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A FUNCTION WHICH TRANSFORMS 
CERTAIN GRAPHS INTO STRAIGHT 

LINES FOR SIMULTANEOUS SOLUTION 

BY 

L A U R E N C E P. M A H E R , JR, 

A function M is defined which maps the plane onto a square region 
in such a way that the planar graphs In, exp, X, —X, 1/X, and all 
compositions formed from them are transformed into straight lines. 
One can then solve for their intersections. It also provides a natural 
definition for the repeated composition of In with itself t times, 
where t can be a non-integer. 

An infinite exponential (inf exp) means a sequence of the form 
al9 aï2, a? 2 " 3 , . . . , and is sometimes [see 1, p. 150] denoted by E(a l 9 a 2 , . . . ) . A 
base e inf exp is one in which each an is e or e~x. Since E(e, e, e,...) —» o° we 
know fi(e~\ e, e,e,...)-+ 0. This allows any base e inf exp of the form 
E(ax,... ,an, e"1, e, e, e , . . . ) to be replaced by a base e finite exponential 
E(al9..., an, 0). In the finite case it makes no difference whether an is e or 
e_ 1 ; so every base e fin exp E(ax,..., an_ l9 an, 0) has two base e inf exp 
representations E(ax,..., an_1? e, e~\ e, e, e,...) and JB(a1 ? . . . , an_ l5 e~\ e~\ 
e, e, e , . . . ) which differ only in the nth element. 

THEOREM 1. If x > 0 and x is not a base e fin exp, then x has exactly one base e 
inf exp representation. 

We define N(x) = e~x, E°(x) = x, E1(x) = cxp(x), J52(x) = expoexp(x), 
£3(x) = exp°exp°exp(x), . . . , and shorten N°En to NEn. 

Proof. If 0 < x < 1 there is an xt between 0 and 1 and a nonnegative integer 
nx (also denoted by n l or n, 1) such that x = NEn l(x1). Recursion gives a 
sequence xl9 x 2 , . . . , each between 0 and 1, and a sequence of nonnegative 
integers nl9 n2,... such that 

x=NEnl(x1) = NEnloNEn2(x2) = NEnloNEn2oNen\x3) = - • . 

Subject Classifications: Primary; 40A99 sequences, series, summability—convergence and 
divergence of infinite limiting processes—miscellaneous. Secondary; 41A30 Approximations and 
expansions—approximations by other special function classes. 
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Now x is interior to each of the intervals [0,1], [NE n l ( l ) , NEn l(0)], [NEnl° 
NEn2(0), NEnloNEn2(l)l [NEnloNEn2oNEn3(l), NE n l ojVE n 2 °NE n 3 (0)] , . . . 
because 0 < X { < 1 , and the composition function NEnl°NEn2°' • -°NEni is 
increasing/decreasing if the number of iterations of N is even/odd. Moreover, 
this sequence of intervals is nested because of the fact that [NEn( l ) , NE n (0) ]c 
[0,1] for each rc, and the just-mentioned increasing/decreasing property. 

These interval lengths —> 0. As proof we show it for the even-numbered 
intervals. If i is even, the ith interval has length |[NEn l°iVEn2°- • - ° N E n i ( l ) -
NEnloNEn2o-- -oNEn i(0)] /[ l -0] | which, by the mean value theorem, is 
|NE n l °NE n 2 ° - • -ojVEni]'(ê)| for some fi in [0, 1]. Grouping the composition 
by two's and using the chain rule gives 

|[NEnloJVEn2]'(NEn3°- . .ojVEni(ê)) 

•[NEn3oiVEn4]'(NEn5o- • -o]VEni(ê)) 

••• • [ A T E ^ o N E ^ ' C ê ) ! 

= \[NEnloNEn2]'(Ç2)\ • |[NEn3oNEn4]'(g4)l {[NE^-^NE^Wl 

where £2> £h • • • > é a r e all >0 . This product is <(4/e2) i /2 because the i/2 factors 
can each be shown to be <4/e 2 as follows. 

\[NEnm)\ = Ï-NE" • E" • F " 1 Ex](e\ 

= [(En • En/En+1) • (E"- 1 • En~xIEn) (E l • EVE2) • 1/E1]^) 

= [X^E^CE-Cê)) • [ X ^ E 1 ] ^ " 1 ^ ) ) [X2 /E l](E( | )) • N(£) 

<(4/e2) • (4/e2) (4/e2) • 1 - (4/e2)" 

because 4/e2 is the maximum x2/ex when x > 0 . Therefore 

|[NEn-k-1oNEn-k]'(&)| = |[NEn-k-1]'(NEfl-k(&))l ' |[NE-kT(4)l 

<(4/e2)n 'k"1 • (4/e2)n 'k<4/e2 

provided that nk^ + nk > 0. 
In case nk_1 + nfc = 0, then |[NE0oNE°]'(&)| = | [NoN] ' (&) |^ l / e<4 /e 2 , be­

cause 1/e is the maximum of [N°N]' when x > 0 . Since each of the i/2 factors is 
<4/e2 , the ith interval has length <(4/e2) i /2, and this approaches 0 as i—x». 

Since the nested intervals close down on x, their end points 0, 1, NEn l(0), 
NE n l ( l ) , N E n l ° N E n 2 ( 0 ) , . . . form a subsequence of a unique base e inf exp 
converging to x. 

If x > 1 then x = En(x*) for an x* in (0,1) and x = En (inf exp for x*). 

THEOREM 2. Euery base e in/ exp converges except E(e, e, e , . . . ) . 

Proof. If E(au a 2 , . . . ) is of the form E(au . . . , an, e~l, e, e, e , . . . ) , the limit 
is E(au . . . , an_1? 0). If it is not of this form, certain terms of E(aly a 2 , . . . ) are 
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end points in a unique sequence of nested intervals closing down on one 
number, as was seen above. 

DEFINITION 1. Let m denote the function such that, for each real number x and 
base e inf exp representation E(a0, au a 2 , . . . ) for ex, 

m ( x ) = £ k - ' f t l n t e ) ] . 

For example, if ex is E(e, e, e~\ e, e_1, e, e ~ \ . . . ) then m(x) = 
l + 2 - 1 - 2 ~ 2 - 2 - 3 + 2- 4 + 2 - 5 - 2 ~ 6 - . . . , or 6/5. If x is a fin exp, ex has two 
representations, E(a0,..., ak, e, e~\ e, e, e, . . . ) and JE(a0 , . . . , ak, e_1, e"1, e, e, 
e , . . . ) , but this causes no ambiguity because £J°=k+i [2_J riUoln(a i)] is zero in 
both cases. 

THEOREM 3. m has domain (—<», oo)5 range ( -2 , 2), and is increasing and 
continuous. 

Proof. That m has domain (-oo9oo) is clear from Theorem 1 and Def. 1. m 
has range (—2, 2) because this is the set of all sums of series of the form 
S0 + SJ2 + S2/4 + S3/8 + • • • where each $ is ±1 and not all S£ are alike. Each 
such series determines an a0, a l9 a 2 , . . . (let n!=o In ai = Sj) f ° r a base e inf exp 
which, by Theorem 2, converges. ±2 is not in m's range because 
a0, a1? a2, a 3 , . . . would be e*1, e, e, e , . . . and x would be the divergent 
±E(e, e, e , . . . ) . 

Now we show that m is increasing. Suppose a < b and ea = JE(a0, a 1 ? . . . ) and 
eb = jEs(b05 ̂ i ' • • •)• Then a^ bt for some i, otherwise E(a0 , a l 9 . . . ) would have 
two limits: ea and eb. Let k denote the lowest such i. Now E ( a 0 , . . . , ak_1? f) is 
a function of t which is increasing/decreasing if the number of iterations of e _ 1 

is even/odd. Let p denote this number of iterations. When p is even or zero we 
have ak = e~x, bk = e, and E(a0,..., ak_1? e~\ a k + 1 , . . .) = e a < E ( a 0 , . . . , 
ak_1? 1)< eb = E ( a 0 , . . . , ak_1? e, b k + i , . . . ), because the alternative is that 
ak = e, bk = e"1, ea > eb, and a<fi b. Therefore 

m(a)=\t fa I I In a)] - 2~k + £ ( 2 - ft In a) 

< [ ï ( 2 - ' l î l n a i ) l + 2 - k + £ ( 2 - Ô In b;) = m(b). 

Equality is impossible because we could not have the equations 
Xr= k + i (2 _ i n!= 0 lna i ) = 2- k and ZT-k+i (2^111=0 In 6,) = - 2 " k both true; it 
would mean that (ak + 1 , a k + 2 , . . . ) = (e_1, e, e, e , . . . ) and (bfc+1, b k + 2 , . . . ) = 
(e_1 , e, e, e , . . . ) are both true and ea = eh. If p is odd then ak = e and bk = e_1 , 
and m(a)<m(b) can be shown by modifying the above argument to suit the 
odd case, m is continuous because it increases and maps RxR onto (—2, 2). 
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THEOREM 4. I /xe{finexp} then m ' ( x ) - œ ; this set is dense in R. 

Proof. If x is a finexp, there is a function E(au ..., ak, t) such that 
x = E(ax,..., ak, 0). Denote this function by Ak(t). For m'(x) to exist it is 
necessary that 

m'(x) = limit [m(Ak °NEn(0)) - m(Ak(0))]/[Ak °NEn(0) - Ak(0)] 
n—>°° 

= limit ±2- k -7 [A k o NEn(0) - Ak(0)] 
n—x» 

= limit [±e<-k-n ) , n 2/NEn(0)] • [NEn(0)-0]l[Ak°NEn{0)-Ak(0)] 
n—x» 

= limit ±e~k • exp(E n (0)- n • In 2) • 1/Ak(0) = ie"1* exp(<x>)/Ak(0) = «. 
n—»oo 

Lastly, {fin exp} is dense in R because every x e JR is the limit of a sequence of 
fin exps: its inf exp representation. 

THEOREM 5. 

(i) m(-x) = — m(x), 
(ii) m(l/x) = — m(x)±2 if x is positive/negative, 

(iii) m(En(x)) = 2-nm(x) + 2 - 2 ~ n + 1 , and 
(iv) m(lnn(x)) = 2nm(x) + 2 - 2 n + 1 . 

Proof, (i) If ex = E(a0, al9 a 2 , . . . ) then e~x = J 3 ( G Ô \ al9 a 2 , . . . ) and m(-x) 
is obtained by reversing all signs in the series for m(x). 

(ii) e1/x = E(a0, a^1, a2,.. .)• Adding the equations 

m(x) = ln a0 + Er=i i ^ I l U l n a j 
and 

m(l/x) = ln a 0 - i r = i I T 1 0 = 0 In a j 

gives m(x)+m(l /x) = 2 • In a0. But In a o ^ ±1 if x > 0 / x < 0 . 

(iii) exp(En(x)) = E(e, e , . . . , e, a0, a1? a 2 , . . . ) , and 

m(En(x)) = l + | + H - - - + ^ ï + Ë f2- J - n ft In J , 

= [ l - 2 ~ " ] / [ l - i ] + 2 - £ [ 2 - J T I l n a i l = 2 - 2 - " + 1 + 2-"m(x). 
j=0 L i - 0 J 

(iv) We let En(x) = y and x =lnn y and substitute into (iii). 

DEFINITION 2. Let M denote the function such that M(x, y) = (m(x), m(y)) for 
each ordered real-number pair (x, y). 

Then M is a 1 - 1 mapping of JR x .R onto ( -2 , 2) x ( -2 , 2). For each planar 
graph G let GM denote its M image in ( -2 , 2 ) x ( - 2 , 2). Then M(x, G(x)) is 
both (m(x), GM(m(x))) and (m(x), m(G(x))); so GM(m(x)) = m(G(x)). The 
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planar graph lnn has an M image which is that part of the line Y = 
2 n X + 2 - 2 n + 1 lying in (-2,2) x (-2,2) , because M(w,lnnw) = 
(m(w),2nm(w) + 2 - 2 n + 1 ) by Theorem 5-iv. Similarly, X, - X , 1/X, and En 

have M images on the lines Y = X, Y = - X , Y = - X ± 2 if x > 0 / x < 0 , and 
Y = 2~nX+2 - 2~n+\ respectively. 

THEOREM 6. If Gl9 G 2 , . . . , Gp is any finite sequence of functions selected, 
with repetition allowed, from the set {X, - X , 1/X, JS1, In, E2 , In2, E 3 , In 3 , . . . } , 
then the composition function Gt°G2° • • • °Gp, i/ if exists, has an M image which 
is either a straight line or a finite set of linear intervals in the space ( -2, 2) x 
( -2 ,2) . 

Proof. If F and G are any two planar graphs whose M images are straight 
lines, say OfX+bf and agX+fcg, and if F°G exists, then 

M(x, FoG(x)) = (m(x), m(FoG(x))) = (m(x), FM(m(G(x)))) 

= (m(x), FMo GM(m(x))) = (m(x), [ 0 ^ + 6f]o[agX+ bj(m(x))) 

= (m(x), OfagmCx) + affeg + bf). 

So [F°G] M lies on the line a fagX+a fbg + bf. By induction, any finite multiple-
composition F°G°H°- - • of members of {X, - X , 1/X, JE1, In, E2, In 2 , . . .} has 
an M image which is linear, or linear intervals. 

Using ln_n and In0 for En and X, Theorem 5 suggests a generalization of lnn. 

DEFINITION 3. If teR let In* mean the planar graph such that m(lnt(x)) = 
2tm(x) + 2 - 2 f + 1 for each xeR such that m ( x ) > 2 - 2 " t + 2 . 

Then In* means the graph whose M image is that subinterval of the straight 
line with slope 2 and y-intercept 2 - 2 t + 1 which lies within the space (-2, 2)x 
( -2 ,2) . 

EXAMPLE. Evaluating ln3/2(e), m(ln3/2(e)) = 23/2m(e) + 2 - 2 1 + 3 / 2 = (V8)(|) + 
2 - V 3 2 = 0.5858. Therefore ln3/2(e) = m_1(0.5858). 

Tables of the m function are available from the author. 

THEOREM 7. If t and u are real numbers then ln tolnu =lnt+M. 

Proof. If X€JR and ln tolnu(x) exists, then 

m (In4 oln"(x)) = \\n^M(m(\nu{x))) = [ln'JMo[ln"]M(m(x)) 

= [2 t X+2-2 t + 1 ]o[2 u X+2-2 u + 1 ] (m(x)) 

= 2 t+um(x) + 2 - 2 t + u + 1 = m(lnt+M(x)). 
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