4.66 cm s–1, while
the 10 year mean of the observed basin average ice speed is
3.82 cm s–1. The seasonal fluctuation of the modeled ice
speed is also greater than that of the observed ice speed.

Experiments 4 and 5 assimilate the daily observed ice
velocities into the model solution. As expected, assimilation
of such different ice-motion data into the ice model greatly
impacts the model behavior. In Figure 2, we show the
normalized basin ice-cover area for cases with and without
assimilation of ice motion. Here the ice-cover area is
normalized by the basin area. In winter, the basin is totally

Table 1. Test cases

Case No. Assimilation Cf

1 No 17
2 No 2
3 No 34
4 Yes 17
5 Yes 2

Fig. 1. Modeled (case 1) and observed basin average ice speed. Fig. 2. The effects of assimilation (Cf ¼ 17).
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covered by ice; hence the normalized basin ice-cover area
approaches unity. From Figure 2 we can see that the
modeled (without assimilation) summer ice-cover area is
around 50% of the winter ice-cover area, which agrees with
the satellite observations (Gloersen and Campbell, 1991).
The assimilation reduces the summer ice-cover area by up
to 40%.

Variations of frictional loss parameter Cf significantly
change the ice speed and the ice-cover area in cases without
assimilation, as shown in Figures 3 and 4. However, Cf has
limited effects on the ice drift and ice-cover area in cases
with assimilation, as shown in Figures 5 and 6. It seems that
the assimilation has an overwhelming effect, constraining
the solution to observations.

CONCLUSION AND DISCUSSION
In this study, we investigate the model sensitivities to
strength parameterization to provide clues for further
improvements to the model. Assimilation of observed ice
motion constrains the model solution to closely resemble

observations, but causes excessive summer ice retreat.
Efforts to adjust the model by altering the frictional loss
parameter have limited effects in the assimilated cases,
because the assimilation of observed ice motion essentially
bypasses the model dynamics.

In reality, sea ice is composed of a number of discrete
floes with sizes ranging from a few meters to tens of
kilometers or more. These floes grow thermodynamically
and are deformed due to wind and water stresses, which
cause the floes to break apart (divergence) or form rubble
fields and pressure ridges (convergence). It is essential to
recognize that all models are at some level a mathematical
parameterization of these processes. The viscous–plastic
rheology (Hibler 1979, 1980) contains an underlying
assumption that the sea ice in the Arctic can be described
as continuous fluid.

While others have successfully run continuum models at
resolutions finer than the 25 km used here, to our knowledge
they have not incorporated high-resolution ice-motion data

Fig. 3. Effects of Cf on basin average ice speed (without assimilation).

Fig. 4. Effects of Cf on basin ice-cover area (without assimilation).

Fig. 5. Effects of Cf on basin average ice speed (with assimilation).
Note that the effects are very small and the two curves almost
overlap each other.

Fig. 6. Effects of Cf on basin ice-cover area (with assimilation).
Note that the effects are very small and two curves almost overlap
each other.
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(including summertime observations) on a basin-wide scale
over several annual cycles. The observed ice-motion vectors
show discontinuities which likely indicate where floes are
divergent. When these motions are assimilated into the
model, the solution does show divergence in the same
location as observed; this results in much of the ice volume
being advected out of the gridcell. However, in summer
there exists no mechanism to grow new ice. Lateral melting
in the model is accelerated with the increased open water,
and much of the sea ice is lost by the end of the summer.

It is not enough to assume that the summertime ice
motions are problematic and should be ignored. Rather, the
problems indicate that an observed feature of sea ice is not
reproduced well by the model, and in this case the excessive
ice divergences introduced may violate the model’s physical
assumptions (although not necessarily or exclusively the
dynamic component). A thorough parameter estimation,
including dynamic and thermodynamic parts of the model,
is necessary to improve model behavior within the
constraints of the observed ice motions. Hargreaves and
others (2004) and Annan and others (2005) simultaneously
estimated 12 parameters in an intermediate-complexity
coupled atmosphere and ocean global climate model
(AOGCM) using an ensemble Kalman filter technique with
only 50 runs. Their works suggest a future direction to further
improve the ice model.
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