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Quantitative genetic variability maintained by mutation-
stabilizing selection balance in finite populations
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Summary

Models of variability in quantitative traits maintained by a balance between mutation and
stabilizing selection are investigated. The effects of mutant alleles are assumed to be additive and
to be randomly sampled from a stationary distribution. With a two-allele model the equilibrium
genetic variance in an infinite population is independent of the distribution of mutant effects, and
dependent only on the total number of mutants appearing per generation. In a finite population,
however, both the shape and standard deviation of the distribution of mutant effects are
important. The equilibrium variance is lower when most of the mutational variance is contributed
by few genes of large effect. Genes of small effect can eventually contribute substantially to the
variance with increasing population size (N). The equilibrium variance can be higher in a finite
than an infinite population since near-neutral alleles can drift to intermediate frequencies where
selection is weakest. Linkage leads to a reduction in the maintained variance which is small unless
linkage is very tight and selection is strong, but the reduction becomes greater with increasing N
since more mutants segregate. A multi-allele model is simulated and it is concluded that the
two-allele model gives a good approximation of its behaviour. It is argued that the total number of loci
capable of influencing most quantitative traits is large, and that the distribution of mutant effects
is highly leptokurtic with the effects of most mutants very small, and such mutants are important
in contributing to the maintained variance since selection against them is slight. The weakness of
the simple optimum model is discussed in relation to the likely consequences of pleiotropy.

1. Introduction

Many quantitative characters show considerable
heritable variation in natural populations (Falconer,
1981; Mousseau & Roff, 1987; Roff & Mousseau,
1987). Explaining how such genotypic variation is
maintained has been one of the most important and
controversial problems of population genetics. The
problem arises because of the widespread belief that
stabilizing selection, in which the fittest individuals
have values of the trait near some optimum, is
ubiquitous in nature, but selection for an intermediate
optimum is expected theoretically to deplete genetic
variability (Robertson, 1956) and has been shown to
do so experimentally (Gibson & Bradley, 1974;
Kaufman, Enfield & Comstock, 1977). There is a
certain irresistibility in arguments for the presence of
an intermediate optima: for example, the date of egg
laying in many northern passerine birds apparently
has an optimum dependent on the availability of
caterpillars for the young, which are only present for
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a brief period in early summer (Lack, 1968). Some of
the most compelling evidence for selection for inter-
mediate optima in natural populations comes from
comparisons between sibling species of Drosophila,
where parallel latitudinal clines for various traits have
been shown to exist (David & Bocquet, 1975; Hyytia
et al. 1985). The observation of an intermediate
optimum at any single trait considered alone is,
however, not in itself evidence of stabilizing selection
as Robertson (1973) and others (Falconer, 1981;
Rose, 1982; Hill & Keightley, 1988) have emphasized,
because negative correlations between characters
under directional selection can also generate such
optima.

Genotypic mutations are the basic source of all
heritable variation, but can a balance between
mutation and selection alone explain the maintenance
of observed high levels of genetic variation? This is an
important question because variation in quantitative
traits is believed to be the ‘raw material’ of evolution.
Such variation also provides the basis for responses to

GRH 52


https://doi.org/10.1017/S0016672300027282

P. D. Keightley and W. G. Hill

artificial selection, and it is important in understanding
the allelic effects and gene frequencies contributing to
the variation being utilized.

The work of Clayton & Robertson (1955) suggested
that mutation is a weak force in generating quanti-
tative variation. Recent work on directional selection
and mutation has, however, indicated that long-
term selection responses may in part be due to
mutations occurring after commencement of the
experiment (Hill, 198254). Lande (1976) focused on
mutation-stabilizing selection balance and, by fitting
experimentally estimated parameters to a specific
model, concluded that high levels of genetic variation
can be maintained in the presence of strong stabilizing
selection. The assumptions of Lande’s ‘continuum of
alleles’ model were based on results of Kimura (1965),
i.e. new mutants have effects that differ only slightly
from those pre-existing, with the result that the
distribution of allelic effects segregating at a locus is
approximately normal. Although Lande included an
analysis of the effect of linkage, the formulae obtained
were essentially the same as those of Kimura (1965).

In a more recent review of the experimental data,
Turelli (1984) questioned the appropriateness of the
Kimura-Lande (KL) model since, with experimentally
measured mutation rates, there are unlikely to be
more than two alleles segregating at the loci affecting
the trait. Also, the effects of new mutations are likely
to be larger than the existing range of variation at the
loci, with the consequence that the distribution of
allelic effects segregating at the locus is non-normal,
an assumption critical to Lande’s model. With an
assumption of lower per-locus mutation rates, Turelli
(1984) obtained a formula for the equilibrium variance
in the population which contrasts markedly with the
KL result, i.e. the equilibrium genetic variance is
independent of the effects of mutants on the trait, but
depends only on the total number occurring per
generation. This result of Turelli with a ‘House of
Cards’ approximation (Kingman, 1978) was obtained
earlier for a two-allele model by Latter (1960) and
Bulmer (1972), and a similar answer has been
subsequently obtained for a five-allele model by
Slatkin (1987). Biirger (1986, see also Biirger, Wagner
& Stettinger, 1988) has generalized the analysis of the
KL continuum of alleles model, and shown that
Turelli’'s ‘House of Cards’ result is a very good
approximation for the KL model over a very wide
range of parameters.

In this study we analyse the mutation-stabilizing
selection problem for finite populations. Finite popu-
lation size is likely to be important because, although
population sizes in nature can be very large, they are
seldom constant and an equilibrium model of the
maintenance of genetic variation must consider past
fluctuations in effective population number. Also,
more importantly, the results of Robertson (1956)
showed that the strength of stabilizing selection on an
allele is proportional to the square of its effect on the
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character. Previously there have been two major
analyses of this problem, by Latter (1970) and by
Bulmer (1972). Latter’s analysis was a finite-popu-
lation extension of Kimura’s (1965) continuum of
alleles model and assumed a normal distribution of
allelic effects segregating at the loci affecting the trait.
Bulmer’s model assumed up to two alleles segregating
and equal forward and backward mutation rates at
each of the loci affecting the trait, with the effects of
substitution the same at each locus. A formula was
obtained for the equilibrium variance with the
following parameters: effective population number,
mutant effect on the trait, strength of stabilizing
selection and mutation rate.

Here, we investigate how the shape of the dis-
tribution of the effects of new mutant alleles influences
the variation maintained in the character. The effect
of new mutations on quantitative traits varies because
they can occur at different places within genes (e.g.
flanking sequences, introns, intron—-exon boundaries,
‘silent” third positions, promoters, active sites, other
coding regions), but also because they can occur at
genes whose functions vary within the biochemical
and developmental system.

Most of the analysis concentrates on a model of two
alleles per locus. This is similar to Bulmer’s (1972)
analysis. Here, we assume that the population size and
mutation rate are such that back mutation can be
ignored, i.e. a new mutation is unlikely while an
existing mutation is segregating, but such a mutation
can occur later and its effect is dependent only on the
distribution of new mutant alleles and the current
values at the locus. The mutation model is therefore
step-wise. The consequences of allowing for the
possibility of the presence of more than two alleles are
investigated using Monte Carlo simulation. The effects
of linkage on the equilibrium genotypic distribution
are investigated using Monte Carlo simulation and an
‘infinite sites’ model (Keightley & Hill, 1983). Finally,
the results are discussed in relation to the types of
mutational distribution likely to be found in nature
and the weakness of the model due to its lack of
consideration of pleiotropy.

2. Model

(a) Basic assumptions. The population is assumed
to consist of N diploid individuals with constant
population size, random mating and non-overlapping
generations. Selection is sufficiently strong or the
population size sufficiently small that no more than
two alleles segregate at any time at each locus. The
frequency of the higher valued aliele is ¢, and the
difference in value between the homozygotes is a,
where a 15 a random variable sampled from a
distribution of effects of mutant alleles. There is no
dominance or epistasis.

(b) Mutation. The expected number of mutations
appearing per haploid genome per generation is A and
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these occur independently. The increment in variance
each generation from mutation is

Vi = AE(a®)/2 (M

(Hill, 1982a). Mutational effects are sampled from a
time-invariant distribution. For modelling purposes
the gamma distribution was chosen since it has a wide
range of properties if suitable values are given to its
two parameters. The density function of mutants
having an increasing effect on the trait (illustrated in
Fig. 1) is given by

fla) = e a1 T(B) (0 <a < o), )

where I'(.) is the gamma function. The parameter «
defines the scale of the distribution and 4 its shape. In
practice, the scale was defined by the parameter
€= [E@®)/V,} = [B(B+1)/2%, where V, is the
environmental variance. With shape parameter
B =1, fla) is an exponential distribution; as #— 0 the
distribution becomes increasingly leptokurtic with an
increasingly large spike near a = 0 and a long tail;
with #— oo, the distribution approaches the limiting
case of all effects equal. The distribution is discussed
in more detail by Hill & Rasbash (1986) (also see
Kimura 1983, ch. 8). Mutants were assumed to have
equal probability of increasing or decreasing the trait,
with f{—a) for a < 0 equalling f{a) given by (2), i.e. a
symmetric distribution over — o0 < a < 0.

(¢) Selection. The character is assumed to be under
‘nor-optimal’ stabilizing selection with the optimal
phenotype fixed at zero. The phenotypic value of an
individual is assumed to be the sum, X, of the
contributions from each locus plus a random inde-
pendent environmental effect of mean zero and
variance V¥, = 1. The relative fitness is given by

W(X) = exp (—X/2w?), ©)

where w is a measure of the strength of stabilizing
selection. Increasing w implies weaker stabilizing
selection. With a multi-locus model where the popu-
lation mean can vary due to gene frequency changes
at any of the loci contributing to the character,
Robertson (1956) showed that mutant alleles behave
as under-dominant (i.e. the heterozygote is less fit
than the homozygotes). The change of gene frequency
at one locus under such stabilizing selection is given
by

Ag = a*(g— P q(1 —q)/[4(w* + o7, (4)

where o? is the phenotypic variance (formally, the
phenotypic variance less the genetic variance con-
tributed by the locus). The term w?+ ¢? is often called
the strength of natural selection and referred to as
V.. This is equivalent to a model of heterozygote
inferiority in fitness where s = a?/[8(w?+c?)] is the
fitness disadvantage of the heterozygote and there is a
meta-stable equilibrium at ¢ =1. Importantly, the
strength of selection is proportional to the square of
the allelic effect. Mutant genes are unconditionally
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Fig. 1. Examples of the gamma distribution, fla) =
afe~*2qf~! /T(B) for three values of the shape parameter g.
The parameter « describes scale rather than shape and its
value is such that E(a®) = 1 for each curve.

deleterious and their selection is similar to that of
genic selection with Ag = s*¢(1 —q), where

s* = —a?/[8(w? + a?)). ()

3. Methods

(a) Transition matrix. With Robertson’s (1956)
result (equation 4) for the change of gene frequency it
is possible to model the effects of continued stabilizing
selection using a transition matrix. This method
allows computation of the expected heterozygosity
contributed by a new mutant during its lifetime in a
population of N individuals assuming that no further
mutation occurs at the locus while this mutant is
segregating. The transition probabilities are defined
by the square matrix M for the Wright-Fisher
stochastic process with values

2
My, = ( ,iv)(q+Aq)"(l —g—Ag*"™* (0 <j, k <2N),

where ¢ = j/2N and Aq is given by (4). Let f 7(¢) denote
the row vector with elements f(f) which are the
probabilities of a population having gene frequency
J/2N (0 <j < 2N) at the generation ¢. Thus for a
new mutant, f,(0) = 1 and all other elements are zero.
The vector f7(f) at generation ¢ (¢ > 0) is obtained
from

f7() =f"(t1— HM. ©6)

Let h denote a column vector whose elements are the
expected heterozygosity at a locus with gene frequency
J/2N (0 <j < 2N); so h; = 2j/2N)(1 —j/(2N)). The
expected cumulative heterozygosity, H(a), contributed

3.2
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by a new mutant until it is fixed or lost, is
H(a) = 2. f7(/)h. This can be computed as

H(a) = f"*(0)1—-Q)™"h*,

where I is the unit matrix, Q is the square submatrix
of M of dimension 2N —1 defined by g, = m,, (1 </,
j<2N-—1), and f7* and h* are the corresponding
elements of f” and h (Kemeny & Snell, 1960).

In order to compute the variance maintained in the
population, the expected heterozygosity contributed
by mutants over a range of effects ¢ was computed.
The expected genetic variance maintained was then
computed from

v, =2N2 f " (@*/4) H(a) fla) da, @

where f{a) is the distribution of mutant effects. Results
were computed for a range of gamma distributions
using different B (shape) and e (scale) parameters.
Integration over f{a) was done numerically using
Simpson’s rule, and convergence of the results was
checked by comparing two successive halvings of the
a interval. '

(b) Use of diffusion approximation. From diffusion
theory, the pattern of change in gene frequency in
populations of different sizes is approximately the
same when the product Ns is constant. From equation
(5) Ns oc Na®/(w?* + o®), so it is unnecessary to compute
the variance maintained by new mutants other than
for one value of N and selection strength and a range
of a values. For the results shown, all transition
matrix computations were performed with N = 80
and a suitably wide range of a values. The validity of
the approximation was checked for both lower and
higher population sizes (i.e. N = 20 and N = 160).

Bulmer (1972), using the diffusion approximation
(cf. Kimura, 1969), obtained a formula for the
asymptotic variance in the character which in our
notation is

_ nd*OM(;,0+3, @)
T 8O@+YMGE,0+1L, D)

where n is the number of loci affecting the trait, N, the
effective population size and 6 =4N,u with u the
forward and backward mutation rate between the two
alleles, ® = N, a?/[8(w® + 0?)], and M( ) is the confluent
hypergeometric function (Abramowitz & Stegun,
1965, ch. 13). With the assumption that -0 (i.e.
back-muiation is ignored), (8) reduces to

®

V,=2N, Vm[z O /((2i+1) i!)]/e‘”. C)]
i=0

This can be evaluated on a computer and converges
readily. The results could have been computed by
integrating (9) over a density function of @ as in (7), in
retrospect a computationally ecasier method than the
transition matrix.

(¢) Monte Carlo simulation. Using simulation, the
effects of simultaneously segregating mutants and

https://doi.org/10.1017/50016672300027282 Published online by Cambridge University Press

36

linkage were assessed. The simulation attempts to
model mutants affecting the quantitative trait
occurring anywhere in the genome and incorporates an
infinite number of independently mutable sites, with
finite population size, selection and recombination,
and is described elsewhere (Keightley & Hill, 1983). In
the present study the fitnesses (essentially fertilities) of
the N parents were assigned according to (3) and
they were selected for breeding with probability
w(X)/(NW). The N progeny so produced were used as
parents in the next generation. The mean additive
and genic variances maintained and their standard
errors were computed from at least six independent
runs.

(d) Approximate analysis. Insight into the be-
haviour of a new mutant allele can be gained from
extending Latter’s (1960) two-allele treatment. The
variance contributed by a mutant allele is given by
V, =d’q(1 —q)/2. Assuming the mutant’s effect is
sufficiently large (strictly large Ns) that the mutant is
eliminated before reaching appreciable frequency, the
variance contributed is approximated by ¥V, ~ a%q/2.
The expected variance after selection is therefore
V, ~ a*(q + Aq)/2, and substituting (4), this is approxi-
mated by

V)~ a’q[1 —a®/(8(w? + o))]/2.

Thus, the expected change in genetic variance from
stabilizing selection is by a factor 1—a?/[8(w?+ 0?)).
The expected proportional change in variance from
drift is by a factor 1 —1/2N,, where N, is the effective
population number. Considering mutants of equal
effect occurring at rate A per haploid genome per
generation, the expected increment in the variance of
the character from mutation is, from (1), Aa?/2, so a
recurrence relation describing the balance between
selection, drift and mutation may be written down:

Voo = Vo [l —a*/(B(wW* +o?)][1 —1/2N ] + Aa*/2,

where V, , is the genic variance at generation ¢ (i.e.
additive variance in the absence of linkage dis-
equilibrium). Ignoring second-order terms, this gives a

solution at equilibrium (# — c0) of

V, = AN,a*/[1 + N, a*/(4(w* + o?)]. (10)

The same equation has been obtained independently
by Biirger er al. (1988) using a different, heuristic,
argument. In terms of the proportion of variance,
2N,V,, = N,Ad?, maintained with no selection, the
variance is

V,=2N,V,/[1+N,a®/(4w*+a%)].
As N becomes infinite, (10) reduces to
V, = 4A(W? + o), (1)

the well-known result of Latter (1960), Bulmer (1972)
and Turelli (1984). (An alternative derivation is given
by Hill & Keightley (1988).) Where mutant effects are
unequal, the equilibrium variance can be computed by
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Fig. 2. Heterozygosity maintained during the lifetime of a
mutant, 22, ¢,(1—g,), as a function of Na2/(w*+a?),
derived using the transition matrix.

integrating (10) over a density function of mutant
effects, but result (11) still holds. Equation (10) also
shows that the equilibrium variance is (to first order)
a function of Na?/(w?+ c?).

4. Results
(1) Two-allele model

(a) Heterozygosity as a function of Ns. The ex-
pected cumulative heterozygosity contributed by a
mutant during its lifetime as a function of
Na*/(w?+0?) oc Ns is illustrated in Fig. 2, computed
using the transition matrix. H(a) is bounded by the
upper value of 2, where drift dominates, and the lower
value of zero, where selection causes immediate
elimination of the new mutant. The results in the
following sections which give examples of V¥, for
different types of gamma distribution are all functions
of the result in Fig. 2, and were generated by
integrating numerically over this function with weight-
ing according to the distribution of mutant effects
(equation 7).

(b) Variance maintained with genes of equal effect.
Fig. 3 shows the variance maintained as a proportion
of that predicted in an infinite population (cf. equation
(11)) as a function of Na®/(w®+0?®). The graph
compares the results from the transition matrix and
evaluation of (10). With increasing effects of drift
(Ns—0), the variance maintained approaches zero;
and as the effects of selection become more important
(increasing N or a*/(w*+0?)), the relative variance
maintained approaches the asymptote of 1. Interest-
ingly, the results from the transition matrix
indicate a maximum greater than the infinite popu-
lation variance. If the effects of drift and selection are
not too strong, the frequency of some mutants can
approach the meta-stable point (g = 0-5) where the
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Fig. 3. Predicted equilibrium genetic variance, ¥,
expressed as a proportion of that predicted for an infinite
population, 4A(w?®+ o?), plotted against Na?/(w?+ a?).
The curves compare predictions from the transition
matrix (exact, ) and from evaluation of equation (10)

(approximate, ———).
0-18 1
1 INV),
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012 1 €=01
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0-00 — T
0 i6 32 48 64 80 96

N

Fig. 4. Predicted equilibrium genetic variance maintained
plotted against population size N. The curves were
generated from the transition matrix, assumed a value of
V,,/ Ve = 1073, a gamma distribution of mutant effects,
with g = § and compare results for a range of

e = [E(a®)/ V] and corresponding mutation rate A. The
strength of stabilizing selection is given by w? = g2 = 1.

expected change in gene frequency is zero. This
possibility is not accounted for by equation (10),
which assumes that the selection coefficient is constant
and at its maximum. The presence of the maximum in
Fig. 3 was confirmed by Monte Carlo simulation with
equal mutant effects in a multi-locus model (results
not given). Although not shown by Bulmer (1972), the
maximum is also obtained by evaluating (9).

(¢) The influence of the scale of the mutational
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1-44

V42 + 0%)

0-24
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Fig. 5. Predicted equilibrium genetic variance, V,,
expressed as a proportion of that predicted for an infinite
population, 4A(w? + %), plotted against Ne?V, /(w?+a%).
The curves were generated by integrating the gamma
function for a range of shape parameter, g, from equal
effects (#— o0) to an extremely leptokurtic distribution
(f# = 0-25). Results from the transition matrix.

distribution. The influence of the scale of the
mutational distribution with varying population size is
illustrated in Fig. 4 for the case of a gamma distribution
of effects with shape parameter § =1 (equation 2).
The curves were generated by evaluating cumulative
heterozygosities using the transition matrix and
numerically integrating over (7). The different curves
relate V, for a fixed value of V,, with various mutation
rates (1) and with corresponding values of sizes of
effects (¢) to satisfy (1). With A — co and infinitesimally
small effects the expected V, is simply 2NV, as
obtained by Clayton & Robertson (1955). This is the
upper bound of the maintained variance. The initial
trajectory of all the other curves is also 2NV,,, but
each slowly approaches the asymptotic value given by
(11) as N increases.

(d) The influence of the shape of the mutational
distribution. Fig. 5 shows the variance maintained in
a finite population as a proportion of that which
would be maintained in an infinite population,
expressed as a function of Ne?V,/(w? + o). The curves
relate different gamma distributions of mutant effects
ranging from equal (#- o0) to a highly leptokurtic
form (B = 0-25) (see Fig. 1). The result for equal
effects is also shown in Fig. 3. Clearly, the shape of the
distribution has a strong influence on ¥, and with
highly leptokurtic forms, the approach to the asymp-
tote is exceedingly slow. Curves for other values of
shape parameter 4 also have maxima. A normal
distribution of mutant effects would correspond to a
gamma distribution reflected about zero with shape
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Fig. 6. Equilibrium additive variance plotted against
population size, N, for a gamma { distribution of

mutant effects and a range of values of ¢ = [E(a?)/ VE]%
and corresponding values of A to give V,,/V, = 107%. The
curves are from Monte Carlo simulation and compare
three lengths of chromosome, L, where L is the number
of map units. The strength of selection is given by

w? = ¢ = 1. The standard errors of the simulation points
are less than 10% of their mean. Modified from Hill &
Keightley (1988). ----, L>o00; ———, L = 1; , L=0.

parameter § = 1-75 (Hill & Rasbash, 1986), so on
Fig. 5 its curve would lie between # =1 and § = 2.

(e) Linkage. Using the transition matrix method, it
is only feasible to work out the expectation of the
variance contributed by a single locus. In order to
incorporate linkage, Monte Carlo simulation was
used. Fig. 6 compares the additive genetic variation
maintained from mutations occurring on chromo-
somes of three different lengths in populations of
varying sizes. With free recombination, the simulation
results are in good agreement with the predictions from
the transition matrix obtainable from Fig. 5, which
confirms that mutants can be treated independently to
approximate the behaviour of the system. Linkage
leads to a reduction in maintained additive variance
which is greatest with many mutants of small effect
(¢—0) and its effects are virtually absent with the
larger values. As in the case of directional selection
(Keightley & Hill, 1983, 1987), a small amount of
recombination eliminates most of the effects of
linkage, but is less effective as N increases.

(1) Multi-allele model

The above analysis is a finite population treatment
which assumes that only two alleles can segregate at
any locus. In this respect it is similar to the models of
Latter (1960) and Bulmer (1972) and to Turelli’s
(1984) ‘House of Cards’ approximation (henceforth
referred to as the LBT models), with the additional
assumption that mutant effects are randomly sampled.
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The models of Kimura (1965) and Lande (1976)
(KL Gaussian models) assume that mutant effects
differ only slightly from those already segregating,
with the consequence that the steady-state distribution
of allelic effects at the locus is normal. As Turelli
(1984) pointed out, there is a fundamental discrepancy
between the behaviour of the two types of model.
Using Kimura’s analysis, the equilibrium variance in
an infinite population at a locus (V,,) is

V,, = 2V (W + o), (12)

where V,,, is the mutational variance input at the
locus. This result can be derived by a different route.
Assume at steady state a large number of alleles
generates a normal distribution of allelic effects
segregating at a locus. The variance maintained at the
locus in a finite population can be obtained from the
recurrence

=V, (A-12N)(A =V, k265 + V,,  (13)

because the variance at the locus is reduced each
generation by the factor (1—1/2N,) by drift and
(1-V¥,,k/20%) by selection, where k depends on the
strength of selection and is the proportion of the
phenotypic variance in the unselected individuals
(Bulmer, 1980; Falconer, 1981, p. 180). With
stabilizing selection and a normal distribution of
phenotypic values, k = o?/(w?+0%). With infinite
population size, (13) reduces to Kimura’s (1965)
formula (12) (ignoring second-order terms). Equation
(13) also gives a solution for a finite population which
is a quadratic in V:

V2 k(2N,—1)+20%V,,—4N, V,,.0° = 0. (14)

I/gL,H»l

This formula is similar to that obtained using the
same assumptions by Latter (1970).

Fig. 7 compares the equilibrium genetic variance
maintained for a range of population sizes for three
different models using a gamma distribution of
mutant effects with shape parameter g = }:

(i) Gaussian: the variance was computed from the
solution to (14). This corresponds to the KL pre-
diction.

(i) ‘Two allele’: the variance was computed from
the transition matrix and numerical integration, for a
model of two alleles only per locus.

(iii) ‘Multi-allele’: the variance was computed by
simulation of n discrete freely recombining loci with
no intra-genic recombination, so the number of alleles
which can segregate at any locus is not limited.

Also shown is the variance maintained by neutral
genes which is simply 2NV,,. The main points to note
from this figure are: (a) all three models agree at small
population sizes and mutant effects where drift is
dominating; (b) the simulation of multiple alleles
agrees with the KL Gaussian prediction only when
mutant effects are small (¢ = 0-1) and the mutation
rate per locus is high (u =2 x 107%); (c¢) otherwise,
with decreasing mutation rate, but correspondingly
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Fig. 7. Equilibrium additive variance plotted against
population size, N, for three different models (see text).
Also shown is the variance predicted for no selection,
2NYV,,. The simulation used 100 equally mutable freely
recombining loci with mutation rates, u, as shown,
correponding values of ¢ so that V,, = nue®/2 = 1073V
and mutant effects sampled from a gamma distribution
with g =1 The strength of stabilizing selection is given
by w? = 19 ¢ = 19. The standard errors of the results
from the simulation are less than 5% of their mean.

increased magnitudes of mutant effects (e.g. ¢ = 1-6
and x4 = 7-81 x 107®), the simulation agrees better with
the two-allele model. The simulation illustrates the
difference between the KL approximation and
Turelli’s (1984) ‘House of Cards’ approximation.
With the number of loci chosen for this example (100),
the KL prediction hardly differs from neutrality. A
larger number of loci would allow for a smaller
standard deviation of the distribution of mutant
effects for mutation rates per locus in line with those
experimentally measured (Mukai & Cockerham,
1977). In this case, all three models would agree more
closely at the population sizes shown, but as popu-
lation sizes became much larger, would diverge as in
Fig. 7 as the effect of selection becomes stronger
relative to drift.

5. Discussion

(a) Stabilizing selection and drift. We have con-
centrated on a model where the mutation rate is
sufficiently low or the population size sufficiently
small that two alleles segregate at each locus. The
consequences of such a model with infinite population
size have been investigated previously (Latter, 1960;
Bulmer, 1972) and an important conclusion was that
the equilibrium genetic variance, V, is essentially
independent of the effects of mutants on the trait, but
depends only on the number of new mutants per
generation. As a consequence of its independence of
the effects of mutants, in an infinite population V, is
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independent of the shape of the mutational dis-
tribution. In a finite population ¥, is also proportional
to the mutation rate, but in contrast is also highly
dependent on the magnitudes of the effects of mutants.
The variance maintained is a function of population
size, the effect on the character and strength of
stabilizing selection according to Na®/(w®+ o*). The
variance contributed by a mutant during its lifetime is
at a maximum when the combination of parameters
Na*/(w*+0?) = 25, and is about 30% greater than
that in an infinite population, namely 4(w?+ ¢?). So,
for example, a mutant of effect 0-1 under weak
stabilizing selection (e.g. w®+ 0% = 20) would con-
tribute during its lifetime about 30 % more variance in
a population of 5 x 10* than in an infinite population.
This effect occurs because near-neutral mutants are
able to drift to intermediate frequencies where the
strength of selection is weakest, but mutants of larger
effect tend to be eliminated almost immediately by
selection. The maximum is a consequence of the
multi-locus nature of the system. If no other genes
were segregating when a mutation occurred, its fate
would depend on the relation of the optimum
phenotype to the population mean.

(b) Distribution of mutant effects. In a finite popu-
lation V¥, is highly dependent on the shape of the
distribution of mutant effects. Using gamma dis-
tributions, we have modelled a wide range of possible
mutant distributions ranging from all effects equal to
a highly leptokurtic form where most mutants are of
tiny effect, but most of the mutational variance, V,,, is
contributed by a few genes of large effect. With such
a distribution, in contrast to when effects are equal,
V, increases very slowly with decreasing effect of drift.
This slow approach to the asymptote is best under-
stood by considering a fixed mutational distribution
and selection, but increasing population size. The
mutants of large effect which contribute most to V,
do not contribute substantially to ¥, since they are
quickly eliminated by selection, but the many mutants
of small effect eventually contribute substantially to
V, with increasing population size because they
remain nearly selectively neutral until N becomes very
large.

An implicit assumption of the analysis has been a
symmetrical distribution of mutant effects. If there are
few mutants segregating, or mutant effects are small,
asymmetry does not influence the variance maintained,
and this was confirmed by simulation (results not
shown). The simulations also showed that, in general,
slightly less variance is maintained with a skewed
distribution of mutant effects, because the population
mean is moved away from the optimum and selection
is thereby stronger against most new mutants. Also,
the genotypic distribution becomes skewed (Keightley
& Hill, 1987) and selection tends to remove more
variation than it would from a symmetrical dis-
tribution.
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Results have been presented only for expectation of
the genetic variance maintained in the population. As
shown by Biirger et al. (1988) for stabilizing selection
and by Keightley & Hill (1983) for directional selection
with mutation, there can be a very high variability
between generations in ¥, and a strong autocorrelation
of V, over successive generations.

(¢) Linkage. With stabilizing selection the extreme
genotypes are less favoured, so there is a tendency for
repulsion genotypes to persist and coupling genotypes
to be eliminated. The result is that the additive
variance is less than the genic variance because there
is a “hidden’ negative disequilibrium component. The
simulations show that disequilibrium increases with
increasing mutation rate and with population size
because there are more mutants segregating. Also, for
the same reason, linkage has more influence when
most of the mutational variance is contributed by
many genes of small effect than a few genes of large
effect.

The results show that recombination is very efficient
at eliminating such influence of disequilibrium. In the
examples shown, one crossover is sufficient to give
results almost indistinguishable from free recom-
bination. These simulations were, it should be empha-
sized, extreme cases with relatively strong selection
and all the mutants appearing on one chromosome.
The results from the simulation are relevant to the
appropriateness of the two-allele model (next section),
because the simulation is an infinite-sites model with
no distinction between alleles and loci. The efficiency
of even a small amount of recombination in elimin-
ating linkage disequilibrium (cf. Keightley & Hill,
1983, 1987) implies that the two-allele model is a good
enough approximation because mutants occurring
close together on the chromosome can be regarded as
being either at the same or at different loci.

(d) Appropriateness of the model. Most of the
analysis has been restricted to segregation of only two
alleles per locus. A model has also been investigated
which resembles more closely those of Kimura (1965)
and Lande (1976), in which the effects of new alleles
are assumed to be small relative to the existing
variance at the locus at which many alleles segregate,
so the asymptotic distribution of allelic effects at a
locus is approximately normal. Turelli (1984) has
questioned the appropriateness of the KL model since
the mutation rate per locus is unlikely to sustain
sufficient standing variation at a locus for the
assumptions in the model to be valid. Simulation
results (Fig. 7) with finite populations support Turelli’s
objections. The analytical result of Kimura (equal to
first order to Lande’s) is only in agreement where the
mutation rate per locus is exceptionally high and
mutant effects small. With mutation rates per locus
closer to experimentally obtained estimates, i.e. 107
to 107 (Mukai & Cockerham, 1977; Turelli, 1984),
the two-allele model provides a good approximation.
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Implications

The maintenance of genetic variation is a central
problem in population biology, and the question of
whether a mutation-stabilizing selection balance can
maintain the observed levels of heritable variation has
been frequently addressed (e.g. Lande, 1976, 1980;
Turelli, 1984, 1985). The results show that, with finite
population size, the shape of the mutational dis-
tribution has a strong influence on the genetic variance
maintained under mutation-selection balance. There
is little information concerning the shape of the
distribution of mutational effects for any character,
but can an informed guess be made from insights into
biochemistry and molecular biology ? In principle, all
mutants, no matter where they occur in the genome,
must have at least some effect on all characters, albeit
very small. The interactive nature of metabolism,
where the fluxes and metabolite pool concentrations,
are systemic properties dependent to a greater or
lesser extent on all enzymes in the ‘metabolic map’
(Kacser & Burns, 1973) tells us that there must be
hundreds, if not thousands, of enzymes, variation in
the activities of which will affect any character which
is in some way controlled by the metabolism of the
organism. Evidence for functional constraint in the
genome (Kimura, 1983, ch. 7) at such sites as introns,
silent (non-replacement) sites within coding sequences,
and gene flanking sequences, suggests that there are
many places in the genome capable of producing some
small phenotypic effect. Thus it can be argued a priori
that the distribution of mutant effects on complex
quantitative characters is highly leptokurtic: most
mutants are either of such trivial effect or so ‘distant’
from the character that they have almost no effect at
all, but there is a smaller class of genes, more directly
capable of influencing the trait with mutants of
relatively large effect. The total number of mutants
affecting a character is therefore high, much higher
than an experiment designed to count polygenes
would detect, but the effect of most of them is very
small (see Robertson, 1967).

The difficulties in estimating the number and effects
of mutants influencing a quantitative character are
highlighted by the following illustrative example.
Assume by genetic means only mutants showing an
effect on the character of at least one-half of a standard
deviation can be detected and the standard deviation
of the mutational distribution is 1-6 units. If all effects
were equal, then the genetic test would detect all the
new mutants. If, however, the mutational distribution
were more extreme (for example, gamma with shape
parameter 0-25 (see Fig. 1)) then only 21 % of the new
mutants would be detected but they would contribute
most of the variance (96 %).

With this consideration in mind, estimates of the
number of new mutants per generation affecting
various quantitative traits in maize (Sprague, Russell
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& Penny, 1960; Russell, Sprague & Penny, 1963) seem
rather high. These experiments gave estimates of A for
detectable mutants of about 0-06, implying, with, say,
a mutation rate per locus of 107%, many thousands of
loci at which mutations give sufficiently large effects to
be detected. Such experiments, however, might now
have to take into consideration the possibility of
induction of ‘mutator’ genes (McClintock, 1950) in
these crosses caused by movement of transposable
elements known to be capable of affecting quantitative
traits (Mackay, 1987). The rates of mutation may vary
widely between populations as results of T.F. C.
Mackay (personal communication) suggest, due to
varying transposition rates.

(a) Predicting maintained heritability — assigning
values to parameters. The important parameters are
the mutational variance input per generation, the
shape and scale of the mutational distribution, the
strength and mode of operation of natural selection,
and effective population size. As implied earlier,
information is scarce on values of most of these
parameters relevant to natural populations. If, how-
ever, it is assumed that V,,/V, = 1073, the character is
affected by a fairly extreme distribution of effects (i.e.
gamma with £ = 0-25); most variance is contributed
by mutants of fairly large effect (e.g. ¢ =04 and
therefore the mutation rate per genome A = 0-0125,
implying ¢. 400 loci each mutating at ¢. 0-3 x 107°);
and a ‘typical’ value of w* = 20 ¢® (Turelli, 1984), then
with N, = 103, the maintained heritability would be
about 21 % ; with N, = 10%, the maintained heritability
would be about 33 %, but there would be less than half
of the genetic variance that would be present in an
infinite population. It is notable that in an infinite
population the maintained variance is proportional to
w?+ a2, and is very sensitive in a finite population to
changes in w?+¢? over a wide range of parameters
(flat part of curves in Fig. 5). If many characters are
simultaneously subject to stabilizing selection, the
value for w?/g? of 20 chosen in the above example
may be smaller than typical (i.e. selection strength too
strong) due to the genetic load that such selection
would impose on the population. Thus, on the face of
it, mutation-stabilizing selection balance is an attrac-
tive candidate for explaining the observed levels of
heritable variation in populations that vary over a
wide range in effective population size. The above
calculations become less attractive when we consider
the problems in estimating the strength of natural
selection and in justifying the single character model
of stabilizing selection. Such aspects have been
discussed in detail by Turelli (1984, 1985).

(b) Mode of action of natural selection. The effect
of pleiotropy is to reduce the genetic variation
maintained since, for example, the selection coefficient
against a mutant if stabilizing selection acts inde-
pendently on each character, i, is proportional to
E[af/(wf+a,2)]. Clearly, the analysis could easily be
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extended to include pleiotropy and Fig. 2 still applies
with the horizontal axis labelled as N 2 [a2/(w?+ ¢2)],
reflecting the selection acting on all the other
characters. If mutant effects on each trait are
uncorrelated and there are k traits, then the variance
maintained for each is reduced in proportion to 1/k
(Turelli, 1985).

Pleiotropic gene action is likely to affect other
characters subject to stabilizing selection, or to affect
characters such as fertility and viability more closely
connected with fitness per se. In the former case the
selection experienced by a mutant allele will be
proportional to the square of the effect on the
pleiotropically related character, but in the latter case
the pleiotropic selection is directional and is pro-
portional to the allelic effect to first order (see Hill &
Keightley, 1988). Thus, especially when allelic effects
are small, the selection due to the effect on fitness
dominates and even small negative correlations with
fitness-related characters are likely to have a large
impact on the maintained heritability.

It seems therefore that in order to fully understand
the maintenance of variation in a quantitative
character the bivariate distribution of mutant effects
on that character and on fitness is a critical parameter.
Since the present analysis suggests that mutants of
small effect are likely to be more important in
maintaining variation, the more accessible part of the
mutational distribution may be of less interest. We are
some way from a satisfactory understanding of the
mechanisms of maintenance of variation in polygenic
traits.

We are grateful to Michael Turelli and Reinhard Biirger
for many helpful comments and to an anonymous referee
for constructive criticisms. We wish to thank the Agri-
cultural and Food Research Council for financial support.
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