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A FUNCTION WHICH TRANSFORMS
CERTAIN GRAPHS INTO STRAIGHT
LINES FOR SIMULTANEOUS SOLUTION

BY
LAURENCE P. MAHER, JR,

A function M is defined which maps the plane onto a square region
in such a way that the planar graphs In, exp, X, —X, 1/X, and all
compositions formed from them are transformed into straight lines.
One can then solve for their intersections. It also provides a natural
definition for the repeated composition of In with itself ¢t times,
where t can be a non-integer.

An infinite exponential (inf exp) means a sequence of the form
a,, a3, af?™, ..., and is sometimes [see 1, p. 150] denoted by E(a,, a,,...). A
base e inf exp is one in which each a, is e or e *. Since E(e, e, ¢,...) —> ® we
know E(e ', e e,e...)—0. This allows any base e infexp of the form
E(a,,...,a,e ', eee ...) to be replaced by a base e finite exponential
E(a,,...,a,0). In the finite case it makes no difference whether a, is e or
e '; so every base e finexp E(a,,...,a,_;, a,,0) has two base e infexp
representations E(a,,...,a,_,¢,e Y, e,e,e,...)and E(a,,...,a,_,e e,
e, e, e,...) which differ only in the nth element.

TueoreM 1. If x >0 and x is not a base e fin exp, then x has exactly one base e
inf exp representation.

We define N(x)=e™, E°x)=x, E(x)=exp(x), E?(x)=expeexp(x),
E3(x) =expeexpeoexp(x), . . ., and shorten N°E" to NE".

Proof. If 0 <x <1 there is an x, between 0 and 1 and a nonnegative integer
n, (also denoted by nl or n,1) such that x = NE"'(x,). Recursion gives a
sequence X, X,, ..., each between 0 and 1, and a sequence of nonnegative
integers nq, n,, ... such that

x = NE"!(x;) = NE"'eNE"(x;) = NE"'eNE"2o Ne"*(x;) = - - - .
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Now x is interior to each of the intervals [0, 1], [NE"'(1), NE"'(0)], [NE"'o
NE"?(0), NE"'oNE"?*(1)], [NE"'oNE"?cNE"3*(1), NE"'eNE"?>NE"*(0)], ...
because 0<x; <1, and the composition function NE"'eNE"?c---oNE™ is
increasing/decreasing if the number of iterations of N is even/odd. Moreover,
this sequence of intervals is nested because of the fact that [NE™(1), NE"(0)]<
[0, 1] for each n, and the just-mentioned increasing/decreasing property.

These interval lengths — 0. As proof we show it for the even-numbered
intervals. If i is even, the ith interval has length [[NE"'oc NE"?0- - -oc NE"(1)—
NE"'eNE"?c- - -oNE™(0)]/[1-0]| which, by the mean value theorem, is
INE"'oNE"?0- - o NE™](&)| for some & in [0, 1]. Grouping the composition
by two’s and using the chain rule gives

[INE"'oNE"2](NE"3o- - -oNE™(£))
-[NE"*NE™](NE"%0- + -oNE"™(&))+ - - -
o+ - [NE™'eNE"](&)|
=|[[NE"'oNE"*J(&)| - [[NE"?oNE™](&,)| - - -+ - [[NE™"'eNE"](&)],

where &,, &, . . ., & are all >0. This product is =(4/e%)"? because the i/2 factors
can each be shown to be <4/e? as follows.

IINE"](&)|=|[-NE" - E" - E""'- -+ - E'}(¢)|
=[(E"-E"/E""")-(E""'-E""'/E")- --+ - (E'-E'[E?) - 1/E"](§)
=[X*/E'I(E"(§)) - [X*/E'NE""'(€)) - - -+ - [X?/E'NE(£) - N(&)

=(4/e?) - (4/e?)- -+ - (4]e?) - 1=(4/e?)"

because 4/e? is the maximum x2/e* when x =0. Therefore

[[NE™*~'oNE™*](&)| = [NE™*"'T(NE"*(&))| - [NE"*] (&)
S(4/e2)n,k—1 . (4/e2)n,ks4/ez

provided that n,_, +n,>0.

In case n,_;+n, =0, then |[NE°-NE°Y(&)|=|[N-NTJ(&)|<1/e <4/e?, be-
cause 1/e is the maximum of [NoN] when x =0. Since each of the i/2 factors is
=4/e?, the ith interval has length =(4/e?)"?, and this approaches 0 as i — o,

Since the nested intervals close down on x, their end points 0, 1, NE"'(0),
NE"'(1), NE"'-NE"%(0), ... form a subsequence of a unique base e inf exp
converging to x.

If x>1 then x=E"(x*) for an x* in (0, 1) and x = E" (inf exp for x™).

THeEOREM 2. Every base e inf exp converges except E(e, e, e, . . .).

Proof. If E(a,, a,,...) is of the form E(a,,...,a,, e ', e e, e, ...), the limit
is E(a,, ..., a,_;,0). If it is not of this form, certain terms of E(a,, a,, . ..) are
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end points in a unique sequence of nested intervals closing down on one
number, as was seen above.

DeriNtTION 1. Let m denote the function such that, for each real number x and
base e inf exp representation E(ay, a,, a,, ...) for e,

m(x)= 2:0 [2"' ililo ln(ai)].

For example, if e* is E(eee ',e,e ' e,e’’,...) then m(x)=

1+27'—272-2734+274+275-27%—_ .| or 6/5. If x is a fin exp, e* has two
representations, E(ag, ..., a, e, e ', e e e, ...) and E(ag,...,a,e ', e ', e e,
e,...), but this causes no ambiguity because Y=, [27 [T/_oIn(a;)] is zero in

both cases.

x

TuEOREM 3. m has domain (—x, ), range (—2,2), and is increasing and
continuous.

Proof. That m has domain (—, «) is clear from Theorem 1 and Def. 1. m
has range (—2,2) because this is the set of all sums of series of the form
So+S,/2+S,/4+S,;/8+- - - where each S; is =1 and not all S; are alike. Each

such series determines an ay, ay, d,, . .. (let [[\_o1n a, = S;) for a base e inf exp
which, by Theorem 2, converges. +2 is not in m’s range because
Ao, Gy, Ay, A3, ... would be e*',e e e ... and x would be the divergent

+E(e e e, ...).

Now we show that m is increasing. Suppose a <b and e® = E(a,, a4, . ..) and
e®=E(by, by, . ..). Then a;# b, for some i, otherwise E(ay, a;, ...) would have
two limits: e* and e®. Let k denote the lowest such i. Now E(a, ..., dx_;, t) is
a function of ¢ which is increasing/decreasing if the number of iterations of ¢!
is even/odd. Let p denote this number of iterations. When p is even or zero we
have a,=e™', b.=e, and E(agy,...,ar-1,€ ' Ars1,...)=e*<E(ag,...,
a._,1)=e*=E(ay,...,a;_1,€ br.1,...), because the alternative is that
a.=e, b.=e' e*=e" and a£b. Therefore

o[ fmal] 2 2 (e

] N J
< [ Yy (2—" [T a,i>] +27%+ ) (2-f [T bi) =m(b).
j=0 i=0 j=k+1 i=0
Equality is impossible because we could not have the equations
Yo ki1 Q7 [leolna)=2"% and Y, @7 [[olnb)=—-2"% both true; it
would mean that (a,.q, @xin,...)=(e ", e, ¢e,e,...) and (by.y, brso,...)=
(e7', e, e, e, ...) are both true and e® =e”. If p is odd then a, =e and b, =e™?,
and m(a)<m(b) can be shown by modifying the above argument to suit the
odd case. m is continuous because it increases and maps R X R onto (-2, 2).
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THEOREM 4. If x €{fin exp} then m'(x)=; this set is dense in R.

Proof. If x is a finexp, there is a function E(a,,..., at) such that
x=E(a,,...,a,0). Denote this function by A,(t). For m'(x) to exist it is
necessary that

m'(x) = limit [m (A, ° NE"(0)) — m (A, (0))J/[Ax > NE" (0) — A, (0)]
= lir_rit +27"[A, o NE"(0)— A (0)]
=limit [£e™ ™" */NE"(0)] - [NE"(0)— 0J/[[A e NE" (0) — A, (0)]

= limit +e ™ - exp(E"(0)—n -In2) - 1/A4(0) = e exp()/A}(0) = .
Lastly, {fin exp} is dense in R because every x € R is the limit of a sequence of

fin exps: its inf exp representation.

THEOREM 5.
(i) m(=x)=-m(x),
(i1)) m(1/x)=—m(x)+2 if x is positive/negative,
(iii) m(E"(x))=2""m(x)+2-2""", and
(iv) m(n"(x))=2"m(x)+2—-2"*1

Proof. (i) If e*=E(a,, a4, a5,...) then e *=E(ay", a;, s, ...) and m(—x)
is obtained by reversing all signs in the series for m(x).
(i) e'*=E(ay, ait, a,,...). Adding the equations

m(x)=Inao+¥2; [27 [lioIn a]
and
m(1/x)=1In a()_E;‘x;l [27[E-oIn ;]
gives m(x)+m(1/x)=2-1n a,. ButIn a,= =1 if x >0/x <0.
(iii) exp(E"(x))=E(e,e,...,e, ay, a,, a,, . ..), and

(RN PR
m(E" () =1+3+5+:+ 5+ [2"‘" [T a]
i=0 i=0

=[1-2")[1-4]+2" i [2-f f[ In ai] =2-2"" 4 2 (x).
i=0 i=0

(iv) We let E"(x)=y and x=In"y and substitute into (iii).
DEeFINITION 2. Let M denote the function such that M(x, y) = (m(x), m(y)) for
each ordered real-number pair (x, y).

Then M is a 1—1 mapping of R X R onto (-2, 2) X (-2, 2). For each planar
graph G let G,, denote its M image in (=2, 2) X (=2, 2). Then M(x, G(x)) is
both (m(x), Gu(m(x))) and (m(x), m(G(x))); so Gp(m(x))=m(G(x)). The
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planar graph In" has an M image which is that part of the line Y=
2"X+2-2"""  lying in (-2,2)%X(-2,2), because M(w,In"w)=
(m(w), 2"m(w)+2-2""") by Theorem 5-iv. Similarly, X, —X, 1/X, and E"
have M images on the lines Y=X, Y=—-X, Y=-X=+2 if x>0/x<0, and
Y=2"X+2-2"""", respectively.

THEOREM 6. If G,, G,,..., G, is any finite sequence of functions selected,
with repetition allowed, from the set {X, —X, 1/X, E', In, E?, In?, E>, In, ..},
then the composition function G,°G,°- - -G, if it exists, has an M image which
is either a straight line or a finite set of linear intervals in the space (—2,2)X
(-2,2).

Proof. If F and G are any two planar graphs whose M images are straight
lines, say a.X+b; and a X +b,, and if FoG exists, then
M(x, Fe G(x)) = (m(x), m(F°G(x))) = (m(x), F(m(G(x))))
= (m(x), Fyr° Gp(m(x))) = (m(x), [a:X + be]o[a.X + b, [(m(x)))
= (m(x), aa;m(x) + a;b, + b;).

So [FoG]y lies on the line a;a,X + asb, + b. By induction, any finite multiple-
composition FeGeHe- - - of members of {X, —X, 1/X, E', In, E?, In?,.. .} has
an M image which is linear, or linear intervals.

Using In™ and In° for E™ and X, Theorem 5 suggests a generalization of In".

DernitioN 3. If te R let In' mean the planar graph such that m(ln'(x))=
2'm(x)+2—2"*" for each x € R such that m(x)>2—-2"""2,

Then In* means the graph whose M image is that subinterval of the straight
line with slope 2' and y-intercept 2—2'*" which lies within the space (-2, 2) X
(-2,2).

ExampLE. Evaluating In*?(e), m(n*?*(e))=2>?m(e)+2-2""32=(J8)@)+
2—,/32=10.5858. Therefore In*?*(e) = m(0.5858).

Tables of the m function are available from the author.

t+u

TueoreM 7. If t and u are real numbers then In‘cln* =1n
Proof. If x€ R and In*cIn*(x) exists, then
m(In‘eln*(x)) = [Inly (m(In* (x))) = [In‘Jps o [In* s (m(x))
=[2'X+2-2"""]e[2“X +2—2*""](m(x))
=2"""m(x)+2-2""*" = m(In*(x)).
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