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The presence of a dispersed phase can significantly modulate the drag in turbulent
systems. We derived a conserved quantity that characterizes the radial transport of
azimuthal momentum in the fluid—fluid two-phase Taylor—Couette turbulence. This
quantity consists of contributions from advection, diffusion and two-phase interface,
which are closely related to density, viscosity and interfacial tension, respectively. We
found from interface-resolved direct numerical simulations that the presence of the
two-phase interface consistently produces a positive contribution to the momentum
transport and leads to drag enhancement, while decreasing the density and viscosity ratios
of the dispersed phase to the continuous phase reduces the contribution of local advection
and diffusion terms to the momentum transport, respectively, resulting in drag reduction.
Therefore, we concluded that the decreased density ratio and the decreased viscosity ratio
work together to compete with the presence of a two-phase interface for achieving drag
modulation in fluid—fluid two-phase turbulence.
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1. Introduction

Two-phase flow, consisting of two immiscible fluids, is widely encountered in various
engineering applications. The presence of a dispersed phase can significantly alter the
flow characteristics, leading to either drag enhancement or drag reduction (Balachandar
& Eaton 2010; Ceccio 2010; Lohse 2018; Mathai, Lohse & Sun 2020; Yi et al. 2023).
A correct understanding of the mechanism of drag modulation is of great significance
to relevant engineering applications; however, a comprehensive understanding of this
mechanism is still missing.

A typical characteristic of liquid-liquid two-phase flow is the dynamics of the interface,
which involves deformation (Rallison 1984; Rosti, De Vita & Brandt 2019; Hakansson
et al. 2022), coalescence (Stone 1994; Kavehpour 2015) and breakup (Lemenand et al.
2017; Olad et al. 2023; Ni 2024). When coalescence is counterbalanced by breakup,
the dispersed phase exhibits a specific size distribution which can be well described
by a lognormal distribution (Yi, Toschi & Sun 2021). Under fixed Reynolds number,
the dispersed phase has almost the same average size for different volume fractions (Yi
et al. 2022). It has been observed that the dispersed phase volume fraction is positively
correlated with the global transport of a liquid-liquid two-phase turbulent flow (Yi
et al. 2022), indicating that increasing the interfacial area could contribute to the drag
enhancement. The effect of dispersed phase coalescence in liquid-liquid two-phase flow
has recently been studied using interface-resolved direct numerical simulations (De Vita
et al. 2019; Cannon et al. 2021), and it is found that the coalescence effectively decreases
the interfacial area, thus weakening the drag enhancement effect, and vice versa (De Vita
et al. 2019). Additionally, the interface deformation is also found to be important for
the gas—liquid turbulent drag reduction (Van den Berg et al. 2005; van Gils et al. 2013;
Spandan, Verzicco & Lohse 2017; Lohse 2018; Mathai er al. 2020). The bubbles with
large size or high deformability exhibit pronounced drag reduction effect (Lu, Fernandez
& Tryggvason 2005; Verschoof et al. 2016), but the drag reduction effect is lost when the
bubbles are reduced to small sizes after the addition of surfactants (Verschoof et al. 2016).

Existing studies show that interface dynamics induce very different drag modulation
effects in liquid-liquid and gas-liquid two-phase flows (Lohse 2018; Mathai et al.
2020; Yi et al. 2023). However, the role played by the fluid properties of the
dispersed phase in these effects remains unclear. The interface dynamics, density and
viscosity of the dispersed phase are intricately coupled, making it challenging to
isolate the influence of the individual effects on drag modulation. In this study, we
utilize interface-resolved three-dimensional direct numerical simulations to track interface
dynamics in Taylor—Couette turbulence. Additionally, we employ momentum budget
analysis to investigate the individual and coupling effects of the interface dynamics,
density and viscosity of the dispersed phase. We aim to uncover how these factors operate
and determine whether they cooperate or compete with each other in drag modulation.

2. Results and discussion

The interface-resolved three-dimensional direct numerical simulations of two-phase
fluid—fluid flow in a Taylor—Couette (TC) system were carried out using a volume-of-fluid
(VOF) method with the piecewise linear interface calculation (PLIC) based on the
open-source OpenFOAM v8 (Rusche 2003; Chen, Zhao & Wan 2022). We consider two
immiscible and incompressible fluids confined between two coaxial cylinders whose radii
are r; (inner) and r, (outer). In this work, we have chosen to fix the outer cylinder while
allowing the inner cylinder to rotate with a constant angular velocity w;. The two-phase
flow is governed by the Navier—Stokes equations
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ap+V - (pu) =0, 2.1)

d(pu) + V + (puu) = —Vp + V « [u(Vu + V)] + £, 2.2)

where u is the velocity and p is the pressure. The p and u are the variable density and
viscosity, respectively. The continuous carrier phase is characterized by the density pf and
viscosity s, whereas the dispersed phase is described by the density pg and viscosity 1i4.
The phase fraction « is introduced to characterize the variable density and viscosity, i.e.
p=oaopg+ (1 —a)or and u = aug + (1 — a)uy. The continuum surface force method,
as proposed by Brackbill, Kothe & Zemach (1992), is adopted in this study to describe
the interfacial tension, i.e. f = —ok Vo, where o denotes the surface tension coefficient
and k =V . (Va/|Va|) represents the interface curvature. The accuracy of the VOF
method is often affected by interface sharpness (Gamet et al. 2020) and spurious currents
(Vachaparambil & Einarsrud 2019; Fan & Anglart 2020). The detailed numerical methods
and computational accuracy are presented in the supplementary material available at
https://doi.org/10.1017/jfm.2024.206.

In the simulated TC system, a rotational symmetry of six (i.e. the simulated azimuthal
region is set as 1/3) is chosen to reduce computational costs without compromising
the accuracy of our results. This choice has been validated for both single phase and
multiphase TC turbulence (Brauckmann & Eckhardt 2013; Spandan, Verzicco & Lohse
2018; Assen et al. 2022; Xu et al. 2022, 2023). The curvature of a TC system is defined as
n = ri/r, = 0.714 and the aspect ratio is defined as I = L/d = 2n/3, where d = r, — r;
is the gap width and L is the axial length. No-slip and impermeable boundary conditions
are imposed in the radial direction, while periodicity is imposed in the axial and azimuthal
directions. The inner and outer cylinders are subjected to a Neumann boundary condition
for the phase fraction, resulting in a default contact angle of 90°. The system is uniformly
discretized by (336 x 192 x 192) grid points in the azimuthal, radial and axial directions,
respectively. The grid spacing is measured in wall units y* based on the shear stress at
the inner cylinder for single-phase flow. In the radial direction, the uniform grid spacing is
0.725y™. Alternatively, a total amount of six grids is embedded inside the viscous sublayer,
whose thickness is 0.0359d. The uniform grid spacing in the axial direction is 1.519y™.
The grid spacing in the azimuthal direction ranges from 1.085y" near the inner wall
to 1.519y" near the outer wall. The Reynolds number Re = psriw;d/js and the Weber
number We = pfr?a)?d /o are fixed at 2000 and 1260, respectively. The Taylor number

is fixed as Ta = [Re(1 + 1)3/(8n%)]*> = 6.1 x 10°. Due to the increased computational
resources required for resolving the two-phase interface and the smaller time step needed to
capture capillary wave propagation (Brackbill ef al. 1992) in the two-phase flow compared
with the single-phase case, we have chosen Ta = 6.1 x 10° to ensure compatibility with
our available computational resources. When the Taylor number exceeds 3 x 10°, the
flow field transitions into the classical regime of TC turbulence (Grossmann, Lohse &
Sun 2016). Our chosen Taylor number falls within this regime, ensuring an adequate
amount of turbulence information. The Weber number of 1260 is chosen to ensure that
the spurious velocities remain within an acceptable range, as depicted in figure S2 in the
supplementary material. The maximum Courant—Friedrichs—Lewy number is set to be 0.2.
All the presented statistics are collected for at least 20 turns over time after reaching a
statistically steady state.

Due to the centrifugal effect in the TC system, the distribution of dispersed phase is
affected by the density ratio &, = pq/ o as well as the viscosity ratio &, = uq/ s of the
dispersed phase to the continuous phase. Figure 1 displays the instantaneous interface
snapshots and phase distribution for the dispersed phase volume fraction of ¢ = 20 %,
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Figure 1. Instantaneous interface snapshots and corresponding azimuthally and time-averaged phase fraction
(a)g,r. The green arrows indicate the direction and magnitude of the averaged radial-axial velocity vectors
(tr7)0.1/ui, where u; = wjr; is the velocity of the inner cylinder and z denotes the axial position.

providing valuable insights into the spatial distribution and behaviour of the interface
and phase components in the system. The averaged radial-axial velocity vectors are also
displayed by green arrows to denote the structure and strength of the Taylor vortex. When
¢, =1and &, = 1, the dispersed phase predominantly accumulates at the centre of the
Taylor vortex, which is primarily attributed to the linear shear gradient present in the
system (Hori et al. 2023). When &, = 1/4 and &, = 1, the dispersed phase migrates
towards the inner wall of the system due to the centrifugal force exerted by the rotating
flow. Consequently, the dispersed phase gathers in the plume ejection region near the
inner wall and weakens the Taylor vortex. Furthermore, when &, = 1/4 and &, = 1/4,
the distribution of the dispersed phase becomes more concentrated near the inner wall and
the Taylor vortex is again weakened. The results indicate that decreasing the density ratio
&, and the viscosity ratio &, facilitates the gathering of the dispersed phase near the inner
wall and the weakening of the Taylor vortex. Our objective is to analyse the specific effects
of dispersed phase density and viscosity on the process of drag reduction.

Through sequential variations of the volume fraction ¢, the density ratio &, and the
viscosity ratio &,, we conducted a comprehensive study to investigate the influence of
these parameters on the drag modulation (see table 1). The results reveal several important
findings. Firstly, when &, = 1 and &, = 1, it causes a minor increase in drag, indicating
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@ & = pa/pr  &u = pa/ny Drag modulation (T/Tp=0) — 1)
0 J— N N

10 % 1 1 +0.63 %

10 % 1/4 1 —16.02%

10 % 1/4 1/4 —23.44 %

20% 1 1 +1.04%

20% 1/4 1 —28.31%

20% 1/4 1/4 —50.23 %

Table 1. Drag modulation in two-phase flow. Here T represents the torque exerted on the inner cylinder and
Ty—o denotes the torque specifically associated with the single-phase flow condition.

a slight drag enhancement effect. However, when we lower &, to 1/4, a significant drag
reduction is observed. Moreover, further reducing &, to 1/4 enhances the drag reduction
effect even more. Furthermore, we found that the drag modulation shows similar trends
for the dispersed phase volume fraction of ¢ = 10 % and ¢ = 20 %. Under fixed density
ratio &, and viscosity ratio &,, an increase in the volume fraction ¢ leads to a stronger
drag enhancement or drag reduction effect. In other words, as the volume fraction of the
dispersed phase increases, the influence on the drag becomes more pronounced. These
results highlight the significant impact of the dispersed phase’s density, viscosity and
volume fraction on the flow dynamics, particularly in terms of drag enhancement and
drag reduction effects.

Given the similar trends in drag modulation for the dispersed phase volume fraction
of ¢ = 10% and ¢ = 20 %, we next focus on the case with ¢ = 20 %. To investigate the
impact of the dispersed phase on the flow field, figure 2 displays the radial profiles of the
normalized azimuthal momentum and pressure calculated based on the phase distribution
(see the inset figure) as a reference. When §, = 1 and §,, = 1, the azimuthal momentum in
the bulk region of the two-phase flow shows a slight decrease. The pressure is modulated
in the region away from the inner cylinder and shows a decrease near the outer cylinder.
Specifically, the modulation starts at a point where the phase fraction deviates from zero,
but the modulation is insignificant overall. By reducing the density ratio &, or viscosity
ratio &;,, a notable decrease in the azimuthal momentum and pressure in the bulk region
is observed, aligning with the observed drag modulation. It is revealed that the reduction
in the density ratio and the viscosity ratio plays a vital role in causing this decrease. The
density ratio and the viscosity ratio are identified as key factors influencing drag reduction.

To investigate the effects of dispersed phase density and viscosity on the turbulent
transport, we investigate the radial profile of total shear stress (figure 3a), viscous shear
stress (figure 3b) and their difference (figure 3c). Due to the density difference between
the dispersed and continuous phases, the Reynolds averaging is no longer applicable.
We therefore adopt the Favre averaging (Favre 1969), which applies a density-weighted
average to the velocity. The difference between the total shear stress and viscous shear
stress is thus written as T — 7, = —(pu’e/ u) .+ (hereafter referred to as Favre shear stress),
which could be used to characterize the turbulence term. For the two-phase flow with
¢, =1 and &, = 1, the profiles of the shear stresses are nearly identical to those for
the single-phase case. However, by reducing the density ratio &, or viscosity ratio &,, a
significant decrease in the total shear stress is observed due to the decrease near the wall
for the viscous shear stress and the decrease in the bulk region for the Favre shear stress,
which is consistent with the observed drag reduction.
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Figure 2. (a) The azimuthal momentum (pug)a,:/(oru;) and (b) pressure ((p)a,r — (Pi)a.r)/(Po.p=0)A.r @S A
function of the radial position, where uy is the azimuthal velocity, p; is the pressure at the inner cylinder,
and p,, 4= is the pressure at the outer cylinder in single-phase flow. Correspondingly, the inset figure exhibits
the radial profile of phase fraction («)4 ;. The average operator (-)4 ; is to obtain the axially, azimuthally and
time-averaged value of the quantity.
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Figure 3. (a) The total shear stress /7 y—0, (b) viscous shear stress 7,,/7; y—0 and (c) Favre shear stress
—(pu’éu’/)m /Tip=0 as a function of the radial position, where 7;,—¢ is the total shear stress on the inner
cylinder in single-phase flow. The Favre normal stresses (d) (pu;u))a 1/ Ti.p=0, (€) (puguy)a.i/Ti.p—=0, and
(f) (pulul)a,;/Tip=0 are also shown as a function of the radial position, where u = u, — (pu;)a,:/{P)A,1
uy = ug — (pug)a.i/{p)a and u = u; — (puz)a,+/(p)a,; are the fluctuations of radial velocity u,, azimuthal

velocity ug and azimuthal velocity u,, respectively.
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To further study the influence of the dispersed phase on the turbulence fluctuations,
we show the Favre normal stresses (figure 3d—f), which are generally investigated by the
root mean square (r.m.s.) velocity fluctuations in the constant density flow system (Zhu
et al. 2016; Wang et al. 2023b). For the two-phase flow with §, =1 and &, =1, the
normal stress modulation is not very significant and the profiles of the normal stresses
almost coincide with those for the single-phase case. By reducing the density ratio &, or
viscosity ratio £, there is an overall reduction in the normal stress (pu, u,') 4 ;. The normal
stress (puyuy)a, shows a significant decrease near the inner and outer cyhnders, while an
increase is seen in the bulk region. A similar phenomenon has also been found in the study
of the r.m.s. streamwise velocity fluctuations for polymer drag reduction systems, i.e. the
r.m.s. streamwise velocity fluctuations decrease near the wall but increase away from the
wall (Min et al. 2003; Wang et al. 2023b). The normal stress (ou]/u])s ; shows a stronger
reduction, indicating that the Taylor vortex has been significantly weakened as indicated
by the averaged radial-axial velocity vectors in figure 1. As a result, the drag reduction
caused by decreasing the density or viscosity of the dispersed phase is accompanied by a
significant decrease in turbulence fluctuations.

To quantitatively characterize the effect of dispersed phase density and viscosity in drag
modulation, we have derived a conserved quantity J* that characterizes the radial transport
of azimuthal momentum in the two-phase TC turbulence,

JO = adv (}") + dlf(r) + int(r)’ (23)

and provided the explicit expressions for the three terms on the right-hand side of (2.3),
which are contributions from advection, diffusion and two-phase interface, respectively
(see supplementary material for the detailed derivations):

adv (r) = <r3purw>A,t» 2.4)
J§e(r) = = (w0 8,0 + rdgun)a.r. (2.5)
S (1) = — f (rPfo)a, dr. (2.6)

These three terms are closely related to density, viscosity and interfacial tension,
respectively. By normalizing (2.3) with the single-phase non-vortical laminar current
Jiom = Z;Lfr?r(%w,-/(rg —rl.2), we obtain the Nusselt number Nu, =J“/J;), . which
represents the overall transport of azimuthal momentum. Additionally, we can express
the contributions of advection (Nu, qqy (1)), diffusion (Nu, q4if (r)) and two-phase interface
(Nug,ins(r)) as functions of the radial position r. It is well-established that the Nusselt
number Nu, and torque 7 in the TC system are related through the equation 7 =
2nLJ;), Nu,, (Eckhardt, Grossmann & Lohse 2007). This relationship offers a convenient
way to effectively decouple the effects of density, viscosity and two-phase interface on
drag reduction (see figure S3 in the supplementary material). Note that the advection
contribution comprises both an average part and a turbulent part, with the average part
being negligible compared with the turbulent part (see figure S4 in the supplementary
material). Therefore, similar to that in plate flows (Picano, Breugem & Brandt 2015;
Wang, Jiang & Sun 2023a), the advection contribution may be equivalent to the turbulence
contribution.

For the two-phase flow with £, =1 and &, = 1, the advection contribution is slightly
reduced in regions where the interface contribution is relatively large (see figure 4a,c),
suggesting that the two-phase interface has a subtle modulation effect on the advection
processes, consistent with the conservation of azimuthal momentum transport.
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Figure 4. Momentum transport analysis. (a¢) The normalized advection contribution, (b) the normalized
diffusion contribution and (c) the normalized interface contribution as a function of the radial position
are shown. (d) The momentum transport and its three contributions are averaged in the radial direction to
characterize the corresponding terms within the whole system. The dashed lines in (d) represent the averaged
values for single-phase flow.

Considering the limited change in the diffusion contribution (see figure 4b), it is evident
that the two-phase interface becomes the primary factor responsible for drag enhancement.
In view of the insignificant effect of drag enhancement (see figure 4d), we additionally
calculated a case where the Reynolds number and the surface tension coefficient are
tripled, again showing the dominant role of interfacial tension in drag enhancement
(see figure S5 in the supplementary material). It is important to note that the interface
contribution, as shown in figures 4(c) and 4(d), is consistently positive, indicating that
the two-phase interface does not contribute to drag reduction in the system. However,
due to the small magnitude of the obtained interface contribution, which accounts for
approximately 4 % of the conserved quantity, a more in-depth investigation specifically on
this term should be conducted in future work.

Since the interface contribution (J$ (r)) acts primarily to increase drag and is very
small in our drag reduction cases (see figure 4d), we will focus on the advection (J¢,, (1))
and diffusion (J;Zf(r)) contributions in the subsequent analysis. Lowering &, to 1/4
results in a reduction in the local advection contribution. The density ratio &, = 1/4
promotes dispersed phase’s gathering near the inner wall, which in turn leads to a
significant decrease in the upstream advection contribution. This ultimately results in an
overall reduction in the advection contribution (see figure 4a). Based on the conservation
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of momentum transport, the diffusion contribution is redistributed (see figure 4b) but
the total diffusion contribution remains the same (see figure 4d). Further reducing &,
to 1/4 causes a decrease in the local diffusion contribution near the inner wall (see
figure 4b), ultimately leading to a reduction in the total diffusion contribution (see
figure 4d). Additionally, based on the conservation of momentum transport, the advection
contribution is modulated and again overall reduced (see figure 4a). It is evident that the
combination of decreasing density ratio &, and viscosity ratio &, plays a dominant role
in drag reduction. Therefore, the blocking effect of the dispersed phase on momentum
transport is due to the decreased density and viscosity ratios. In our ongoing preliminary
simulations on drag modulation in two-phase plane-Couette turbulence, we have observed
similar drag modulation mechanisms. This is beyond the scope of the current work and will
be systematically investigated and compared with the present study in our future work.

Given the generality of (2.3), our conclusion can be extended to analyse bubble drag
reduction in turbulent flows (van Gils et al. 2013). Due to the extremely low density
and viscosity ratios of the bubble to the continuous phase, the advection and diffusion
contributions are significantly reduced, resulting in drag reduction. Meanwhile, it has been
reported that bubbly drag reduction is effective when large bubbles are present, but the
drag reduction effect is lost when the bubbles are reduced to small sizes after the addition
of surfactants (Verschoof et al. 2016). We can provide a physical understanding of this
observation. When surfactants are added to decrease the surface tension coefficient, it
leads to a reduction in bubble size. However, this reduction in bubble size is accompanied
by an increase in the interfacial area in the system. As a result, the interface contribution
to drag, which is enhanced by the increased interfacial area, offsets the drag reduction
caused by the low density and viscosity ratios. Furthermore, the decrease in bubble size
also attenuates the effective centripetal Froude number exerted on the small bubbles (van
Gils et al. 2013), leading to a reduced accumulation of gas near the inner wall. This can
explain why the drag reduction is lost when the bubbles are shrunk to small sizes after the
addition of surfactants.

3. Conclusions

In conclusion, we have derived a conserved quantity that characterizes the radial transport
of azimuthal momentum in fluid—fluid two-phase TC turbulence. This conserved quantity
consists of three terms: the density-related advection contribution, the viscosity-related
diffusion contribution and the interface contribution. Our analysis highlights the
significant roles played by two-phase interface, density and viscosity ratios in modulating
drag. Specifically, decreasing the density ratio of the dispersed phase to the continuous
phase reduces the local advection contribution, while decreasing the viscosity ratio
reduces the local diffusion contribution. Through modulation and redistribution, these
effects lead to an overall reduction in momentum transport. On the other hand, the
two-phase interface consistently produces a positive contribution to drag enhancement. By
considering the interplay between density ratio, viscosity ratio and two-phase interface, we
conclude that drag modulation is achieved through the combined influence of these factors.
The current findings contribute to a better understanding of the mechanisms underlying
drag reduction in two-phase turbulent flows.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.206.
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