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Abstract In this paper we shall employ the nonlinear alternative of Leray—Schauder and known sign
properties of a related Green's function to establish the existence results for the nth-order discrete focal
boundary-value problem. Both the singular and non-singular cases will be discussed.
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1. Introduction

This paper discusses the nth-order (n ^ 2) discrete focal boundary-value problem

(_l)»-Mnj/(fc - V) = f(k, y(k), y(k + l),...,y(k + n-p-l)), k € JPA

Aiy(0)=0, 0 < i < p - l , > (1.1)

Aiy(T+l)=0, p^i^n-1, J

where T e {1,2,. . . }, 1 < p ^ n - 1, Jp = {p,p + 1, . . . ,T + p}, and y : In = {0 ,1 , . . . ,
T + n} ->R. We will let C(In) denote the class of maps w continuous on In (discrete
topology) with norm ||iu|| = maxfc€/n |tf(fc)|- By a solution to (1.1) we mean a w £ C{In)
such that w satisfies the difference equation in (1.1) for k € Jp and w satisfies the
focal boundary data. The results presented in this paper are all new and supplement
those recently discussed in [1-4,6,7,11,13-15]. In fact, this is the first time the sin-
gular discrete focal boundary-value problem has been discussed successfully. For this we
shall employ the nonlinear alternative of Leray-Schauder and known sign properties of a
related Green's function cleverly. The continuous analogue of the results established here,
which improve several known existence criteria (see, for example, [2,8,9]), has appeared
in [5].

For the remainder of this introduction we gather together some results that will be
used in § 2 and in § 3. First, we recall the following well-known result from the literature
[1,6,10].
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Theorem 1.1. The Green's function Gi(k,j) of the boundary-value problem

Any = 0, y(ki) = 0, 1 < i < n, 0 = hi < k2 < • • • < kn =F T + n

exists and Gi(k,j)Q(k) ^ 0 for (k,j) e /„ x Io, where

/0 = {0,1,...,T} and Q = JJ(fc - kt).

In [1,6] it was shown that if y satisfies

Any(k) = <P(k), fee Jo, ]

Aiy(0)=0, O^i^p-lA (1.2)

Aiy(T+l)=Q, p ^ i ^ n - l j

then
T

»(/!) = 53 G2(fc»J>0'), forfce/n, (1-3)

where

if j € {0,l,...,fc-l}, and

if j € {A;, A; + 1, . . . , T}. Next consider

1 (1.4)
y( l)=0, p < i < n - l .

Notice (1.4) is the same as

Any(k)=<Kk+p), kelo,

(1.5)

Aiy(T+1)=0, p ^ i ^ j

and so
T

5 3 , for
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This is the same as

T+p

y(fc) = X)G(fc,j)0(j). forfce/ni (1.6)
j=P

where

G(k,j) = G2(k,j - p), for k € /„ and j 6 Jp. (1.7)

Next suppose y : / n —> R satisfies

(_1)"-Mny(fc) > 0, fce/o,
(1.8)

^ ( T + 1) = 0, J

Now (1.3) implies

j=0

and since [6]

(-l)"-PZ\iG2(fc, j) > 0, (fc, j) 6 /n - jX/o , 0 < t < p - 1

and

(-l)n-P+iAi+PG2(k,j)^0, (k,j)eln-i-pxlo, 0 ^ i ^ n - p - l ,

we have

A'yih) ^ 0, for k 6 / n - i , 0 ^ i < p (1.9)

and

Z\P+1y(fc)O, forfcG/n-P-i, (1-10)

where Ij = {0,1, . . . , T + j}. As a result we have

s u p Aiy(k) = Aiy(T + n-i), 0 < i < p - l . (1.11)

Fix i 6 { 0 , 1 , . . . ,p - 1} and let <f>i{k) = A^k). It is easy to see that <j>i(k) satisfies the
following p — i + 1 conditions

0)=0 j = 0 l p - i - l A

i) J
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these are conjugate conditions [6]. In addition, (1.10) implies

Ap-i+1
<f>i{k) = AP+1y{k)^0, forkeln-p-i- (1.13)

Now [1,6], (j>i{k) can be written as

Up-i) T+n-p-l

t(T + i)+ £ G(fcj)4*-i+Vi(i), (1-14)<t>i(k)= (T (p_i)<t>i(
^ ' j=o

for k € In-ii where G3 is the Green's function for the problem

4"-<+1&(fc) = o, Ae/n_p_i ,

(1.15)

<pi(T + n - i) = 0. J

Theorem 1.1 implies that, for k € / n - i ,

sgnG3(fc, j) = sgn(k^-^(k -T-n + i)) = -

(here we use the convention sgnO = - ) . This, together with (1.14), gives

fc(p-0
f o r fe € /n-i and 0 < t <

n —

i.e.

for fc € /n"i and ° ̂  * ̂  p ~l' (L16)

Next, suppose that y : / n —> M. satisfies

(-l)n-PAny(k-p)>0, keJP!

= 0, 0 < t < p - l , > (1.17)

Z l i
2 / ( T + l ) = 0 , p ^ t ^ n - J

Now, since (-l)n-pZ\ray(fc - p) ^ 0 f.-r fc S Jp is the same as (-l)n~PAny(k) ^ 0 for
k € /o, we have

- ... _.. sup Aly(j), for k S In-i and 0 ̂  i ̂  p — 1. (1-18)

In particular,

j), for keJp. (1.19)
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Next we present a new existence principle for the discrete focal boundary-value problem

(_1)»-Mny(fc - p) = f(k,y(k),y(k + 1),...,y(k + n - p - 1)), k 6 Jp, )

2/(0) = a

Aiy(Q) = 0, l

1) = 0, p

(1.20)

Theorem 1.2. Suppose f : Jp xl™ p -> K is continuous (i.e. continuous as a map
from the topological space Jp x Rn~p into the topological space R (of course, the topology
on Jp will be the discrete topology)). Assume there is a constant M > \a\, independent
of X, with

\\y\\ =max|y(j) | ^ M,

for any solution y £ C{In) to

(_l)«-Mny(A: - p) = Xf(k,y(k),y(k + 1), . . . ,y(k + n -p - 1)), k £ Jp,

2/(0) = a,
) (1-21)>

Aly{0)=0, l < i < p - l , '

for each A € (0,1). Then (1.20) has a solution.

P r o o f . S o l v i n g ( 1 . 2 1 ) * i s e q u i v a l e n t t o f i n d i n g a y e C ( I n ) t h a t s a t i s f i e s

T+p

y(k) = a + A X)(-l)n-pG(fc, j)/(i ,y(j),»(j + 1), • • • ,»(j + n - p - 1)), for A; S /„ ,

(1.22)A

where G is as in (1.7). Define the operator S : C(In) —» C(In) by setting

= a .I/(J).I/C? + 1), • • • , - P -

Now (1.22)A is equivalent to the fixed-point problem

It is easy to see [3,6] that 5 : C{In) —» C{In) is continuous and completely continuous.
Let

[/ = {u e C(In) : ||u|| < M} and £ = C{In).

The nonlinear alternative of Leray-Schauder [12] guarantees that S has a fixed point in
U, i.e. (1.20) has a solution. D
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2. Non-singular focal problems

In this section we establish existence of solutions to discrete focal non-singular boundary-
value problems. For convenience, we discuss (1.1).

Theorem 2.1. Suppose the following conditions are satisfied:

f : Jpx E n " p -> K is continuous; (2.1)

there exists a continuous, non-decreasing function ifj : [0, oo) ->
[0, oo) with ip > 0 on (0, oo) and a function q : Jp —» [0, oo) with
| / (fc,«!, . . . , un-p)\ ^ q(k)iP(\u\) foralluieR,i=l,2,...,n-p
and k € Jp, where \u\ = max{|ui| : i = 1,2,.. . , n — p);

T+p
s u p \TT^)>Q' ^ereQ = m^.^2q{j)(-l)n-pG{k,j). (2.3)

and

Then (1.1) has a solution.

Proof. Let M > 0 satisfy

Consider the family of problems

(_l)»-PZ\"i/(fc - p) = Xf(k,y(k),y(k |

(2.5)A

y(T + 1) = 0, p J

for 0 < A < 1. Let y be any solution of (2.5)A for 0 < A < 1. Then

T+p

y(k) = X^-WW'MUMiVU + l),.-.,y(j + n-p- 1)), for k e /„.
3=P

(2.6)

Now, (2.6) together with (2.2) implies that for k G In,
T+p

\y(k)\ ̂  X)(-l)n-pG(fc
j=p

where ||y|| = supfe6/n |y(&)|. Consequently,

n - p - 1)), * G Jp,

Now, (2.4) together with (2.7) implies ||y|| ^ M. Thus, any solution y of (2.5)^ satisfies
||y|| 7̂  M. Now, Theorem 1.2 implies that (1.1) has a solution. •
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Remark 2.2. It is easy to put conditions [3,4,6] on / to guarantee that (1.1) has a
non-negative solution.

Remark 2.3. The ideas in this section can be trivially extended in order to establish
existence results for the non-singular conjugate nth-order problem,

(-l)n-pAny(k) = f(k,y(k),y(k + 1),... ,y(k + n - 1)), k G Jo>

Aiy{0)=0, ( K t < p - l ,

A{y{T + n - i) = 0, 0 ^ i ^ n - p - l ,

the non-singular focal nth-order problem,

{-l)n-pAny(k) = f(k,y(k),y(k + 1),...,y{k + n - 1)), k G Jo>

4*1/(0) =0, ( K » < p - 1 ,

Aiy(T+l)=Q, p ^ i ^ n - 1 ,

and the non-singular (n, p) problem,

Any(k) = f(k, y(k),y(k + 1),..., y(k + n - 1)), k € Io,

Z \ i y ( 0 ) = 0 , 0 ^ i ^ n - 2 ,

Apy(T + n-p)=0, 0 ^ p ^ n - l (p fixed).

3. Singular focal problems

Next we discuss

(-l)"-M"y(/c - p) = f(k, y(k)), keJp,}

Aiy(0)=0, 0^i^p-l, \ (3.1)

Aiy{T + l)=0, p ^ i ^ n - l , J

where f(i, y) may be singular at y — 0.

Theorem 3.1. Suppose the following conditions are satisfied:

f : Jp x (0, oo) -^ (0, oo) is continuous; (3.2)

f{k,u) < p(u) + /i(u) on Jp x (0, oo) with g > 0 continuous "j
and non-increasing on (0, oo), h > 0 continuous on [0, oo) > (3.3)
and (h/g) non-decreasing on (0, oo); J

for each constant H > 0, there exists a continuous function 1
1>H--JP-> (0, oo) with /(*, u) > ^ff(A) on Jp x (O, H}; j

there exists a constant K$ > 0 with g{0u) < Kgg(u) \
for allu^O, where 6 = \p^/{T + n)<*>]; J
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and

where

R. P. Agarwal and D. O'Regan

sup \g(c) + h(c)Jce(o,oo) \9(c) + h(c)
>KgQ,

T+p

Q = n,j), and G is as in (1.7).

(3.6)

(3.7)
J=P

Then (3.1) has a solution y e C(In) with y(i) > 0 for i G Jp.

Proof. Choose M > 0 with

M
QKe[g(M) + h(M)}

Next choose e > 0 and e < M with

M

> 1.

QKe[g(M)
> 1.

Let no € {1,2,... } be chosen so that (I/no) < e a n d let iVo = {fto, TIQ
first that

(-l)n-pAny(k-p) = r(k,]
»(0) = ( 1 / m ) ,

Aiy{Q) = 0, l ^ i ^ p — 1,

Aly(T+ l) = 0, p ^ i ^ n - 1 ,

has a solution for each m € No, where

(3.8)

(3.9)

, . . . } . We show

(3.10)m

To show that (3.10)m has a solution for each m e No, we will apply Theorem 1.2.
Consider the family of problems

(-1)»-P Any{k-p) = \f*(k,y(k)), keJp

y(0) = (1/m),

^*y(0) =0 , l < t < p - l ,
Z\*y(T+l)=0, p^i^n-l,

for 0 < A < 1. Let y € C(In) be any solution of (3.11)^. Then

T+p

J)r(j,y(j)), for k G /„,

(3.11)

(3.12)
J'=P
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and so y(k) ^ (1/ra) for k 6 In. Also, as in §1 (see (1.11)), we know that \\y\\ =
supj-€/n y(j) = y(T + n). We next claim that

\\y\\ =y(T + n)^ M (here M is as in (3.8)). (3.13)

We have immediately, from (3.12), (3.3), (1.19) and (3.5), that

T+p

j—p

\\ 1 T+P

" ' d=P

^ e + [g(y(T + n)) + h(y(T + n))]KeQ.

Consequently,

y{T + n)

e + [g(y(T + n)) + h(y(T + n))]KeQ
1. (3.14)

Now (3.9) and (3.14) imply y(T + n) ^ M, and so (3.13) is true. Consequently, Theo-
rem 1.2 guarantees that (3.10)m has a solution ym € C(In) with (1/m) ^ ym{j) < Af for
i £ In- Next we obtain a sharper lower bound on ym. Notice that ym satisfies

ym(i) = - + J2(-l)n-pG(i,j)f(j,ym(j)), forieln. (3.15)
j=P

Also, (3.4) guarantees the existence of a continuous function ipM '• Jp ~> (0> oo) with
f{i,u) ^ ipM(i) for (i,u) € Jp x (0, M]. This, together with (3.15), yields

T+p

Vmii) > ^ ( - l ) n - p G ( i , j)i>M{j) = 0M(i), for i € Jp. (3.16)
j=p

Clearly,

{ym}meN0 is a bounded family on In. (317)

The Arzela-Ascoli Theorem [3] guarantees the existence of a subsequence N of No and
a function y € C(/n) with j / n -» y in C(/n) as n -)• oo through N. Also

= - - - = y ( p - l ) = 0 and

Fix i € Jp, then ym, m 6 N satisfies (3.15). Also,

=min# M ( i ) < 2/m(j) < M, for j e Jp and m 6 iV. (3.18)
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Let m —¥ oo through N in (3.15) to obtain

T+p

W(») = 52(-l)n-pG(U)fU,v(j)), for i 6 Jp.
3=P

Also, notice that (3.18) implies y(j) ^ <PM > 0 for j G Jp. D

Example 3.2. Consider the focal discrete boundary-value problem

(-iy-PAny(k -p)= M([2/(fc)]"Q + AeyW), for j

= 0, < U » < p - l , > (3.19)

J
with a > 0 , /? > 0, A ^ 0 and ^ > 0. If

QOC / ca+l
< — sup I ; , (3.20)

where

6 = - T-rx and Q = } (
(T + n)(p) r- '

J=P
then (3.19) has a solution y S C(In) with t/(i) > 0 for i € Jp.

The result follows immediately from Theorem 3.1 with g(u) = \xvTa and h(u) = /iAeu.
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