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Abstract

Given a set of points in the plane, the problem of existence and finding the least absolute
deviations line is considered. The most important properties are stated and proved and
two efficient methods for finding the best least absolute deviations line are proposed.
Compared to other known methods, our proposed methods proved to be considerably
more efficient.
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1. Introduction

Let I = {1, . . . , m}, m ≥ 2, be a set of indices, and let 3= {Ti (xi , yi ) ∈ R2
| i ∈ I }

be a set of points in the plane. The problem of determining parameters a and b of
the linear function f (x; a, b)= ax + b, in order to have its graph pass as close as
possible (in some sense) to the given points, is an old problem which has been solved
in various ways. Most frequently it is assumed that errors can occur only in measured
values of the independent variable. In this case, if we use the l2 norm, we have the
ordinary least squares (OLS) problem and the OLS line. In many technical and other
applications (where so-called ‘outliers’ can be expected) using the l1 norm is much
more interesting. In the literature this approach is better known as the least absolute
deviations (LAD) problem of finding the LAD line (see, for example, [8, 11, 21]).
For example, in calculating movements of robots, based on the data obtained from a
stereographic camera, it is important to estimate the position of a straight line in the
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plane efficiently and in real time (see [7, 14]). At the same time, the outliers in the
data should not affect the results obtained. It is known that problems of this kind can
be solved by applying the LAD approach (see, for example, [2, 6, 8, 21, 26, 32]). In
this paper we give an overview of basic properties and facts related to estimation of
parameters of the best LAD line, and propose two methods for finding them.

If errors are assumed to occur in measured values of both (dependent and
independent) variables, and then in general the lp norm is used, we have the total
least p problem (see, for example, [1, 28, 31]).

In this paper the most important properties of the LAD line will be stated and proved
and two efficient methods will be proposed. The first method basically relies upon [17]
and for it the convergence theorem is proved. The second method for finding the best
LAD line is a particular Gauss–Newton iterative process, which is based on solving a
series of weighted least squares (WLS) line problems. Therefore, first some general
properties and facts involved in this approach are given.

Basic properties of the LAD line are already known (see, for example, [2, 5, 6,
8, 9, 11, 17, 19, 21, 22, 26, 34, 37]). In this paper we present new and constructive
proofs of those properties which enable us to construct efficient methods and prove the
convergence theorem. Our methods have been compared to numerous other methods
known from literature, and have proved to be much more efficient.

2. The best WLS line

The best WLS line is the graph of the function

f (x; a∗, b∗)= a∗x + b∗, a∗, b∗ ∈ R, (2.1)

whose parameters a∗, b∗ are determined by minimizing the functional

F2(a, b)=
m∑

i=1

ωi (yi − axi − b)2, (2.2)

where Ti (xi , yi ), i = 1, . . . , m, m ≥ 2, are points in the plane, and ωi > 0 are
corresponding data weights.

Using some natural conditions on the data it can be shown (see, for example, [4])
that there exist unique optimal parameters a∗, b∗ of the best WLS line.

The following lemma contains the well-known fact that the best l2 weighted
approximation of the measured data is the weighted arithmetical mean of the measured
data. This lemma is used in proving the fact that the best WLS line passes through the
centroid of the data, and its proof is trivial.

LEMMA 2.1. Let (ωi , yi ), i = 1, . . . , m, be the data, where y1, . . . , ym are real
numbers, and ωi > 0 corresponding data weights. Then

m∑
i=1

ωi (yi − λ)
2
≥

m∑
i=1

ωi (yi − y)2, y =
1
ω

m∑
i=1

ωi yi , ω =

m∑
i=1

ωi , (2.3)

where the equality holds if and only if λ= y.
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LEMMA 2.2. For the given data (ωi , xi , yi ), i = 1, . . . , m, m ≥ 2, in the plane with
weights ωi > 0, i = 1, . . . , m, the best WLS line passes through the centroid of the
data (x, y), where

x =
1
ω

m∑
i=1

ωi xi , y =
1
ω

m∑
i=1

ωi yi , ω =

m∑
i=1

ωi .

If min xi <max xi , then there exists a unique best WLS line whose parameters are
given by

a∗ =

∑m
i=1 ωi (xi − x)(yi − y)∑m

i=1 ωi (xi − x)2
, b∗ = y − a∗x . (2.4)

If x1 = · · · = xm =: ξ , then there exist infinitely many best WLS lines, which take the
form y = a?(x − ξ)+ y, where a? is an arbitrary real number.

PROOF. First note that there exist optimal parameters a∗, b∗ ∈ R of the functional F2
given by (2.2). Following [27] and according to Lemma 2.1, it is easy to see that

F2(a
∗, b∗)≥ F2(a

∗, y − a∗x),

from which we conclude that the best WLS line must pass through the centroid of the
data, that is, the best WLS line should be searched for in the form x 7→ a(x − x)+ y
by minimizing the functional

F2(a)=
m∑

i=1

ωi [(yi − y)− a(xi − x)]2

whence, under condition min xi <max xi , it is easy to obtain formulae (2.4).
If x1 = · · · = xm =: ξ , then according to Lemma 2.1,

F2(a, b)=
m∑

i=1

ωi (yi − aξ − b)2 ≥
m∑

i=1

ωi (yi − y)2,

where the equality holds if and only if aξ + b = y. Hence, in this case there exist
infinitely many best WLS lines which take the form f (x; a∗)= f (x; a∗,−ξa∗ + y)
= a?(x − ξ)+ y, where a? is an arbitrary real number.

3. Weighted median of the data

Let us first prove the following lemma, which gives properties and a solution of the
weighted median problem. This lemma is used in the proof of the existence of the best
LAD line passing through at least two different points of the data and other important
theorems.

LEMMA 3.1. Let (ωi , yi ), i ∈ I, I = {1, . . . , m}, m ≥ 2, be the data, where y1 ≤ y2
≤ · · · ≤ ym are real numbers, and ωi > 0 corresponding data weights. Denote

J =

{
ν ∈ I

∣∣∣∣ 2
ν∑

i=1

ωi −

m∑
i=1

ωi ≤ 0
}
.
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For J 6= ∅, let ν0 =max J . Furthermore, let F : R→ R be a function defined as

F(α)=
m∑

i=1

ωi |yi − α|. (3.1)

(i) If J = ∅ (that is, 2ω1 >
∑m

i=1 ωi ), then the minimum of F is attained at the point
α? = y1.

(ii) If J 6= ∅ and 2
∑ν0

i=1 ωi <
∑m

i=1 ωi , then the minimum of F is attained at the
point α? = yν0+1.

(iii) If J 6= ∅ and 2
∑ν0

i=1 ωi =
∑m

i=1 ωi , then the minimum of F is attained at every
point α? from the segment [yν0, yν0+1].

PROOF. Notice that on each interval

(−∞, y1), [y1, y2), . . . , [ym−1, ym), [ym,∞),

F is a linear function and slopes of those linear functions are consecutively dν, ν =
0, . . . , m, where

d0 =−

m∑
i=1

ωi , dm =

m∑
i=1

ωi ,

dν = 2
ν∑

i=1

ωi −

m∑
i=1

ωi = dν−1 + 2ων, ν = 1, . . . , m − 1.

If J = ∅, then for every ν = 1, . . . , m, 2
∑ν

i=1 ωi −
∑m

i=1 ωi > 0 and d0 < 0
< dν . It follows that F is strongly decreasing on (−∞, y1) and strongly increasing
on (y1,∞), therefore the minimum of F is attained for α? = y1.

If J 6= ∅, note that ν0 =max{ν ∈ I | dν ≤ 0}. Since dν+1 − dν = 2ων+1 > 0 and
d0 < 0 and dm > 0, the sequence (dν) is increasing and

d0 < d1 < · · ·< dν0 ≤ 0< dν0+1 < · · ·< dm . (3.2)

If dν0 < 0, that is, 2
∑ν0

i=1 ωi <
∑m

i=1 ωi , it follows from (3.2) that F is strongly
decreasing on (−∞, yν0+1) and strongly increasing on (yν0+1,∞), therefore the
minimum of F is attained for α? = yν0+1.

If dν0 = 0, that is, 2
∑ν0

i=1 ωi =
∑m

i=1 ωi , it follows from (3.2) that F is strongly
decreasing on (−∞, yν0), is constant on [yν0, yν0+1] and strongly increasing on
(yν0+1,∞), therefore the minimum of F is attained at every point α? from the segment
[yν0, yν0+1].

COROLLARY 3.2. Let y1 ≤ y2 ≤ · · · ≤ ym , m > 1, be the data with weights
ω1 = · · · = ωm = 1. Then

(i) if m is odd (m = 2k + 1), then the minimum of F is attained at the point
α? = yk+1;

(ii) if m is even (m = 2k), the minimum of F is attained at every point α? from the
segment [yk, yk+1].
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PROOF. First, note that in this case the set J from Lemma 3.1 is always nonempty.
Let m = 2k + 1. According to Lemma 3.1(ii),

ν0 =max{ν ∈ I | 2ν − m ≤ 0} =max{ν ∈ I | ν ≤ k + 1
2 } = k,

dν0 = dk = 2k − m = 2k − 2k − 1< 0,

and therefore α? = yk+1.
Let m = 2k. According to Lemma 3.1(iii),

ν0 =max{ν ∈ I | 2ν − m ≤ 0} =max{ν ∈ I | ν = k} = k,

dν0 = dk = 2k − m = 2k − 2k = 0.

It follows that the minimum of F is attained at every point α? from the segment
[yk, yk+1].

REMARK 1. If the minimum of the functional F defined by (3.1) is attained at the real
number α∗, then

F(α)=
m∑

i=1

ωi |yi − α| ≥

m∑
i=1

ωi |yi − α
∗
|,

where the equality holds if and only if α = α∗.

4. The best LAD line

Let I = {1, . . . , m}, m ≥ 2, be a set of indices and 3= {Ti (xi , yi )

∈ R2
| i ∈ I } a set of points in the plane. The best LAD line is to be determined,

that is, optimal parameters a∗, b∗ ∈ R of the function f (x; a, b)= ax + b are to be
determined such that

G(a∗, b∗)= min
(a,b)∈R2

G(a, b), G(a, b)=
m∑

i=1

|yi − axi − b|. (4.1)

The following theorem is straightforward, and it can be proved by the principle
applied in [9, 13, 15, 16].

THEOREM 4.1. Let I = {1, . . . , m}, m ≥ 2, be a set of indices and 3= {Ti (xi , yi )

∈ R2
| i ∈ I } a set of points in the plane. Then there is a best LAD line, that is,

problem (4.1) has a solution. In particular, if x1 = · · · = xm =: ξ , then there exist
infinitely many best LAD lines, which take the form y = a?(x − ξ)+ µ, where a? is
an arbitrary real number, and µ is the median of the data y1, . . . , ym .

The following lemma shows that for the linear function whose graph passes through
a certain point T0(x0, y0) ∈ R2 there exists a best LAD line whose graph also passes
through a certain point Ti (xi , yi ) ∈3, for which xi 6= x0. In particular, the point T0
can be one of the points of the set 3. In this case the lemma states that there
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exists a best LAD line whose graph passes through one more point Ti (xi , yi ) ∈3

for which xi 6= x0.

LEMMA 4.2. Let I = {1, . . . , m}, m ≥ 2, be a set of indices and

(i) 3= {Ti (xi , yi ) ∈ R2
| i ∈ I } a set of points in the plane, such that (x1 ≤ · · · ≤

xm) and (x1 < xm);
(ii) T0(x0, y0) ∈ R2;

(iii) f (x; a)= a(x − x0)+ y0, a ∈ R, a linear function whose graph passes through
the point T0(x0, y0) ∈ R2.

Then there exists a∗ ∈ R such that

G(a∗)=min
a∈R

G(a), G(a)=
m∑

i=1

|yi − f (xi ; a)| =
m∑

i=1

|yi − a(xi − x0)− y0|,

(4.2)
and the graph of the linear function x 7→ f (x; a∗) passes through at least one more
point Tν(xν, yν) ∈3, where xν 6= x0.

PROOF. Write I0 = {i ∈ I | xi = x0}. It can be seen that I \ I0 6= ∅, that is, that there
exists i0 ∈ I such that xi0 6= x0. Otherwise xi = x0, for all i ∈ I , which contradicts
assumption (i). G(a) in (4.2) can be written in the form

G(a)=
m∑

i=1

|yi − a(xi − x0)− y0| =
∑
i∈I0

|yi − y0| +
∑

i∈I\I0

|xi − x0|

∣∣∣∣ yi − y0

xi − x0
− a

∣∣∣∣.
(4.3)

Let s = card(I \ I0). We rearrange the data {(|xi − x0|, (yi − y0)/(xi − x0)) : i ∈ I \
I0} so that the new data {(|x ′i − x0|, (y′i − y0)/(x ′i − x0)) : i = 1, . . . , s} are such that
((y′1 − y0)/(x ′1 − x0), . . . , (y′s − y0)/(x ′s − x0)) is an increasing sequence. Notice
that it still remains the case that x ′i − x0 6= 0, for all i = 1, . . . , s. Therefore, the
problem of minimizing (4.3) is the weighted median problem which can be written
in the form

G(a)=
∑
i∈I0

|yi − y0| +

s∑
i=1

|x ′i − x0|

∣∣∣∣ y′i − y0

x ′i − x0
− a

∣∣∣∣→min. (4.4)

Write J = {ν : 2
∑ν

i=1 |x
′

i − x0| −
∑s

i=1 |x
′

i − x0| ≤ 0}. For J 6= ∅ let us choose
ν0 ∈ {1, . . . , s}, such that ν0 =max J and denote

W0 = 2
ν0∑

i=1

|x ′i − x0|, W =
s∑

i=1

|x ′i − x0|.

According to Lemma 3.1, the functional (4.4) always has a minimum; furthermore,
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(i) if J = ∅, it is obtained for a∗ = (y′1 − y0)/(x ′1 − x0), that is, the required linear
function f is of the form

f (x; a∗) = a∗(x − x0)+ y0

=
y′1 − y0

x ′1 − x0
(x − x0)+ y0,

meaning that its graph also passes through the point T ′1(x
′

1, y′1) ∈3, where
x ′1 6= x0;

(ii) if J 6= ∅ and W0 < W , the minimum is obtained for a∗ = (y′ν0+1 − y0)/

(x ′ν0+1 − x0), that is, the required linear function f is of the form

f (x; a∗) = a∗(x − x0)+ y0

=
y′ν0+1 − y0

x ′ν0+1 − x0
(x − x0)+ y0,

meaning that its graph also passes through the point T ′ν0+1(x
′

ν0+1, y′ν0+1) ∈3 for
which ν0 + 1 ∈ I \ I0, that is, x ′ν0+1 6= x0;

(iii) if J 6= ∅ and W0 =W , the minimum of functional G is attained at any
point a∗ ∈

[
(y′ν0
− y0)/(x ′ν0

− x0), (y′ν0+1 − y0)/(x ′ν0+1 − x0)
]
, and similarly to

previous cases it can be shown that if we choose a∗ = (y′ν0
− y0)/(x ′ν0

− x0),
then the graph of the searched linear function f also passes through
the point T ′ν0

(x ′ν0
, y′ν0

) ∈3 for which xν0 6= x0, and if we choose a∗ =

(y′ν0+1 − y0)/(x ′ν0+1 − x0), then the graph of the required linear function f also
passes through the point T ′ν0+1(x

′

ν0+1, y′ν0+1) for which x ′ν0+1 6= x0.

Thus, there always exists a∗ ∈ R such that the graph of the function x 7→ f (x; a∗)
passes through at least one more point Tν(xν, yν) ∈3 for which xν 6= x0.

THEOREM 4.3. Let I = {1, . . . , m}, m ≥ 2, be a set of indices, and 3= {Ti (xi , yi )

∈ R2
| i ∈ I } a set of points in the plane, such that (x1 ≤ · · · ≤ xm) and (x1 < xm).

Then there exists a best LAD line which passes through at least two different points
from 3.

PROOF. According to Theorem 4.1, there exists a best LAD line f (x; a∗, b∗)=
a∗x + b∗ with optimal parameters a∗, b∗. By means of a∗ and data (xi , yi ), i ∈ I ,
let us define the sequence

1m = (y1 − a∗x1, . . . , ym − a∗xm),

which, without loss of generality, we can assume is increasing.
If m = 2k + 1, according to Corollary 3.2(i), the minimum of the functional

G(a∗, b)=
m∑

i=1

|yi − a∗xi − b| (4.5)
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is attained for b+ = yk+1 − a∗xk+1. Since

G(a∗, b∗)=min
b∈R

G(a∗, b)= G(a∗, b+),

at the point (a∗, b+) the functional G also attains its minimum, and since yk+1 =

a∗xk+1 + b+, it means that there exists a best LAD line passing through the point
T1(xk+1, yk+1) and it can be written as

f (x; a∗) := f (x; a∗, yk+1 − a∗xk+1)= a∗(x − xk+1)+ yk+1.

According to Lemma 4.2, then there exists at least one more point T2(xµ, yµ) ∈3,
through which the best LAD line passes, and for which xµ 6= xk+1.

If m = 2k, according to Corollary 3.2(ii), the minimum of functional (4.5) is
attained at any real number from segment [yk − a∗xk, yk+1 − a∗xk+1]. Let us choose
b+ := yk+1 − a∗xk+1; by deduction similar to the previous case we conclude that at
least one more point T2(xµ, yµ) ∈3 exists, through which the best LAD line passes,
and for which xµ 6= xk+1.

5. Methods for finding the best LAD line

To solve this problem general methods of minimization can be used that do not
involve derivatives, such as differential evolutions, Nelder–Mead, random search, and
simulated annealing (see, for example, [18, 20, 23, 38]). There are also a certain
number of methods based on linear programming (see, for example, [2, 3, 24, 33])
or different special cases of the Gauss–Newton method (see, for example, [9, 25,
30, 35]). There are also some specialized methods for solving this problem (see, for
example, [17, 21, 26, 37]). Numerous methods mentioned in the literature are listed
in [8]. In this section two effective methods are proposed, and their properties and
characteristics are given along with proofs of the convergence theorem.

5.1. Two-points method The method described in this subsection resulted from the
improved method referred to in [17], for which we give theoretical justification and
prove the convergence theorem. It will be shown that this method gives a solution of
LAD problem (4.1) in finitely many steps (significantly less than m).

With the objective of developing an algorithm for finding the best LAD line, first
note that Theorem 4.3 refers to the fact that the best LAD line should be searched for
among those lines which pass through at least two different points of the sequence 3.
The following algorithm is based on that fact. To get as close as possible from the
beginning to the best LAD line, we can choose the point Tp(x p, yp) as the initial
point, where

x p =
1
m

m∑
i=1

xi , yp =
1
m

m∑
i=1

yi (centroid of the data), or

x p =median (x), yp =median (y) (median of the data),

(5.1)
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which are quickly calculated and probably pass close to the best LAD line. Thereafter,
in accordance with Lemma 4.2, we construct the following algorithm.

Algorithm [Two Points]

Step 1: Set m ≥ 2, input points Ti (xi , yi ), i ∈ I , I = {1, . . . , m}, according to (5.1),
determine the point Tp(x p, yp) and define the set I0 = {i ∈ I | xi = x p}.
Step 2: In accordance with Lemma 4.2:
• solve the LAD problem for the function f (x; a)= a(x − x p)+ yp by

minimizing functional (4.3), denote the solution by a1 and determine a new point
Ti1(xi1, yi1) ∈3 for which xi1 6= x p;
• put b1 =−a1x p − yp and calculate G1 =

∑m
i=1 |yi − a1xi − b1|.

Step 3: Define the set I0 = {i ∈ I | xi = xi1}. In accordance with Lemma 4.2:
• solve the LAD problem for the function f (x; a)= a(x − xi1)+ yi1 by

minimizing functional (4.3), denote the solution by a2 and determine a new point
Ti2(xi2, yi2) ∈3 for which xi2 6= xi1 ;
• put b2 =−a2xi1 − yi1 and calculate G2 =

∑m
i=1 |yi − a2xi − b2|.

Step 4: If G2 < G1, put {i1 = i2, G1 = G2} and go to step 3; if not, stop.

The following theorem proves that the two-points algorithm leads to the best LAD
line in finitely many steps. From the algorithm and Lemma 4.2 it is clear that the
number of steps is less than the number of given points T1, . . . , Tm . In practice, with
a favourable choice of the initial point according to (5.1), the number of steps will be
considerably less than m. In this way maximum efficiency of the algorithm is ensured,
which is implementable in real time.

THEOREM 5.1. Let I = {1, . . . , m}, m ≥ 2, be a set of indices, and 3= {Ti (xi , yi ) |

i ∈ I } a set of points in the plane, such that (x1 ≤ · · · ≤ xm) and (x1 < xm). Then
the sequence (an, bn), defined by the iterative method in the two-points algorithm in
N ≤ m steps leads to the solution of the LAD problem

G(a, b)=
m∑

i=1

|yi − axi − b| →min, where (5.2)

G(an+1, bn+1) < G(an, bn), n = 1, . . . , N .

PROOF. If we determine the coefficient b of the linear function f (x)= ax + b such
that its graph passes through the point Tp(x p, yp) chosen as in (5.1), the functional G
given by (5.2) can be written as

G(a)= G(a,−ax p + yp)=

m∑
i=1

|yi − a(xi − x p)− yp|,

and according to Lemma 4.2, we can solve the corresponding LAD problem, the
solution of which is denoted by a1. The value of G at the point (a1, b1) is G(a1, b1)

= G(a1,−a1x p + yp)= G(a1). According to Lemma 4.2, in this way the linear
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function f 1(x)= a1(x − x p)+ yp is defined, whose graph passes through one more
new point Ti1(xi1, yi1) ∈3 for which xi1 6= x p. Therefore, function f 1 can be
written as

f 1(x)= a1(x − xi1)+ yi1 .

Again according to Lemma 4.2, for this function we solve the LAD problem and
denote the solution by a2. If (a2, b2), b2 =−a2xi1 + yi1 is not the point of the
minimum of functional G, it is

G(a1, b1) >

m∑
i=1

|yi − a2(xi − xi1)− yi1 | = G(a2, b2).

Since according to Lemma 4.2 the graph of the function f 2(x)= a2(x − xi1)+ yi1

also passes through a new point Ti2(xi2, yi2) ∈3, for which xi2 6= xi1 , we can write

f 2(x)= a2(x − xi2)+ yi2 .

Now again according to Lemma 4.2, for this function we solve the LAD problem
and denote the solution by a3. If (a3, b3), b3 =−a3xi2 + yi2 is not the point of the
minimum of functional G, it is

G(a2, b2) >

m∑
i=1

|yi − a3(xi − xi2)− yi2 | = G(a3, b3).

By repeating this procedure, since the set 3 has finitely many points, this iterative
method will end in finitely many steps.

5.2. Iterative reweighted least squares method The idea of the method presented
in this subsection appears in different versions in the literature (see, for example,
[2, 9, 24, 25, 29]). A general description of the method on which our iterative
reweighted least squares (IRLS) method is also based can be found in, for example,
[9, 24, 29, 36].

The idea is to write the minimizing functional (4.1) in the form

G(a, b)=
m∑

i=1

|yi − axi − b| =
m∑

i=1

1
|yi − axi − b|

(yi − axi − b)2 (5.3)

and construct the iterative method so that in every step we solve one WLS problem
according to Lemma 2.2. The iterative method is specified in the following algorithm.
Since the best LAD line must pass through at least two data points (Theorem 4.3), then
at least two weights in step 2 near the solution can become infinitely large. This fact
will be used in step 3 to stop the iterative process.

Algorithm [IRLS]

Step 1: Set m ≥ 2 and M > 0 and input points Ti (xi , yi ), i ∈ I , I = {1, . . . , m}.
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Step 2: By using explicit formulae for solving the OLS problem (see Lemma 2.2)
determine a0, b0 ∈ R:

a0 =

∑
(xi − x)(yi − y)∑

(xi − x)2
, b0 = y − a0x,

where x =
1
m

∑
xi , y =

1
m

∑
yi .

Step 3: Calculate ωi = 1/(|yi − a0xi − b0|), solve the WLS problem

G(a, b)=
∑

ωi (yi − axi − b)2→min

by using explicit formulae from Lemma 2.2 and denote the solution by a1, b1:

a1 =

∑
ωi (xi − x p)(yi − yp)∑

ωi (xi − x p)2
, b1 = yp − a1x p, where

x p =
1
ω

∑
ωi xi , yp =

1
ω

∑
ωi yi and ω =

∑
ωi .

Step 4: If maxi=1,m ωi < M , put a0 = a1, b0 = b1 and go to step 3; otherwise stop.

As shown in [9, 29], this algorithm defines a sequence of approximations (θ (k))
= (ak, bk)

T , for which the sequence Gk = G(θ (k)) is strictly decreasing. It can be
shown that this is actually a special case of the well-known Gauss–Newton method
(see, for example, [9, 10, 29])

θ (k+1)
= θ (k) − λk p(k), k = 0, 1, . . . ,

where λk is a length of steps in the direction of vector p(k), which is a solution of the
WLS problem √

�(k) J (k) p '
√
�(k)r (k),

where J (k) is a Jacobian of the function f (x; a, b)= ax + b at the point θ (k), r (k)

a vector of residuals at the point θ (k), and �(k) a diagonal matrix with elements
ω
(k)
i i = 1/(|yi − ak xi − bk |).

6. Numerical experiments

In the first example below we graphically illustrate the behaviour of the two-points
algorithm; in the second, for a large set of points, we will compare the efficiency of
the two-points and IRLS algorithms by using some other methods which can be found
in the aforementioned references.

EXAMPLE 1. We are given the set of points 3= {Ti (xi , yi ) ∈ R2
| i = 1, . . . , 8},

where
xi 1 2 3 4 5 6 7 8
yi 7 14 10 17 15 21 26 23

.
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FIGURE 1. Illustration of the two-points algorithm.

TABLE 1. Comparison of algorithms for solving the LAD problem.

m 10 100 500 1000 5000 10 000

Two-points algorithm 2(0) 3(0.03) 3(0.42) 2(1) 2(24.5) 3(75)
IRLS algorithm 16(0) 18(0.05) 32(0.1) 17(0.11) 7(0.22) 44(1.4)

(Li–Arce, [21]) 2(0) 2(0.04) 3(1.03) 4(4.53) 1(105.8) 1(529)
(Wesolowsky, [37]) 3(0) 3(0.04) 3(1.09) 3(4.34) 3(127.8) 3(635)

Differential Evolution (0.3) (0.44) (1.86) (6.95) (194) (825)
Nelder–Mead (0.14) (0.16) (1.36) (6.42) (186) (775)
Random Search (0.25) (0.47) (3.2) (14.75) (322) (1168)
Simulated Annealing (0.25) (0.17) (1.66) (6.53) (209) (852)

The two-points algorithm is initialized so that first the centroid of the data is calculated:
Tp(5, 17) 6∈3. Then the algorithm chooses the first point T1(1, 7) ∈3 and determines
the linear function f1(x)= 2.5x + 4.5, whose graph passes through those two points
(see the left-hand illustration in Figure 1). The sum of absolute deviations is G1 = 18.

Then the algorithm fixes the point T1(1, 7) and chooses a new point T6(6, 21) and a
new linear function f2(x)= 2.8x + 4.2, whose graph passes through those two points
(see the right-hand illustration in Figure 1). The sum of absolute deviations is now
G2 = 17.4, which is a global minimum for this problem.

Of course, the same result is obtained by applying the module NMinimize using
the Nelder–Mead method from the Mathematica software (see also [20, 23, 38]).

EXAMPLE 2. We are given the set of points 3= {Ti (xi , yi ) ∈ R2
| i = 1, . . . , m},

where

xi =
10i

m
, i = 1, . . . , m,

yi = 3xi + 2+ εi , εi ∼ N (0, σ 2).

The efficiency of the two-points and IRLS algorithms will be compared to some special
methods for finding the best LAD line [21, 37], but also to general minimization
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algorithms, which are also included in Mathematica: DifferentialEvolution,

NelderMead, RandomSearch, and SimulatedAnnealing (see also [18, 20, 23, 38]).
For m = 10, 100, 500, 1000, 5000, 10 000, Table 1 shows (in parentheses) the time

in seconds, and for the two-points, IRLS, Wesolowsky and Li–Arce algoirithms the
number of iterations1. It has been shown that the two-points algorithm does not have
significantly different properties if it is initialized with the centroid of the data (x, y)
or with the point (Mx , My), where Mx (My) is the median of the sequence x (y), as
proposed in (5.1). Note that for the purpose of computing time efficiency the centroid
of the data would be a better choice.

As can be seen, the two-points algorithm reaches a global minimum in only few
steps (most often 2–3 steps), while the IRLS algorithm requires a few more iterations.
The IRLS algorithm requires a significantly shorter time than the other algorithms
considered. The time required by the two-points algorithm is a bit longer, which is
probably the result of a direct application of Mathematica module Sort (see [38]).
Several fast Sort algorithms can be found in [12]. From Table 1 it can be seen that
both proposed algorithms show significant superiority over other methods, which can
be further improved by careful programming.
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