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Fibrations in semitoric and generalized
complex geometry

Gil R. Cavalcanti, Ralph L. Klaasse, and Aldo Witte

Abstract. This paper studies a class of singular fibrations, called self-crossing boundary fibrations,
which play an important role in semitoric and generalized complex geometry. These singular
fibrations can be conveniently described using the language of Lie algebroids. We will show how
these fibrations arise from (nonfree) torus actions, and how to use them to construct and better
understand self-crossing stable generalized complex four-manifolds. We moreover show that these
fibrations are compatible with taking connected sums, and use this to prove a singularity trade result
between two types of singularities occurring in these types of fibrations (a so-called nodal trade).

1 Introduction
1.1 Fibrations in geometry

A general theme in the world of geometric structures is the interplay between specific
geometric structures and particular types of maps. The simplest example arises in the
context of fibrations, where one studies whether the presence of a geometric structure
on the base and the fiber implies its existence on the total space. However, to obtain
interesting spaces and geometric structures, one should allow maps to have more
singularities.

A concrete case that illustrates this comes from symplectic geometry: symplectic
fibrations play an important role, but they are quite rare on general symplectic
manifolds. Instead, if one allows the fibration to have Lefschetz singularities, one
obtains enough flexibility to establish broad existence results [13, 16, 17].

In this paper, we use the point of view of decoupling the differential properties of
maps from the desired underlying geometric structure. This decoupling has proved
useful and allowed for several extensions of the results mentioned above, including
those in [1-6, 9, 10, 14, 15, 23]. Here, allowing for maps to have Lefschetz and other
similar singularities leads to existence results for several different types of geometric
structures.
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Another way in which singular fibrations arise is from proper group actions. In
this setting, the “fibration” condition translates to the group action being free, which
is restrictive. The quotient map of a generic action will have singularities at points
with nontrivial isotropy. Such singular fibrations are particularly well studied for torus
actions, T" x M*" - M*", where, even if the actions considered are not free, they
are well behaved enough to ensure that the quotient space admits the structure of a
manifold with corners. The coupling of torus actions with geometric structures leads
to many fruitful concepts, one of the highlights being toric geometry.

The Lefschetz and the toric pictures come together in semitoric geometry [28],
where maps are allowed to have both types of singularities. In this setting, the maps
can have three types of singularities: elliptic, elliptic-elliptic, and focus-focus, with the
latter being equivalent to Lefschetz singularities. However, in semitoric geometry, the
decoupling of maps and geometric structures has happened only partially, because
local singular behavior (Lefschetz and toric) and more global properties (integral
affine structures) are mixed, leading to topological results [24].

In this paper, we introduce the differential objects hinted at by semitoric geometry:
these are called self-crossing boundary (Lefschetz) fibrations (cf. Definitions 3.11 and
3.12). These types of maps incorporate local phenomena from both symplectic fibra-
tions and quotient maps of semitoric manifolds, but do not require global structures
to be present, such as group actions or integral affine structures. In this paper, we
use these boundary fibrations to study an a priori seemingly unrelated geometric
structure, namely a generalized complex structure.

1.2 Generalized complex structures

Generalized complex structures [20, 22] are a simultaneous generalization of sym-
plectic and complex structures. Infinitesimally, these structures induce the product of
a symplectic and complex vector space on each tangent space. However, the number
of complex and symplectic directions, called the type, can vary from point to point,
leading to the notion of type change. These type-changing generalized complex struc-
tures are among the most interesting to study. Within the type-changing generalized
complex structures, one class was put forward in [8, 11] for being geometrically
very rich and having well-controlled singular behavior: self-crossing stable generalized
complex structures.

It is shown in [11] that self-crossing stable generalized complex structures on a
manifold M are in one-to-one correspondence with certain Lie algebroid symplectic
structures, so that this paper makes extensive use of Lie algebroids. The singularities at
the type-changelocus D induce a Lie algebroid A|p| — M called the self-crossing elliptic
tangent bundle, and the generalized complex structure makes it into a symplectic Lie
algebroid, carrying an elliptic symplectic structure. An elliptic symplectic structure
corresponds to a self-crossing stable generalized complex structure if the locus D is
co-orientable and its so-called index is 1.

Given a self-crossing boundary Lefschetz fibration f: (M, D) - (N, Z) where Z is
a hypersurface of N, there is another relevant Lie algebroid, namely the self-crossing
log-tangent bundle Az — N. The map f has singularities precisely such that it induces
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a Lie algebroid morphism

(¢, f):(Ajpp M) - (Az,N),

where ¢ is now a Lie algebroid version of a Lefschetz fibration. The relevant geometric
structure on the base of this fibration is a symplectic structure on A, also known as
a self-crossing log-symplectic structure. These have also appeared in [21, 26]. They are
compatible with the elliptic symplectic structure in the following sense.

Definition 3.20 A self-crossing boundary fibration f : (M, D) — (N, Z) is compat-
ible with the elliptic symplectic structure on its total space if ker ¢ € Ap| consists of
symplectic subspaces.

In turn, a stable generalized complex structure is compatible with a boundary
Lefschetz fibration if its induced elliptic symplectic structure is.

1.3 Results

In this section, we describe the main results obtained in this paper. In the interest of
brevity, more precise versions of the results below can be found in the main body of
the text.

1.3.1 Existence

Following the strategy of constructing symplectic structures out of fibrations, we prove
a Gompf-Thurston theorem for self-crossing stable generalized complex structures.
This result is the generalization of a similar result for stable generalized complex
structures with embedded type-change locus appearing in [9], but requires several
adaptations of the argument.

Definition 3.19 A boundary Lefschetz fibration, f: (M*, D) — (N?, Z), is homolog-
ically essential if the homology class [ F] of the fiber of f: M\D — N\Z is nontrivial in
H,(M\D;R).

Theorem 3.23 Let f: (M*, D*) — (N?,90N) be a homologically essential self-crossing
boundary Lefschetz fibration. Then M* admits an elliptic symplectic structure compati-
ble with f, which induces a self-crossing stable generalized complex structure compatible
with f if the locus D is co-orientable and its index is equal to 1.

1.3.2 Construction

Having established that boundary Lefschetz fibrations supply self-crossing stable
generalized complex structures, we decouple the map from the geometric structure
and study them separately. These types of maps are flexible enough to admit connected
sums.

Theorem 4.6  Let f;: (M}, D?) - (N?,0N,), for i = 1,2, be boundary Lefschetz fibra-
tions, and let p; € M; be such that q; = f;(p;) are corners of the manifolds N;. Then
there exists a boundary Lefschetz fibration on their connected sum,

fl#fZ: (Ml#phpzMZ’ DI#DZ) - (Nl#q],quZ) a(Nl#Nz)),
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which is compatible with the inclusion M\{p;} < M1#M,. Moreover, the map fi#f, is
homologically essential if and only if f; and f, are.

This result is in sheer contrast with the situation in toric geometry. There is no
symplectic connected sum procedure, and most of the manifolds obtained using the
above proposition will have no toric structure. This difference in rigidity between
the generalized complex and toric worlds is already apparent on the base of these
fibrations. Namely, for generalized complex structures, the base carries a self-crossing
log-symplectic structure, which is quite flexible. On the other hand, in toric geometry,
the base carries an integral affine structure, which is very rigid. In other words,
although toric manifolds do not behave well with respect to connected sums, the
underlying torus actions and abstract quotient maps do.

1.3.3 Singularity trades

The nodal-trade procedure in semitoric geometry exchanges elliptic-elliptic singu-
larities of the moment map for focus—focus singularities [32, 33] and vice-versa [24].
These procedures rely heavily on the existence of a singular integral affine structure
on the base. Following our general strategy, decoupling the geometric structure from
the maps allows us to prove an abstract statement for boundary Lefschetz fibrations.

Theorem 5.3 Let f:(M*, D*) — (N?,0N) be a boundary Lefschetz fibration, and let
p € M be an elliptic-elliptic singularity. Then there exists a boundary Lefschetz fibration

:f\:: (M,ﬁ) — (N,aﬁ)
agreeing with f outside a neighborhood of p, and such that the elliptic-elliptic singularity
is traded for a Lefschetz singularity. The map f is homologically essential if and only if f is.

The proof of this result, and its converse, Theorem 5.4, relies on the connected
sum procedure and the existence of a particular boundary Lefschetz fibration on S*.
Figure 1 illustrates the singularity trade from Theorem 5.3 in CP?.

1.3.4 Examples

Using simple manifolds as building blocks, the connected sum procedure allows us
to construct many examples of boundary Lefschetz fibrations (and consequently of
self-crossing stable generalized complex structures) on the following manifolds.

Theorem 6.12  The manifolds in the following two families:
o Xpp:=#n(S* x S)#(S' x S*), withn, L € N,
o Yomei= #n(CPZ#m@Z#E(S1 x 8%), with n,m,{ e N,

admit homologically essential boundary Lefschetz fibrations whenever their Euler char-
acteristic is nonnegative. Therefore, each of these manifolds admits a compatible elliptic
symplectic structure, which induces a self-crossing stable generalized complex structure
if1— by + bj is even.

Combining this result with Theorem 5.3, we conclude that the above manifolds
moreover admit stable generalized complex structures with embedded degeneracy
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Figure I: 'The picture on the left presents CP? using the usual moment map, which is the
prototypical example of a self-crossing boundary fibration. Theorem 5.3 tells us that we can
slightly modify this fibration to obtain a boundary Lefschetz fibration, with three Lefschetz
singularities.

loci. These examples have already appeared in the literature [7, 18, 30, 31], and the
authors obtained them as well in [11, Theorem 7.5]. However, the above result shows
that the structures in these examples can be made compatible with boundary Lefschetz
fibrations. This gives us much more control about stable generalized complex struc-
tures in concrete applications. For instance, we believe it will help in the development
of a Fukaya category for stable generalized complex structures just like ordinary
Lefschetz fibrations can be used to understand the Fukaya category of symplectic
manifolds [29].

1.4 Organization of the paper

This paper is organized as follows. In Section 2, we recall from [11] the notions of
self-crossing divisors, and their associated Lie algebroids and symplectic structures.
We also recall the definition of self-crossing stable generalized complex structures
and that they are in one-to-one correspondence with particular self-crossing elliptic
symplectic structures. In Section 3, we extend the notion of boundary (Lefschetz)
fibration from [9] to allow for self-crossing of the degeneracy locus. We moreover
prove the Gompf-Thurston result, Theorem 3.23. In Section 4, we show that boundary
Lefschetz fibrations allow for taking connected sums and prove Theorem 4.6. In
Section 5, we will prove the singularity trade results, namely Theorems 5.3 and 5.4.
Finally, in Section 6, we show that torus actions give rise to boundary fibrations, and
exhibit several examples, including Theorem 6.12 and Proposition 6.9.

2 Divisors, Lie algebroids, and symplectic structures

In this section, we study geometric structures with specific singularities. To work with
these singularities, we will recall the concept of a divisor, and the particular cases of log
and elliptic divisors which we will mainly use in this paper. Using these divisors, we
will recall the associated Lie algebroids and their Lie algebroid symplectic structures.
Then we will introduce the objects which we want to construct in this paper, namely
stable generalized complex structures. We will show that these structures correspond
to certain Lie algebroid symplectic structures, which is how we will treat them in the
rest of the paper.
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2.1 Divisors

We will use an adaptation of the notion of a divisor from algebraic geometry to smooth
manifolds in order to describe the singularities of geometric structures. We will only
briefly go over the main concepts we need and refer to [8, 9, 11] for more information.

Definition 2.1 A real/complex divisor on M is a locally principal ideal I of
C*(M;R), respectively, C*(M;C), which is locally generated by functions with
nowhere dense zero set.

Equivalently, divisors can be described as follows.

Proposition 2.2 Let I be a real/complex divisor on M. Then there exists a real/complex
line bundle L — M with section ¢ € T'(L) such that o(T(L*)) = L.

Note that the line bundle L is uniquely determined up to vector bundle isomor-
phism (covering the identity), and that the section ¢ is unique up to multiplication by
a smooth function. Given a pair (L, o), we denote the associated divisor by I,.

Definition 2.3 Let (M, I;) and (N, Iy) be manifolds with divisors. A smooth map
@: M — N is a morphism of divisors if ¢* Iy = I, where the left-hand side denotes
the ideal generated by all pullbacks. It is called a diffeomorphism of divisors if ¢ is a
diffeomorphism.

Definition 2.4 A smooth real/complex log divisor is a real/complex divisor I locally
generated by transverse vanishing functions.

The vanishing locus of a real log divisor has codimension 1 and is denoted by Z. The
vanishing locus of a complex log divisor has codimension 2 and is denoted by D. By
locally demanding a divisor to be a product of log divisors, we obtain the following.

Definition 2.5 A self-crossing real/complex log divisor on a manifold M is a divisor I,
such that for every point p € M, there exists a neighborhood U of p such that

(U)=1L-...-I

where I, ..., I; are real/complex log ideals with transversely intersecting vanishing
loci.

Example 2.6 There is a standard example for each of the divisor types described
above.

The standard real log divisor on R/ xR™ is defined using the coordinates
(x1,...,%j, ;) by the ideal I, := (x; ... x;);
The standard complex log divisor on C/ x R™ is defined using the coordinates
(z15...,2j, yi) by the ideal Ip := (21 . ...-zj).

Each of these examples provides the local normal form for their associated divisor
type.

A self-crossing real log divisor is determined by its vanishing locus Z, as its ideal
equals the ideal of functions vanishing on Z. In contrast, for a self-crossing complex
log divisor, the subspace D does not determine the divisor.
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Definition 2.7 [8] A smooth elliptic divisor is a real divisor I p| locally generated by
definite Morse-Bott functions with codimension-2 critical set.

In fact, asking the existence of local generating function of I|p| as above implies
that there exists a global generator f € I p|.
Again by taking appropriate products, we obtain the following.

Definition 2.8 [11] A self-crossing elliptic divisor is a divisor I|p| on a manifold M,
such that for every point p € M, there exists a neighborhood U of p such that

I‘D‘(U) :Il'...'Ij,

where the Iy, ..., I; are smooth elliptic divisors with transversely intersecting vanish-
ing loci.

Example 2.9 The standard elliptic divisor on R? x R™ is defined using the coor-
dinates (x1, 1, .., Xj, yj, u;) by the ideal Ijp| == ((xf + y?)-...- (xF + y?)) Lemma
2.23 in [11] ensures that any self-crossing elliptic divisor is of this form.

As for smooth elliptic divisors, the ideal I | is generated by a single global function
f+ M — R, which by Example 2.9 is locally of the form

SO Y13 Xjs Yo Xats - %) = (X7 + 97) oo (x5 + y7).

We mostly deal with self-crossing divisors in this paper, and we will often omit
the prefix “self-crossing” Whenever we mean a smooth log or elliptic divisor, we will
explicitly stress this.

The vanishing loci of both log and elliptic divisors are not embedded, but are
stratified.

Definition 2.10 Let I be a real/complex log or elliptic divisor on M with vanishing
locus D. The multiplicity of a point p € M is the minimum of the integers j from
Definitions 2.5 or 2.8 over all neighborhoods U of p. If I has points of multiplicity
at most n, the sets D(j) of points of multiplicity at least j induce a filtration of M:

M =D(0)>D(1)=D>-->D(n),
with induced stratification with strata D[ j] of points with multiplicity precisely j.

That this is a stratification follows readily from the normal forms of the divisors in
Examples 2.6 and 2.9. Also, note that if a divisor I has multiplicity n and i < n is given,
then the restriction I| s p(;+1) defines a divisor with multiplicity i.

Example 2.11 Another important example for this paper is a manifold with corners
(M, 0M). The boundary of a manifold with corners naturally defines a real log divisor.

Given a self-crossing complex log divisor Ip, its associated (self-crossing) elliptic
divisor is the real divisor I|p| defined by I|p| ® C = Ip ® Ip.

2.2 Lie algebroids and residue maps

Each of the divisors introduced in the previous section gives rise to a corresponding
Lie algebroid via the Serre-Swan theorem and the local normal forms contained in
Examples 2.6 and 2.9.
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Definition 2.12  Let I be a real log divisor, Ip a complex log divisor, and I|p| be an
elliptic divisor. The vector fields preserving each of these ideals define Lie algebroids:

o Ay — TM, the real log-tangent bundle associated to I;
o Ap — TcM, the complex log-tangent bundle associated to Ip; and
o Aip| = TM, the elliptic tangent bundle associated to I|p|.

Remark 2.13 The above Lie algebroids can be described in the local coordinates of
in Examples 2.6 and 2.9. Indeed, around a point of multiplicity j, we have:

o« T(Az) = (x10x,>...,%j0x,» 0y, )5
o T(Ap) = (2102 03,, .. .,2;0z,, 0z, 0y, ) and
o T(Ajp)) = (r10n>00,>--->7i0r,> ;> O, )-

In the latter case, we have r;0,, := x;0x, + y;0,, and 9y, := X;0y, — y;0y,.

When Ip is a complex log divisor on M and I|p is its associated elliptic divisor,
there is a fiber product relation between the corresponding Lie algebroids as follows:

Ap XTeM .ABE .A‘D‘ ® C.

This isomorphism provides an inclusion ¢*: Q*(Ap) — Q¢.(Ap))-

We now turn to describing several of the residue maps carried by these Lie
algebroids. Let (I)p|,0) be a smooth elliptic divisor, together with a co-orientation
of D. As explained in [8], the elliptic tangent bundle has an elliptic and radial residue
map. These are maps of cochain complexes, and they extract the coefficients of the
singular generators. In the coordinates of Remark 2.13, these are given by

Resy: Q°(Ap|) » Q*7*(D), Resg (&) = 1p(1ra,n0, %)

(2.1)
Res,: Q*(Ap) -~ Q*'(S'ND), Res,(a) = 15, (19, @),

where SIND — D is the S'-bundle associated to the co-orientation o of D.

These residue maps can be extended to self-crossing elliptic divisors if we restrict
our attention to the stratum D[1]. We say that a self-crossing elliptic divisor is co-
oriented if the normal bundle ND[1] — D[1] is oriented.

Definition 2.14 Let (I)p|,0) be a self-crossing elliptic divisor together with a co-
orientation o of D[1]. The elliptic and radial residues of & € Q* (A p|) are Res,(«) :=
Resq(tg[l]oc) and Res,(a) = Resr(t*D[l](x).

In later constructions, the cohomology of the complex of forms with vanishing
radial residue will play a role.

Lemma 2.15 Let Iip| be a self-crossing elliptic divisor on a manifold M, and let
Q5 o(Ajp)) € Q*(Ap|) be the subcomplex defined as the kernel of the map Res,. Then
the inclusion map 1: M\D — M of the complement of D induces a quasi-isomorphism
1050 (Ajp)) = Q*(M\D).

Proof The argument uses the observation from [19, Theorem 1.2] (and the fact that
A|p| defines a soft sheaf) that it suffices to show that :* induces an isomorphism on the
level of sheaf cohomology. Below we will implicitly identify the sheaf Q*(M\D) with
its push-forward 1, (Q®*(M\D)). For all points p € M\D, there exists a contractible
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open neighborhood U of p disjoint from D. On this open A|p| = TM and Res, = 0,
and therefore 1, is simply the identity. Let j be any integer less than or equal to the
point of highest multiplicity of D, take p € D[j], and let U be a contractible open
around p as in Remark 2.13. In those coordinates, Hg (U, A|p|) is the free algebra
generated by {1,d61,...,d6;}. By an elementary argument, U\D is homotopic to T/,
and using this homotopy +* takes the generators of Hp o(Ap|) to the generators of
H*(U\D). Therefore, we conclude that :* is a local isomorphism, and consequently a
global isomorphism. [ ]

We will need a few more residue maps for self-crossing elliptic divisors.

Definition 2.16 [11] Let (Ijpj,0) be a co-oriented elliptic divisor, and let w €
Q*(App|). Let peD(k) with k>2 and consider oriented coordinates as in
Remark 2.13. We define

Resy,; w(p) = wp(rioy,> rjarf)’
ReSriGj w(P) = wp(riarpan)’ Reseigj w(p) = wp(aOi’ agJ).

These pointwise expressions depend on o and the ordering of coordinates, but only
up to sign.

2.3 Lie algebroid symplectic structures

We will use the language of symplectic Lie algebroids to translate certain Poisson
and generalized complex structures into simpler Lie algebroid objects. Given a Lie
algebroid two-form w € Q*(A), we say it is nondegenerate if w’:A - A* is an
isomorphism.

Definition 2.17 Let I and I|p| be real log and elliptic divisors on a given manifold
M. Then:

o Aform w € Q*(Ay) is log-symplectic if dw = 0 and it is nondegenerate.
o Aform w € O*(A)p)) is elliptic symplectic if dw = 0 and it is nondegenerate.

One can prove Darboux-type normal form theorems for symplectic Lie algebroids
using a thorough understanding of their Lie algebroid cohomology, by a straightfor-
ward adaptation of the Moser lemma. However, in the above cases, this cohomology
is generally locally nontrivial, so that there is no unique local model. In dimension 2,
we have the following (which is the real analogue of Proposition 5.2 in [11]).

Lemma 2.18 Let Iz be a real log divisor on 32, and let w € Q*(Az) be a log-symplectic
form. For each point p € Z[2], there are coordinates (x1, x, ) centered at p and A € R such
that

w = Adlogx; A dlogx,.

Since in two dimensions every nowhere zero two-form is closed and nondegener-
ate, we have the following source of examples of log-symplectic manifolds.

Lemma 2.19 Let £ be a compact oriented surface with corners. Then (2, I;5) admits
a log-symplectic structure.
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Proof The ideal Iy defines a real log divisor. Because X is oriented, let h € C* (M)
be a defining function for dM, so that Iz = (h), and let w € Q?(Z) be a volume form.
Then h'w € Q%(Ajp) is a nondegenerate log two-form that is closed for dimensional
reasons. n

2.4 Self-crossing stable generalized complex structures

In this section, we recall the notion of a self-crossing stable generalized complex
structure [11]. This is a well-behaved class of generalized complex structures [20], i.e.,
complex structures on thebundle TM := TM & T* M. We furthermore recall that they
are equivalent to certain elliptic symplectic structures.

Definition 2.20 A generalized complex structure on a manifold M is a pair (J, H)
where H € Q*(M) is a closed three-form and J is a skew-symmetric endomorphism
of TM for which J? = —-Id and the +i-eigenbundle, L c (TM) ® C, is involutive with
respect to the Dorfman bracket:

[X+&EY+u]u:=[X.Y]+Lxn—1ydE+ixiyH, X+&Y+nel(TM).

Given a generalized complex structure (J, H) on M, one can decompose it in a
two-by-two block matrix, using the decomposition TM = TM & T* M. The skew-

symmetry of J ensures that it is of the form J = ( a]" _"]‘%* ) with J € J(TM), 7l : T*M —
TM corresponding to a bivector 7y € X?(M) and ¢* : TM — T* M corresponding to
atwo-form o € Q*(M).

Two generalized complex structures (J, H) and (J', H') are gauge equivalent
if there exists B € Q?(M) such that H' = H + dB and, using the associated map

B": TM — T*M, we have
V=(p)I(p1)

i
Lemma2.21[12] Let] = ( U] , jr]ﬂ* ) be a generalized complex structure on M. Then 7y €

X*(M) is a Poisson structure on M. Moreover, if J and J' are gauge equivalent, then
Ty = 7).

Given an element X + £ € TcM, let (X + &) - p := ixp + € A p denote the Clifford
action of TM on elements p € A®*TE M. A generalized complex structure J is alterna-
tively characterized by its canonical bundle K c A* T M defined by the relation

L={ueTcM:u-K=0}.

Its dual carries a natural section s € ['(K™), given by the map which sends p € T'(K) to
its degree zero part, and is called the anticanonical section of J. The pair (K*, s), called
the anticanonical divisor, can be used to define a specific class of generalized complex
structures:

Definition 2.22 [11] Let M be a manifold and H € Q*(M) closed. A generalized
complex structure J on (M, H) is stable with self-crossings if (K*,s) defines a self-
crossing complex log divisor.
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As before, we will often simply call these structures “stable,” and when their divisor
is in fact smooth, we will explicitly stress this.

If J is a stable generalized complex structure on M, one can show that 77y admits a
nondegeneratelift to A, the elliptic tangent bundle with respect to the elliptic divisor
induced by (K*,s). Inverting this nondegenerate lift results in an elliptic symplectic
form w € O*(A|p|). Under certain conditions, this procedure can be reversed.

Theorem 2.23 [11]  Let M be a manifold. There is a one-to-one correspondence between
gauge equivalence classes of stable generalized complex structures on M and co-oriented
elliptic divisors together with an elliptic symplectic form w € QO (Ap|), satisfying:

+ Resy(w) = 0.

* Resg,,; (@) = Res; p,(w).

* Res,,;;(w) = —Resg,g,(w).

Explicitly, this map is given by

(J, H):
J is a stable GCS
(I‘D|,0,7le)l

- (Iipj» 0) is a co-oriented elliptic divisor and
n7" is an elliptic symplectic form satisfying the above relations

Here, (Ip), 0) is the co-oriented elliptic divisor induced by the anti-canonical divisor.

In the above, the co-orientation o is defined using the fact that the normal derivative
of the anti-canonical section s induces an isomorphism d*s: ND| py} = K*| ppyj.-

Example2.24 Consider the generalized complex structure on C? with trivial canon-
ical bundle determined by the form

p=z1z+1dzy ndzp, TeC.

In terms of the dual section of p* € T'(K*), the anticanonical section is given by s =
z2122p* € T(K*), and therefore p defines a stable structure with elliptic ideal |z;| * |z,| .
The elliptic symplectic form induced by p is

w=1Im(7)(dlogr Adlogr, —d0; Adf,) + Re(r)(dlogr A dB, + dO; Adlogr,).

This structure provides the normal form for a four-dimensional stable generalized
complex structure around a point in D[2].

In this paper, we will predominantly consider examples of stable generalized
complex manifolds for which the local normal form has parameter 7 = i\ for a real
number A; thus, it is worth recalling the following definition.

Definition 2.25 Let M* be a four-dimensional manifold endowed with an elliptic
divisor. We say w € Q*(A,p)) with zero elliptic residue has imaginary parameter at a
point p € D[2] if:

* [Resy,r, (0)(p)| = [Resg,p, () (p)].

o Res;p, w(p) =0.

* Res,,p, w(p) =0.
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We say that w has imaginary parameter if it has imaginary parameter at all points
peD[2].

Recall that these residues are only well defined up to sign, so that their absolute
values are well defined. Although elliptic symplectic forms with imaginary parameter
seem very close to being induced by generalized complex structures, and in fact locally
they are, due to possible orientation issues, they might not globally correspond to
a stable generalized complex structure. To see when this is the case, we need the
following definition.

Definition 2.26 Let M* be an oriented manifold with a co-oriented elliptic divisor
(Iipj» 0). Given p € D[2],let (D1, D;) be two local embedded submanifolds for which
D = Dy u D; around p. The intersection index of p is

{+1, if the isomorphism N,D; @ N,D, ~ T, M is orientation-preserving,
£, =
P

-1, otherwise.

The parity of a connected component D’ of D is given by the product eps =
I_IpeD’[Z] €p-

The parity of a connected component D’ of D does not depend on the choice of
co-orientation of D, and if D’[2] has n points, a change of orientation of M changes
the parity of D’ by (-1)". We extend the definition of parity to a smooth connected
component D’ of D by declaring its parity ¢ps to be +1if D’ is co-orientable, and -1 if
it is not.

An elliptic symplectic form w defines an orientation because w” is nonzero outside
a codimension-2 subset. Using this orientation, we can determine when an elliptic
symplectic form induces a stable generalized complex structure.

Corollary 2.27 [11]  Let M* be a manifold endowed with a co-orientable elliptic divisor
Iip), and let w € O (Ap)) be elliptic symplectic with zero elliptic residue and imaginary
parameter. If the parity of all connected components of D with respect to the orientation
determined by w is 1, then there exists a co-orientation o for I|p| such that (Ip|, 0, w)
induces an equivalence class of stable generalized complex structures.

This corollary gives us the following strategy: first, construct elliptic symplectic
structures with imaginary parameter, and then compute the parity of the connected
components of the divisor. This is more convenient than using Theorem 2.23 directly,
as it separates the construction of the symplectic structure from the existence of a
particular co-orientation of the divisor.

3 Boundary maps and Lefschetz fibrations

The game we play next is to single out a class of maps that admits enough singularities
to make them interesting, while also giving us enough control on the singular behavior
so that we can use these maps to perform geometric constructions. The main point of
this section is to extend the notion of boundary Lefschetz fibration defined in [9] for
manifolds with smooth divisors to manifolds with self-crossing divisors. This exten-
sion allows for maps to have one extra type of singularity: elliptic—elliptic type. This
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change allows us to get a much better grasp on many generalized complex manifolds
as those can be easily described as fibrations with elliptic—elliptic singularities.

3.1 Boundary maps

Our first step is to single out a very general class of maps which is compatible with the
Lie algebroids introduced in Section 2.2. These are the boundary maps which already
illustrate how singular behavior of maps can be coupled with Lie algebroids.

We start with some basic terminology. A pair, (M, D), is a manifold M together
with a (possibly) immersed submanifold D € M. A map of pairs f: (M, D) — (N, Z)
isamap f: M — N such that f(D) € Z. A strong map of pairs furthermore satisfies
f~1(Z) = D. Finally, (N, Z) is a log pair if the vanishing ideal I is a log divisor ideal
on N.

Definition 3.1 Let f: (M, D) — (N, Z) be a strong map of pairs onto a real log pair.
Then f is a boundary map if I|p| := f* I defines an elliptic divisor ideal.

Example 3.2 'The basic example to have in mind for boundary map is
£:(CLD) »> (RZ),  fiznz) = (|l |z2f),

where D c C? and Z c R? are the two coordinate axes.

There are other examples of boundary maps that we will eventually exclude by
imposing further requirements, but which are also interesting to keep in mind for
now:

f2:(C* D) > (R,{0}), fa(z1,22) = 21|z,

where D c C? is again the two coordinate axes and

f5: (8% {pnsps}) = (S {-1}), f3(x, y,z) = exp(miz),

where py, ps are the north and south poles of the unit sphere and we regard S* as the
complex numbers of length 1.

Notice that in the first two examples above, the image of the maps considered are
manifolds with corners, and for all intents and purposes, we could have considered
them as maps into their image with the divisor being determined by the boundary.
This is in line with the original idea behind log geometry (also known as b-geometry)
developed by Mazzeo and Melrose [25]. The third map shows that sometimes the
image may be a genuine manifold (without boundary). Note that f; factors through

the height map f: (S%, {pn> ps}) = (I,3]), f3(x, y,2) = 2,

) (1,aI)
% lexpw-)

(S {pws ps}) —2— (SL{-1}),
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Figure 2: Boundaryfication of R? with two coordinate axes.

which has image a manifold with boundary, and boundary as divisor. This is a specific
example of a more general construction, namely that we can “cut N open along Z”
Next, we will describe this procedure, which justifies the name boundary map.

Lemma 3.3 Let (N, Z) be a real log pair with N a manifold without boundary. Then
there is a manifold with corners N and a map p: (N,0N) — (N, Z) such that:

* pis a map of divisors.

o p:N\ON — N\Z is a bijection.

o Every point x € N has a neighborhood U such that p: U — p(U) is a diffeomorphism.
Furthermore, if p":(N',0N") - (N, Z) is another manifold and map satisfying the
properties above, then there is a unique diffeomorphism ¥:(N',0N") - (N, dN) for
which p' = po .

Proof We start with a local construction. Denoting by R} the manifold R" with
divisor given by the hyperplanes determined by the equation x;---x, = 0, we let R} be
given by the disjoint union

RZ: U {(xa,... xn) e R":kix; >0, where K = (k... ko) }s

Ke{-1,1}¢

and we let p:ﬂi;’ — R} be the natural inclusion: p(x) = x. Figure 2 shows this con-
struction for R? with the two coordinate axes as its real log divisor. We call each
connected component of @2’ defined above a quadrant.

Notice that p: ﬂé;‘ — R} is amap of divisors, and if a smooth map f: M — R" has its
image in a quadrant, then it admits a smooth lift to R?. Furthermore, if M is connected
and the image of f has points which are not in the hyperplanes determined by x;---xy =
0, then this lift is unique.

For the global construction, we observe that charts in N provide a way to glue
the local construction above to produce a manifold with corners. Indeed, given
two charts that render the divisor in standard form, in their overlap, the change of
coordinates gives a diffeomorphism O:Ry —» Ry, for some /. Since the charts are
adapted to the divisor, @ also induces a diffeomorphism of quadrants, that is, it lifts
to a diffeomorphism ®: (R%, oR?) — (R2, 9R?).

Since the changes of coordinates arising from an atlas for N give rise to a Cech
cocycle of diffeomorphisms, the same holds for their lifts, so the procedure can be
used to produce a manifold with corners N. Furthermore, the natural local maps, “pr
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defined in coordinate charts above patch together to give a global map of divisors
p:(N,0N) - (N, Z). By construction, p: N\N — N\Z is a bijection away from the
divisors and a local diffeomorphism onto its local image.

Finally, if p": (N’,0N’) - (N, Z) is a map of divisors with the two properties
above, then we show that p’ has a unique lift ¥: (N’, dN') - (N, oN):

(N,oN)

b

(N’,oN") —2— (N, 2).

Indeed, in this case, p~' o p":N'\ON’ - N\oN is a diffeomorphism and, by the
third property, any point x € N’ has a connected neighborhood U c¢ N’ that maps
diffeomorphically onto its image. Hence, taking U small enough, since U is connected,
p'(U) lies in a quadrant for a coordinate chart in N and hence p’ has a unique
(local) lift to N. Patching these local lifts together, we obtain the map W. Since ¥ is a
diffeomorphism in the interior of N” and by construction also a local diffeomorphism
for points in the boundary of N’, it is a global diffeomorphism. [ ]

Definition 3.4 'The boundarification of a manifold without boundary together with
a real divisor, (N, Z), is a manifold with corners (N,dN) together with a map
p:(N,0N) - (N, Z) satisfying the properties of Lemma 3.3.

Example 3.5 If we take N to be the two-dimensional torus and Z to be an embedded
circle which represents a primitive homology class, the boundarification of N is a
cylinder and the map p identifies the two ends of the cylinder. If we take Z to be a
pair of embedded circles intersecting transversely and which represent a basis for the
homology of the torus, then the boundarification is a rectangle and the quotient map
identifies opposite sides in the usual fashion.

Proposition 3.6  Let f: (M, D) — (N, Z) be a boundary map onto a manifold without
boundary equipped with a real log divisor. Then there exists a unique boundary map
f:(M,D) — (N,dN) to its boundarification that is a lift of f, i.e., which satisfies f =
poffor p:(N,aN) - (N, Z).

Proof All we need to prove is that every point x € M has a neighborhood U such
that f|y: U — N admits a unique lift ﬂU: U — N. Indeed, if this is the case, then any
two such local lifts will agree in their overlap by uniqueness and hence the local lifts
patch together to give a unique global map.

Since D has codimension 2 in M, every point x € M has a neighborhood U such
that U\D is connected. It follows that f(U\D) lies in a connected component of N\ Z.
By taking U small enough, we have that f(U\D) lies in a connected component of the
complement of Z in a coordinate patch V c N, thatis, f(U\D) lies in a quadrant and,
by continuity, so does f(U). As such, there is a unique lift to a map f: U — N. ]

We intend to use boundary maps to construct geometric structures on their total
space. Thus, we can, without loss of generality, assume that the target of a boundary
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map is (N, 0N ), a manifold with corners whose real log divisor is determined by its
boundary. This also explains the terminology “boundary map.”

3.2 Boundary Lefschetz fibrations

The notion of a boundary map f is still too general to give us enough information
about the singularities of the map. To get a good grasp on f, we need to ensure that
its singularities are well controlled and this is what we do next. There are two ways
to constrain the singularities of f: we can either impose that they display a specific
behavior with respect to the ideals (and Lie algebroids) present, or we can impose that
singularities disjoint from the vanishing loci of those ideals acquire a specific normal
form. We will follow both routes here.

Note that a boundary map is by definition a map of pairs, so that it satisfies f(D) ¢
Z. The first restriction we impose is that the map moreover respects the stratifications
present on both D and Z.

Definition 3.7 A fibrating boundary map is a boundary map f:(M, D) — (N, Z)
such that, for each k > 1, we have that:

e f:(M,D[k]) = (N, Z[k]) is a strong map of pairs.

« Each restriction f|px): D[k] - Z[k] is a submersion.

In Example 3.2, f; and f; are fibrating boundary maps, whereas f; is not as it does
not satisfy the first condition.

For a fibrating boundary map, f, we can use the ideals on M and N to control the
singular behavior of f in a neighborhood of their corresponding divisors. Concretely,
we have a pointwise normal form for the map.

Lemma 3.8 Let f:(M",D" %) —» (N™,Z"") be a fibrating boundary map, and
let x € D[k]. Then there exist coordinates (x1,...,%,) around x and (z1,...,2x, ¥i)
around f(x) such that:

« Zis the standard log divisor with intersection number k on R* x R™*,

« D is the standard elliptic divisor with intersection number k on R?* x R"~2k,
« In these coordinates, the map f takes the form

F(X1s s xn) = (X + X3y Xop g+ Xops Xn ks -+ o> X )-

Conversely, if for every point in D the map f is given in standard coordinates for the
divisors by the expression above, then it is a fibrating boundary map.

Proof Choose a tubular neighbouhood V of Z[k] and denote by pr,;: NZ[k] -
Z|k] the projection. Let V' cV be an open neighborhood of f(x) on which
Z[k] is the standard log divisor and write V'nZ[k]={z-... - zx =0}.
Choose a coordinate system (¥xi1,-..>¥m) on V'nZ[k], so that the set
{21, > 2K Yy Yhsts - - Py Ym ) forms a coordinate system on V' which
is possible because pr,p;) is a submersion. Because f is a morphism of divisors,
f*(z1-...-zx) generates an elliptic divisor ideal on U := f~'(V’) ¢ M. Using that f
is fibrating, after possibly shrinking U around x, let (x;,...,x,) be coordinates on
U in which this is the standard elliptic divisor, and such that f*(z;) = x%j—l + xgj.
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Because the restriction f| ] is a submersion, we see that

{xi,.. ’x2k’f*prz[k]yk+l’ e ’f*Prz[k])’m}

forms a functionally independent set. We can complete this to a coordinate sys-
tem on M and relabel these as (xi,...,x,). If we use the coordinate system
(z15- .. » Zks PY [ Ykl - - - ,pr}[k]ym) on N and the above coordinates on M, then f
takes the required form.

The converse follows immediately from the local expression for f. [ ]

Remark 3.9 Even if M and N are oriented manifolds and we require the use of
coordinate charts compatible with orientations, we can still arrange that the local
expression for f is given by the expression in Lemma 3.8. Indeed, using complex
conjugation on the domain and permutation of the coordinates on both domain and
codomain, we can change a coordinate chart which is not compatible with the given
orientations into one that is.

In four dimensions, if D[2] is nonempty, Lemma 3.8 implies that N is two-
dimensional. Moreover, in a neighborhood of a point p € D[2], orientations of M and
N in fact dictate which one is “the first” strand of D arriving at p and which one is “the
second,” as this information is determined by the orientation of N.

Lemma3.10 Let f:(M,D) — (N, Z = 0N) be a fibrating boundary map whose fibers
near D are connected. Then the fibers of f| prx): DI k] — Z[k] are connected for all k > 1.

Proof The proof goes by induction over the strata. Note that Z[k + 1] is a hypersur-
face in Z[ k], and therefore

flpp : (DIK], DIk +1]) - (Z[k], Z[k +1])

is a fibrating boundary map for all k > 0. Applying [9, Proposition 5.25] to f| an\p(2)
tells us that the fibers of f| p[;] are connected. Thus, we can apply the same result to
flpp to conclude that the fibers of f| p[,] are connected. Continuing inductively, we
arrive at the desired result. [ ]

The conditions imposed on the maps have, up to this point, been on behavior near
D. Next, we impose the conditions away from D:

Definition 3.11 A boundary fibration is a fibrating boundary map f:(M,D) -
(N, Z) such that f|ynp: M\D — N\Z is a surjective submersion.

Definition 3.12 A boundary Lefschetz fibration is a fibrating boundary map
f:(M?",D) - (2%, Z) between oriented manifolds such that f|np: M\D — Z\Z
is a Lefschetz fibration. That is, the map f: M — N is proper, f|u\p is injective on
critical points, and for each critical point p € M\D, there exist orientation-preserving
complex coordinate charts centered at p and f(p) in which f takes the form

fiC" > C,  f(z1,...r20) =21+ + 20

If M is four-dimensional, the definition above allows for three different types of
singularities. These singularities have the following names (see also Section 6.4 for
the relation with semitoric geometry).
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Definition 3.13  Let f: M* - 22 be a smooth map.
o An elliptic singularity of f is a point p for which f has the local expression

F(x1, X2, X3, %4) = (%7 + X3, x4), x; e R.
« An elliptic-elliptic singularity of f is a point p for which f has the local expression
F(x1, X2, X3, %4) = (%7 + X3, %3 + x3), x; €R.
o A Lefschetz singularity of f is a point p for which f has the local expression
f(z1,22) = 20 + 23, z; € C.

The level sets associated to these singularities are, respectively, an elliptic, elliptic-
elliptic, and Lefschetz fiber.

For a boundary Lefschetz fibration f: (M*, D) —» (22, Z), the first two singu-
larities above happen at the different strata of the divisor, whereas the Lefschetz
singularities do not interact with the divisor. In dimension 4, the geometry of these
fibrations can be understood.

Proposition 3.14 Let f:(M*, D*) — (2%, Z) be a boundary Lefschetz fibration with

connected fibers, and let D' be a connected component of D. Then:

o The regular fibers of f near D are tori.

o When D'[2] has k > 1points, then D' is a union of k pairwise transversely intersecting
spheres.

In particular, if D'[2] # @, then D' is co-orientable.

Proof The first point follows immediately from [9, Corollary 5.18].

For the second, assume that D'[2] has at least one point. Then f| ppy3: D[1] — Z[1]
is a surjective submersion by assumption, which by Lemma 3.10 has connected fibers.
The corresponding locus Z'[1] is a disjoint union of k open intervals, and as the fibers
of f|pp are connected, they must be circles. Therefore, D'[1] has to be a disjoint
union of cylinders. The immersed submanifold D’ is obtained from D’[1] by replacing
the boundary circles by points and pairwise glueing these points, which implies it is
as described above.

Finally, because each component of D’ is an immersed sphere and thus automati-
cally co-orientable, each component of D'[1] is also co-orientable. ]

Therefore, to construct stable generalized complex structures using Corollary 2.27,
the condition of co-orientability of D is satisfied as long as D[ 2] is nonempty for every
component D’ of D. For smooth components D’ of D, however, i.e., when D'[2] = &,
co-orientability is not guaranteed.

3.3 Boundary maps and Lie algebroids

Given that the ideals I and I|p| of a boundary map determine Lie algebroids, one
should expect that boundary maps (and their further specializations) are compatible
with them. This is indeed the case.

Lemma3.15 Let f:(M,D) — (N, Z) be a boundary map. Then there is a Lie algebroid
morphism (¢, f): A|p| = Az such that ¢ = df on sections.

https://doi.org/10.4153/50008414X22000116 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X22000116

Fibrations in semitoric and generalized complex geometry 663

Proof To prove thatd f induces a Lie algebroid morphism ¢, by [9, Proposition 3.14],
it suffices to show that f* extends to an algebra morphism ¢*: Q*(Az) - Q°*(Ap)).
This can be done locally, so given p € D and f(p) € Z, consider coordinates adapted
to the divisors as in Examples 2.6 and 2.9:

(X1 Y1005 X, Yo, Xogits .. o> X)) around p, (X15...5Xj5 Yjs1s---> Ym) around f(p).
In these coordinates, we have

Q°(Ajp)) = (dlogr,db,...,dlogr,dO, dXy1, ..., dX,),
Q*(Az) = (dlogxi,...,dlogx;,dyjut, ..., dym).

We must verify that f*(dlogx;) defines an elliptic form. Because f is a morphism
of divisors and the ideals are locally principal, it sends generators to generators;

thus, there must exist a nowhere-vanishing function g such that f*(x;-...-x;) =
gri-...-ri. Consequently, by functional indivisibility of the r?, we conclude that
f*(xi) = hr} -...-r? for some nowhere vanishing function h and (possibly empty)

subset {i1,...,i¢} €{1,...,s}. We find that
f*(dlogx;) =dlog f*(x;) = dlogh +2dlogr; +--- +2dlogr;,,
which is an elliptic form as desired, so that ¢ is a Lie algebroid morphism.

The conditions imposed on boundary maps have a direct counterpart in Lie
algebroid language. Given a Lie algebroid p4:A — M, let M4 be the open subset
where the anchor map is an isomorphism.

Definition 3.16 [9] A Lie algebroid morphism (¢, f): (A, M) - (A’, N) is said to
be a:

« Lie algebroid fibration if the induced morphism ¢': A — f*A’ is surjective and
o Lie algebroid Lefschetz fibration if M 4 is dense, f '(N.4/) = M4, and there exists a
discrete set A ¢ M 4 such that:
~ flm,:Ma — Ny is a Lefschetz fibration with Crit(f|y, ) = A and
- (¢, f): (A, M\fL(f(A))) = (A, N\f(A)) is a Lie algebroid fibration.
Note that the Lefschetz condition forces that rank(.A) = 2n and rank(A’) = 2.

The following lemmas follow immediately from the definition, combined with
Lemma 3.15.

Lemma 3.17 Let f:(M,D) — (N, Z) be a boundary fibration. Then there is a Lie
algebroid fibration (@, f): (Ajpj M) — (Az, N) such that ¢ = df on sections.

Lemma 3.18 Let f:(M*, D*) - (N?,Z") be a boundary Lefschetz fibration. Then

there is a Lie algebroid Lefschetz fibration (¢, f): (Ajpj, M*) - (Az, N?) such that
¢ = df on sections.
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We summarize these statements and the relationship between the different con-
cepts in the table below:

Boundary (Lefschetz) fibration = Lie algebroid (Lefschetz) fibration
Fibrating boundary map = Lie algebroid map submersive over the singular locus
U
Boundary map = Lie algebroid map

3.4 Construction of self-crossing stable generalized complex structures

With the desired notion of boundary Lefschetz fibration in hand, we are set to prove
our first result relating them to stable generalized complex structures.

From now on, we will adopt the following convention: given a boundary Lefschetz
fibration f: (M, D) - (N, Z), we will orient the fibers of f: M\D — N\Z by declaring
that the orientation of the fiber together with the orientation of the base yield the
orientation of M, so that each fiber determines a homology class on M\D. With this
convention, integration over the fiber is a well-defined operation which induces the
natural pairing between homology and cohomology.

Definition 3.19 A surjective boundary Lefschetz fibration, f: (M*, D) - (N?2,0N),
defined on a connected manifold M is homologically essential if the homology class
[F] of a (and hence any) regular fiber of f: M\D — N\Z is nontrivial in H,(M\D;R)
or, equivalently, if there is a class c € H*(M\D;R) such that (¢, [F]) # 0.

Definition 3.20 A boundary Lefschetz fibration, f:(M*, D) — (N? Z), and an
elliptic symplectic form w e Q*(App|) are compatible if ker¢ € App| consists
of symplectic vector spaces, where ¢:Ap - Az is the induced map of Lie
algebroids.

In what follows, we will have two ongoing simplifying assumptions:

(1) We will assume that the target manifold is (N, dN). This is not a restriction
since by Proposition 3.6 we can lift f to a boundary Lefschetz fibration over the
boundaryfication of (N, Z).

(2) We will assume that the level sets of f are connected. This also is not restriction
since by [9, Proposition 5.24] we may assume that the generic fibers of f are
connected and Lemma 3.10 then implies that the level sets over Z[1] and Z[2]
are connected as well.

Before we continue, it is worth to stop and take stock of where we stand and place our
quest into context. The case when the elliptic divisor is smooth was already treated in
[9]. Even though there the authors only dealt with the compact case, the following is
an immediate generalization for a proper map.

Theorem 3.21 [9, Theorem 71] Let (M*,Ip)) be an oriented manifold with a
smooth elliptic divisor, and let f:(M,D) — (N*,Z,wy) be a homologically essen-
tial, proper, Lefschetz fibration with connected fibers over a possibly open log-
symplectic surface. Denote by ¢:A|p|— Ay the induced map of Lie algebroids.
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Let c e H*(M\D) = Hj (M, A|p|) be a cohomology class such that (c,[F]) > 0, where
F is a regular fiber of f. Then there exists a closed two-form 1 € O (M, A|p)) with
[n] = ¢ and a positive function pg € C*°(N) such that:

o 1 is fiberwise nondegenerate, that is, for every p € M, 1 is nondegenerate in ker(¢,).
o The form w = n + f*(pws) is symplectic with zero elliptic residue on A|p| for every
p € C(N) aslong as p > po.

Apart from the theorem above, [9] also includes a general Gompf-Thurston result
for Lie algebroid Lefschetz fibrations: under similar conditions on a Lie algebroid
Lefschetz fibration, one can construct a Lie algebroid symplectic form on the domain
by adding a form which is symplectic on the fibers to a large multiple of the pull back
of a symplectic form on the base.

Neither result can be directly applied to our case: Theorem 3.21 does not work
because our divisor is not smooth, while the failure of the general result on Lie
algebroid fibrations to yield stable generalized complex structures can already be seen
in the simplest example.

Example 3.22 Consider the boundary fibration:
£:(C%D) > (R%2),  filanz) = (la |zl*),

where D and Z are the coordinate axes on C* and IR?, respectively, as in Example 3.2.
We can endow R? with the log-symplectic structure dlogx; A dlogx,, and con-
sider on C? the closed elliptic form

n=-d0,AdO,+dlogr AdO, +dlogr, Ado,

which is nondegenerate on the fibers of fi. The Gompf-Thurston theorem then
provides us with a one-parameter family of forms

we =1+ tfi (dlogx; Adlogx,),

which is elliptic symplectic for ¢ > 1. This poses a problem: although this defines a
legitimate elliptic symplectic form, there is no value of t for which it corresponds to
a stable generalized complex structure, since |Res,,,, w;| # |Resg, g, w¢| for t > 1. We
conclude that the process of scaling up the log-symplectic structure on the base to
achieve nondegeneracy is incompatible with the residue conditions.

What we do next is to adapt Theorem 3.21 for the self-crossing case.

Theorem 3.23 Let f: (M*, D*) — (N?,Z = 0N) be a homologically essential bound-
ary Lefschetz fibration with connected fibers between compact connected oriented mani-
folds. Denote by ¢: Ap| — A the induced map of Lie algebroids. Then (M, I|p|) admits
an elliptic symplectic structure with zero elliptic residue and imaginary parameter which
is compatible with f.

If D is co-orientable and the index of each connected component of D is 1, this elliptic
symplectic structure induces a stable generalized complex structure.

Proof Fix a log-symplectic structure wy € Q*(N,Az). First, we consider
f:M\D[2] - N\Z[2]. This is a homologically essential, proper, boundary Lefschetz
fibration with smooth elliptic divisor; hence, by Theorem 3.21, there is a form
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n € Qf o(M\D[2];log|D\D[2]|) and a function py € Q°(N\Z[2]) (recall Definition
2.14) such that w = 4+ f*(pwy) is a zero elliptic residue symplectic form for any
function p € Q°(N\Z[2]) with p > p.

Now, we show how to change this construction, so that the form it yields
extends over D[2], is elliptic symplectic with zero elliptic residue, and has imaginary
parameter.

For each point p € D[2], fix open neighborhoods U; € U, € U; and oriented
coordinates charts defined on Us and f(Us) in which f has the form

f(z1,22) = (|z1|2, |Zz|2)-

As usual, we express the complex coordinates in Uj in polar form, z; = r;e'%, and
denote by (x;, x;) the coordinates on the base, so f*x; = r%.

The strategy will be to change the symplectic form w described above in a very
precise way:

« Inthe complement of U3, w remains unchanged except for a further constant scaling
of the symplectic form wy.

o In U;\U,, we change # into a multiple of d0, A d6 and we preserve nondegeneracy
by rescaling the symplectic form wy by a constant.

« In U,\U;, we interpolate the possibly large f*wy to f*(dlogx; A dlogx,) and
observe that this interpolation does not spoil the symplectic condition.

« In Uj, we extend the symplectic form as df, A d6; + dlogr A dlogr,, which
clearly has the desired properties at p.

Now, we carry out his plan explicitly. Fix p > py. On Us, we have by Lemma 2.15 that
[1] € Ho,o(Us\D[2], Ajp\pp2))) = H*(Us\D) =R,

and the generator of this cohomology pairs nonzero with the torus given in coor-
dinates by F = f'(ry,;), where r; and r, are any two small positive numbers. Let
A = [, nwhere integration is with respect to the fiber orientation of F, and hence A > 0.
On Us, consider the elliptic form % = ﬁd 0> A d0;. Then 7] is closed in Us and also
integrates to A over F. Therefore, [1] = [#7] € H*(U3\{p}, Ap\(,} ), and there is a one-
form a € Q'(Us\{p}, Ajp\(p})) such that 77 = 7 + da.

Let k > 1, and let y; and y, be positive functions on f(Us) such that y; is equal
to 1 in neighborhood of f(U;) and has support in f(U,) and y, is equal to 1 in
neighborhood of f(U;) and has support in f(Us). Then consider the form

2:(d0, A d6; +dlogr Adlogr,) in Uy,

o )1 (A= y)kpon + Yidlogx Adlogx;) i Uy\Uj,
n+d((f*y2)a) + f*(kpwn) in Us\Ua,
n+ f*(kpwy) in M\Us.

Because of our choice of bump functions, this form is smooth. Moreover, it is clearly
closed. Since k > 1, we have kp > p > py, and hence @ is symplectic in M\Uj for all
possible values of k.
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On Us\U,, we observe that the form 7+ d((f*y)a) is fiberwise symplectic.
Indeed, its restriction to each fiber is given by

n+ (fya)da = (fy2)(n+da) + (1= (fTy2))n = (f )7+ (1= (f7y2))ms
hence, it is a convex combination of # and 7, and these are both symplectic and
determine the same orientation on each fiber. Since 7+ d((f*y)a) is fiberwise
symplecticand pwy is symplectic on N, the combination 77 + d((f*v)a) + f*(kpwy)
is symplectic on the compact set U3\ U, as long as k is large enough.

On U,\Uj, the form 7 is given by ﬁd@z A d6;, while the summand f*((1-
y1)kpwn + y1dlogx; Adlogx,) is a convex combination of two log-symplectic
structures on N which determine the same orientation, that is,

(A -y)kpoy + %%dlogxl ndlogx,) = f*(kdlogx; A dlogx,),
s
for some positive function &, and hence, on U,\Uj,
w = %d@z ANdOy + (f*k)dlogr Adlogr,,
s

which is clearly (zero residue) elliptic symplectic.
Finally, on U;, we have w = Im(i ﬁ?d logz; A dlogz,), showing that it has the
desired properties. [ ]

4 Connected sums of boundary Lefschetz fibrations

In this section, we describe a connected sum procedure for boundary Lefschetz
fibrations along zero-dimensional strata of their elliptic divisors. This procedure
will allow us to construct elaborate examples out of basic ones. For simplicity, we
immediately restrict ourselves to dimension 4, but we note that since the connected
sum takes place at points of the divisor, this procedure can also be carried out for
boundary fibrations in higher dimensions.

Before we start taking connected sums of boundary Lefschetz fibrations, first recall
from [11, Lemma 6.1] that we can take connected sums of elliptic divisors.

Lemma4.1 Let M}, Mj be oriented manifolds endowed with elliptic divisors I p,|, Iip,,
respectively, and let p; € D;[2]. Then My#,,,,, M, admits an elliptic divisor I‘5|for which
the natural inclusions (M\{pi}, I|p,|) = (Mi#p, p, M2, I|5|) are morphisms of divisors.

Similarly, recall from [11, Lemma 6.1] that we can perform a self-connected sum,
which when M is connected corresponds to attaching a 1-handle, and hence the
diffeomorphism type of the resulting space is M#(S! x S*).

Lemma4.2 Let M* be an oriented connected manifold endowed with an elliptic divisor
Iip), and let py, p; € D[2] be distinct points. Then M#(S' x S*) and admits an elliptic
divisor I|5|for which the natural inclusion (M\{p1, p2},Ip) = (M#(S' x $°), I‘5|) is
a morphism of divisors.

In this connected sum procedure, the map ®(zy,z,) = m(zz,%) is used
to identify annuli. Here, (z;,2;) are local complex coordinates compatible with the
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orientation on the manifolds. There is some freedom in the constructions above. Given
a choice oflocal coordinates (z;, z; ) around p; and p,, we can compose the map @ by a
permutation of the coordinates. This does not change the topology of M#,,, ,, M», but
it could change the topology of the zero locus of the divisor. In dimension 4, because
of this freedom in the ordering, there are potentially two different topological types of
the zero locus of the divisor. Notice, however, that our notation does not reflect this
ambiguity.

Remark 4.3 (Connected components) Although there is some freedom in the
choices, we can still distinguish the number of connected components on the divisor
on the connected sum:

(1) When p; and p; lie in different connected components of the divisor, be that
either in the connected sum of two manifolds or in a self-connected sum, the
connected components containing p; and p, will combine into a single connected
component of D.

(2) When p; and p, are in the same connected component, D, a case that can only
happen in a self-connected sum, the resulting divisor, D c M#(S' x $*), may have
one or two connected components originating from D.

Next, we show that the connected sum operation is also compatible with boundary
(Lefschetz) fibrations. To describe how the connected sum procedure interacts with
the base of the fibration, we first consider what happens in the local model.

Lemma 4.4 Let A, € R be the triangle bounded by the axes and the line x + y =1,
and let (x, y) be oriented coordinates on A, and (z1, z2) be complex coordinates on D7,
the disk of radius r. Consider the following maps:

« p(D3\Dy),) > (A2\Aypa), given by (21,22) = (|z1] %, |22] *).-

. ©:(D3\D}),) > (D3\DY),), given by (21, 22) = m(zz,il).

. P (AZ\AI/Z) N (AZ\AI/Z)given by (x,y) — (Ei;))z

Then the following diagram commutes:

(DADY,) —2 (DAD},,)

1/2

b b

(A2\Arj) —— (A2\Ayp).

The proof of this lemma is a simple verification. Just as we used the map O to
perform a connected sum compatible with elliptic divisors, we want to use the map ¥
to define a sort of connected sum operation of the base.

Definition 4.5 Let %, 2, be oriented surfaces with corners, and let g1, g, be corners
of 2, £,, respectively. The oriented corner connected sum of %1 and X, is defined by
identifying a trapezoid neighborhood of g; to a trapezoid neighborhood of g, via V.
The oriented corner connected sum is an oriented surface with corners denoted by
21#4,,9,22 (see Figure 3).
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Oriented corner sum

z, v,

Orientation reversing

corner sum

Figure 3: Local oriented and orientation-reversing corner connected sums.

The oriented corner connected sum is naturally oriented and does not depend
on the neighborhoods chosen. Together with the local normal form for fibrating
boundary maps, we can now prove the following.

Theorem 4.6 Let f;: (M}, D;) - (N?,0N;) be boundary (Lefschetz) fibrations with
connected fibers between oriented manifolds for i =1,2, let p; € D;[2] and q; = f(pi).
Then there exists a boundary (Lefschetz) fibration on one of the two possible connected
sums M#p, ,, M whose base is the oriented corner sum Ny#g, 4, Na:

(Ai#fo): (Mi#p,, 5, Ma, D) > (Ni# (). £(ps) N2s ONi#g, 4,0N2),

which is compatible with the (orientation-preserving) inclusions M;\{p;} = M#M,.
Furthermore, let D}, D} denote the connected components of the zero locus of the
divisor D containing py, p,, respectively. Then the parities satisfy:

&p = —SD{SD; .
Finally, fi#f, is homologically essential if and only if f; and f, are.
Proof ByLemma 3.8, there exist neighborhoods Uy, U, of f(p1), f(p2), respectively,
which provide coordinates as in the setting of Lemma 4.4. We perform the connected
sum procedure using the maps described there. Because these maps are compatible

with the fibrations on M; and M,, we conclude that M;#,, ,, M, admits a boundary
fibration. The computation of the parity is given in [11, Theorem 6.7]. [ ]

Recall that there are a priori two possible topological types for the elliptic divisor,
depending on the ordering of the local coordinates. However, when we are presented
with fibrations between oriented manifolds f: (M;, D;) — (N;, ON;), the orientation
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on the base determines an order for the strands of D for every point p; € D;[2] (cf.
Remark 3.9), and the gluing of fibrations which is compatible with orientations on
M; and Nj is the one that flips the first and second strands arriving the points where
the sum is performed. In particular, from the possible divisors discussed in Remark
4.3(2), only the one with two connected components occurs.

Remark 4.7 (Nonorientable case) If we were to allow the map ¥ used in the
corner sum to be orientation-reversing, we would still be able to define a corner
connected sum and obtain a boundary fibration. When taking the connected sum
of two manifolds, this does not cause a qualitative change in the outcome. However,
if we use the orientation-reversing corner sum on the base for a self-connected sum,
we see that the resulting base manifold is not orientable as a Mobius band appears.

Now that we understand precisely what happens to the connected components of
the divisor on the self-connected sum, we can state the following.

Corollary 4.8 Let f: (M*, D*) — (N?,0N) be a boundary (Lefschetz) fibration with
connected fibers between oriented manifolds, and let py, p, € D[2] be distinct. Then
M#(S" x S*) admits a boundary (Lefschetz) fibration f which is compatible with the
inclusion M\{p1, p2} = M#,, ,,(S' x $*), and for which D[2] = D[2]\{p1, p2}-

Moreover, let D, , D), denote the connected components of D containing py, p2,
respectively.

o Ifpi€ D;u [2] and D;,l + D;Z, then the corresponding connected component D’ ofﬁ
satisfies:

Epr = _EDISD;-

o Ifpi € D}, [2] and D}, = D, , then the corresponding connected components D, D,
of D satisfy:

€D;D; = D}, EDp,
Finally, fis homologically essential if and only if f is.
5 Singularity trades

The goal of this section is to prove two theorems which allow one to trade Lefschetz
for elliptic—elliptic singularities and vice versa. To formulate these results, we need to
recall the notion of vanishing cycle for both Lefschetz and elliptic singularities.

Given a boundary Lefschetz fibration f: (M*, D*) - (N?,9dN) and an elliptic or a
Lefschetz singularity p; € M, let q; = f(p1) be the corresponding singular value. We
fix g € N, a reference regular point of f and y:[0,1] — N, a simple path connecting q
to g1 which goes through no critical values of f except for g; at time 1. We can consider
Fy=f"(q), Fy = f'(y([0,1])) and the natural inclusion 1: F; - F,. Then F, is a
two-torus and H; (F,) is one-dimensional:

« In the case of a Lefschetz singularity, the inclusion H,(F,;) - H,(F,) has kernel
given by the Lefschetz vanishing cycle, which corresponds to the boundary of a
Lefschetz thimble emanating from the singularity.
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+ In the case of an elliptic singularity, F, is the product of circle and a solid torus with
F, as boundary, and hence ,: H;(F;) = H,(F,) also has one-dimensional kernel
given by the cycle in F; which becomes a boundary in F,,.

Inboth cases, the kernel of 1,, is generated by one primitive element in H, (Fy; Z) which

depends only on the homotopy class of y in N\Criff.

Definition 5.1 In the situation above, the vanishing cycle associated to the singular
value g; and the homotopy class of the path vy is either of the primitive elements in
H,(F,;Z) which generates the kernel of Hy(Fy; Z) — Hy(F); Z).

Definition 5.2 Let f:(M*, D*) - (N?,0N) be a boundary Lefschetz fibration, and

let F,, and F,, be Lefschetz or elliptic fibers. We say that the vanishing cycles at Fg,

and F,, are a dual pair if there is a simple path y: [0,1] - N such that:

« 7(0) = go and y(1) = qu.

« ((0,1)) only contains regular values of f.

o The vanishing cycles on both ends of y together generate the integral homology of
the regular torus fiber, say F,(/2).

With these notions at hand, we can give the precise statements of our singularity
trade theorems.

Theorem 5.3 (Elliptic-elliptic trade) Let f:(M*, D) — (N?,0N) be a boundary
Lefschetz fibration with connected fibers, and let p € D[2]. Then M admits a boundary
Lefschetz fibration f:(M*, D) — (N?,dN) such that:

« N is obtained from N by smoothing out the corner f(p).

« f and D agree with f and D outside a small ball centered at p.

. §[2] = D[2)\{p}. i.e., f has one elliptic-elliptic singularity less than f.

o D and D have the same parity.

. fhas one Lefschetz singularity more than f.

. fhas an elliptic singularity whose vanishing cycle forms a dual pair with the new
Lefschetz vanishing cycle.

o fis homologically essential if and only if f is.

By induction, any manifold which admits a boundary Lefschetz fibration admits one
with a smooth embedded divisor.

The converse trade is given by the next theorem.

Theorem 5.4 (Lefschetz trade) Let f: (M*, D) - (N2,0N) be a boundary Lefschetz

fibration with connected fibers, and assume that the vanishing cycles at a Lefschetz fiber,

Fy,, and at an elliptic fiber, F,,, form a dual pair. Then there is a boundary Lefschetz

fibration, f: (M*, D) — (N?,0N), such that:

« Nis obtained from N by adding a corner at q;.

o fand D agree with ]A;and D outside f_l(Vz), where V, is a neighborhood of the path
that expresses a vanishing cycles as a dual pair.

« D[2] = D[2] U {p} and hence f has one elliptic-elliptic singularity more than f.

« D and D have the same parity.

« fhas one Lefschetz singularity less than .
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Figure 4: The base of the boundary Lefschetz fibration on S* together with a path expressing
the Lefschetz and elliptic singularities as a dual pair.

« fis homologically essential if and only if f is.

The proofs of these theorems rely on the existence of specific boundary Lefschetz
fibrations on S$* and on the open disk D*.

Lemma 5.5 'There exists a homologically essential boundary Lefschetz fibration
with connected fibers, fss:(S*, D?) — (N,0N), with the following properties (see
Figure 4):

« D[2] has only one point, which has index —1.

o Nis the disk with one corner.

o fs1 has only one Lefschetz singularity.

o The vanishing cycles of the Lefschetz fiber and any elliptic fiber form a dual pair.

The proof of this lemma is somewhat long, so we will postpone it to this end of this
section.

Lemma 5.6 Let (D*, D) be the open disk in C* with divisor 1,,, and let D> c R? be
the open half-disk with boundary in the real axis

D? = {(x,y) e R*x*+ y* <land x > 0}.
Then there is a proper boundary Lefschetz fibration with connected fibers,
fpe: (D*, D) - (D2, 0D?2), such that:

o fps has a single Lefschetz fiber.
o The vanishing cycles of the Lefschetz fiber and the elliptic fiber form a dual pair.

Furthermore, if f:(M, D) — (D2, 0D?) is a proper boundary Lefschetz fibration with
connected fibers with the two properties above, then f is equivalent to fpa, that is, there
is a commutative diagram:

(D%, 0D%) —— (D3, 0D3),
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W

S4 D* Us D*

Figure 5: The base of the boundary Lefschetz fibration on $* split in two halves, each half being
a fibration of D*.

where the horizontal maps are diffeomorphisms.

Proof The existence of the fibration fps follows from Lemma 5.5. Indeed, we split
the base of fg« in two parts, Vj, a neighborhood of the vertex, and V5, the rest of the
base plus a small overlap with V}, as indicated in Figure 5. Then, due to Lemma 3.8,
on f~}(V;), in appropriate coordinates, we have

Vi={(x,9) eR:x+y<1,x20,y>0},
and the fibration is given by

fsi(z1,22) = (|z1|2, |22|2)~

Hence, fo' (V1) is a disk and its complement fg'(V2) is also a disk. However,

fslva: V2 = fsa(V2)

has all the properties required in the lemma after we choose a diffeomorphism
between V, and D?. Therefore, we have existence.

To prove the uniqueness part, we study all possible ways such a fibration may arise.
Let f: M — (D2, 0D?) be a boundary Lefschetz fibration satisfying the assumptions
of the lemma. Without loss of generality, we assume that the image of the Lefschetz

singularity is (2/3,0), and we split D? in two parts:
Up = {(x,y) e D*:x <1/2},
Uz ={(x,y) e Di:x 21/2}.
The set f7!(U,) is a neighborhood of the Lefschetz fiber, and hence its differ-
entiable type as a fibration is fully determined [17]. Similarly, the set f~(U;) is a

neighborhood of an elliptic fiber, and hence its differentiable type as a fibration is also
fully determined:

N U) =D x 8" (-L1),  f(re’,y,t) = (r,0).

Therefore, all possible different fibrations with the desired properties are determined
by the different ways these two pieces can be glued together modulo the action of the
isomorphism group of each half of the fibration.
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Since the gluing takes place over a regular fibration over an interval, the isotopy
class of the gluing map is determined by the isotopy class of the map it induces at a
single fiber. Since the fibers are tori, this is in turn determined by the corresponding
map in homology. Since the vanishing cycles form a dual pair, there is, modulo the
action of the isomorphism group of the fibration over V;, a unique way to glue these
together. ]

Next, we show how to use Lemmas 5.5 and 5.6 to prove both singularity trade
theorems.

Proof Applying Theorem 4.6 to the boundary Lefschetz fibration on M and on S*
gives rise to a boundary Lefschetz fibration on M#S* ~ M, for which the inclusion
M\{p} = M preserves fibrations, in particular, we see that the new fibration on M
only changes in the small ball around p used for the connected sum procedure. Since
the divisor in $* has only one point in the top stratum, the new divisor satisfies D[2] =
D[2]\{p}, and D and D have the same index. Given the way the fibrations are glued,
we see that the effect on the base is to smooth out the corner corresponding to f(p).
Continuing inductively gives rise to a boundary Lefschetz fibration with embedded
divisor. |

Proof Under the conditions of the theorem, y has a neighborhood, V,, diffeomor-
phic to D? in which the fibration has only one Lefschetz singularity whose vanishing
cycle forms a dual pair with the elliptic singularity. Hence, by Lemma 5.6, f~'(V,)
is diffeomorphic to D*, and f is equivalent to the fibration of Lemma 5.6. Since the
fibration on S* splits as two disks, one fibering over D? and the other fibering over
a neighborhood, Vj, of the origin in (R, )?* (see Figure 5), we can realize M#S* as
follows: remove the disk f~'(V,) and glue back, by the natural identification of the
boundary, fgi' (V7).

Since this procedure corresponds to performing connected sum with $*, the final
manifold is still diffeomorphic to M and the fibration only changes in the part that
has been surged in, which includes the removal of the Lefschetz singularity from
f7(V2) and the inclusion of the elliptic-elliptic singularity of f;'(V;). Finally, notice
that the process of filling the boundary of f'(V;) with fg'(V4) is not compatible
with the given orientations of these spaces, since they both appear at opposite sides
of a boundary in S*. That is, the orientation of M is compatible with the opposite
orientation of fg;'(V;). Since the elliptic-elliptic singularity for the fibration in $* had
index —1 and the orientation of S* was reversed in the connected sum process, the
intersection index of the new elliptic-elliptic singularity on M is +1, and hence the
overall parity of the divisor is unchanged. [ ]

To finish the proof of the trade theorems, we must establish Lemma 5.5, which we
do next.

Proof The proof is done in two steps. In the first step, we show that if M is the total
space of a boundary Lefschetz fibration whose singularities are as stated in Lemma
5.5, then M = S*. In the second step, we show that such a fibration exists.

Step 1. We observe once again that M is made of two fibrations glued together, as
illustrated in Figure 5: one fibration with an elliptic-elliptic singularity over V; and
one with a Lefschetz singularity over V5. The fibration over V; is a copy of D* added
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Uone 3-handle U one 3-handle
one 4-handle one 4-handle

U one 3-handle
one 4-handle

Figure 6: Kirby diagram for the total space of the fibration described in Lemma 5.6.

along its S® boundary, that is, M = f~(V,) U 4-handle. The space f~!(V,) itself can
be readily described as a handlebody: we start with a neighborhood of a regular fiber,
then add a —1-framed 2-handle along the vanishing cycle of the Lefschetz singularity
to obtain a neighborhood of the Lefschetz singular fiber and a 0-framed 2-handle
along the vanishing cycle of the elliptic singularity. Therefore, the Kirby diagram of
M is the one depicted in Figure 6a. We can then slide the 2-handle that goes around
both 1-handles to obtain Figure 6b and see that the resulting 2-handle separates as a
0-framed 2-handle from the rest of the diagram and hence cancels with the 3-handle.
The remaining pairs of 1- and 2-handles clearly cancel each other (Figure 6¢), leaving
us with the empty diagram, which corresponds to S*.

Step 2. To construct the desired fibration, we will use a plumbing construction
applied to the disk bundle of O(2) - CP! in a way that is compatible with the
natural torus fibration of that space. Throughout, we will use fixed parameterizations
@1, 92: C* - O(2) for which the change of coordinates is given by

93 opi(zw) = (27,27%w).

We will refer to ¢; as parameterizing a trivialization of O(2) with the south pole
removed and similarly ¢, does not cover the fiber over the north pole.

Rotation on both coordinates in the parameterization ¢, give rise to a torus action
on O(2) which, in the parameterizations above, is given by

(eigl,eiﬂz) . (PI(Z)W) _ ¢1(e—i912,ei(—261+62)w)’

(5.) 0

(eiel,eiez) c@a(z,w) = (pz(eielz, e'w).
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To describe the quotient of O(2) by this torus action, we will also want to consider
[-1,1] x R,. Of course, this space can be parameterized by a single, rather obvious,
chart, but it will be convenient to parameterize it by two charts instead. We consider
the parameterizations

1-x
yiRe xRy > (L1 xR, ¢ [-L1] xR, yi(x1, p1) = (1+xi’ (13;1)2) >

: l-%  y
WZ'R+ X R+ - [—1,1) X R+ (@ [—1, 1] X R+ Wz(Xz,yz) = (—sz, (1+xz)2) 5

and keep in mind that these parameterizations induce opposite orientations, with v,
agreeing with the natural orientation of [-1,1] x R,.

Lemma 5.7 If we let h:$* — R be the height function and g:Sym*O(2) — R be the
Fubini-Study metric, then

£:0(2) > [-L1] xRy
(z,w) = (h(2), g=(w, w))

defines a quotient map for the torus action on O(2). Furthermore, fis a proper boundary
fibration with elliptic divisor induced by the holomorphic log divisor consisting of the zero
section and fibers over the north and south poles. [ ]

Proof In the parameterizations ¢;, the height and distance functions take the form:

1- |Z|2 |W|2
h b > b b
0(p1(z W) 1 |Z|2 gO‘Pl(z W) (1 |Z|2)2
1—|Z|2 |W|2
h > = Py = o=
ogoz(z W) N |Z|2 goq)z(z W) (1 |Z|2)2

which are clearly invariant under the T2-action in equation (5.1). Furthermore, for
i =1,2, the image of f o ¢; lands in the image of the parameterization y;, and we can
compute the expression for f in these parameterizations:

(5.2) filzzw) =it o fogi(zw) = (|, [w),
which shows clearly that f is not only the quotient map, but also a boundary
fibration. ]

Now, we perform a plumbing on O(2).

Definition 5.8 Let m: M*" — N™ be a D"-bundle, and let D;, D, be disjoint disks
in N over which 7 is trivializable. A self-plumbing of m at D; and D, is obtained by
identifying 77(DD;) ~ D, x D" and 77!(DD;) ~ D, x D" using a map which preserves
the product structure but reverses the factors.

For the case at hand, let D*O(2) be the open e-disk bundle with respect to
the Fubini-Study metric. By restricting f to D?O(2), we obtain a proper boundary
fibration f:D*0(2) - [-1,1] x [0, €).
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Furthermore, we observe that ¢, and ¢, provide trivializations of D*O(2), and
hence we can use them to perform a self-plumbing of D*((2) at the north and south
poles. Let M be defined as the self-plumbing of D*O(2) via the trivializations ¢; and
the map

O:C* > C*: (z,w) = (W, 2),

that is, ¢;(z, w) is identified with ¢, (w, z).

Since the map used for the plumbing preserves elliptic ideals and identifies the
north and south poles, M is endowed with an elliptic divisor with a single point in
D[2]. Since the map ® does not match co-orientations, the elliptic divisor in M has
intersection index —1.

To endow M with a boundary fibration, we only need to take a quotient of the
base, [-1,1] x [0, ¢), by the equivalence relation that makes the following diagram
commute:

D?0(2) ——=—— D?*0(2)

l l

[-1,1] x [0,6) =% [-1,1] x [0, ¢).

Since f is surjective, there is a unique identification, ~y, that gives rise to such a
diagram. In fact, we can easily compute it in the parameterizations y;, where it is
induced by the map ¥(x, y) = (1- y,x +1). That is, the point y;(x, y) is identified
with the point ¥, (y, x). Since y; and v, induce opposite orientations, this identifica-
tion preserves the natural orientation of [-1,1] x [0, ¢) and the quotient is an oriented
half-open cylinder with one corner (see Figure 7).

Lemma 5.9 The map f:D?O(2) — [-1,1] x [0, €) descends to a boundary fibration
f:M — N.
Next, we compute its monodromy along a generator of 7;(N).

Lemma 510 Let f:M — N be the boundary fibration from Lemma 5.9. Then the
monodromy of f around a loop around the hole is a positive Dehn twist.

Proof This is a direct computation using the given change of coordinates and the
plumbing map ®. Indeed, all we need to do is to track what happens with the torus
action as we move along from the chart covered by ¢, to the chart covered by ¢, and
then back to ¢, via ¥:

1612_1, et(—291+92)z—2w)

(ei(-)l,eigz) . q)z(z,w) — (Pz(eielz’eiezw) = q)l(e_
~o 9a(e' GO0z 10zl = (1(2002) if) ) (275w, 2 7).

Therefore, we see that, in the basis {eg,, eg, } for H'(F) corresponding to the genera-
tors of the action, the monodromy transformation is given by the matrix

(i 3)
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\
\

Figure 7: The base of the boundary fibration constructed in Lemma 5.9.

Notice that using the complex orientation of O(2) and the standard orientation of R?,
{eq, €p, | is a negative basis for the homology of the fiber. Using this, we see that the
transformation above is a positive Dehn twist on the cycle eg, + eg,. ]

Now, we can complete M to a closed manifold by glueing a neighborhood of a
single Lefschetz fiber with vanishing cycle eg, + e, in the hole of the annulus. Finally,
we observe that this vanishing cycle forms a dual pair with either of the two vanishing
cycles of the elliptic singularity, which in the parameterization ¢, are given by either
of the cycles eg, or eg,.

Remark 5.11 Simply drawing a base diagram for a boundary Lefschetz fibration does
not guarantee the existence of a fibration that realizes it. For example, there is no
manifold whose base diagram is that of Figure 4, but for which the elliptic-elliptic
singularity has intersection index 1. In the construction above, this would manifest
itself in the fact that, without using complex conjugation, the monodromy of the
plumbing would be a negative Dehn twist. This highlights that the long second step in
the proof above is indeed necessary.

6 Examples

In this section, we give several concrete examples of boundary fibrations. We will
first show that they arise naturally as the quotient maps of effective torus actions,
and that our framework fits particularly well with the theory of integrable systems.
This connection provides us immediately with a wealth of examples of both boundary
fibrations and stable generalized complex structures. We will further illustrate our
constructions by showing how starting with simple examples (of manifolds with torus
actions) we can use the connected sum procedure to obtain many more examples of
boundary fibrations.

6.1 Torus actions

We show that quotient maps of torus actions provide boundary fibrations.

Proposition 6.1 Let T" act effectively on a smooth manifold M*", with connected
isotropy groups. Then:
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o N:= M*"|T" is a manifold with corners.

o The quotient map defines a boundary fibration f: (M, D) — (N, ON) with connected
fibers.

o The intersection stratification of the elliptic ideal coincides with the stratification by
orbit types on M.

o ND[1] is co-orientable.

o If M is oriented, then so is N.

o If M is four-dimensional and the action is not free, f is homologically essential.

Proof Let p € M, let G, denote the isotropy group of p, and let O, denote the
orbit of p. By assumption, G,, is connected and therefore isomorphic to T* for some
£ < n. By the slice theorem, there exists a neighborhood of O, which is equivariantly
diffeomorphic to a neighborhood of the zero section in

G XGP NPOP,

where G, acts linearly on N,O,, by the differentiated action. Because all groups in
consideration are abelian and connected, this implies that there is a neighborhood U
around p of the form

U= Tn—@ « (Rn—f « (CK)

The T" = (T"* x T*)-action of U decomposes as T"~¢ acting by multiplication on
7"~ and T* acting linearly on C’. Since the irreducible representations of T* are
one-dimensional, we may without loss of generality assume that each coordinate line
in Clis preserved by the action. Therefore, if we let t denote the Lie algebra of TS, let [
denote the kernel of exp: t - T*, with minimal generating set {&,,..., &} and choose
{a1,...,ap} € I* the dual basis for the dual lattice, then the action on each irreducible
representation has the form

exp(®) - z; = eZ”i((")’"f”‘f)zj, Oct.

Since the action is effective, we have that n; # 0, and because the isotropy groups are
connected, we must furthermore have n; = +1. Hence, after appropriately changing
the signs of some of the a;, the T*-action is given by

(exp(61&y-...-0080)) - (21, ..., 20) = (7™ zy, ... 200 %)),
This normal form for the action has the following consequences:
« The quotient manifold is endowed with charts of the form R"™* x (C*)/T* ~ R},
and is therefore a manifold with corners.
« The quotient map f: M — N in the above local coordinates is given by
f: Tn—[ « (Rn—ﬁ « (CE) N Rg
(@, %215 ..,20) = (x,]z1] % .. 0 |ze] ).
By Lemma 3.8, we see that f is a boundary fibration with respect to the log divisor
oN.

« Because the vanishing locus of the induced elliptic ideal is given by ™' (9N), it fol-
lows that the intersection stratification coincides with the orbit-type stratification.
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« At points p € D[1], the isotropy group is given by S', and therefore N,0,, inherits
an S'-action and consequently admits an orientation. We conclude that D[1] is co-
orientable.

o When M is oriented, a choice of orientation for T" gives rise to an orientation for
N by observing that M\D — N\0N is a principal T"-bundle.

o When M is four-dimensional and the action is not free, it is shown in [27] that f
admits a section. As a generic fiber and the image of this section intersect only once,
it follows that the intersection pairing of the fiber with the image of this section is
nonzero, and therefore f is homologically essential. ]

The group actions underlying toric manifolds satisfy the conditions of this propo-
sition, leading to the following result.

Corollary 6.2 Let (M*",w) be a toric manifold, and let f: M*" — A" denote the
quotient map. Then f is a boundary fibration.

In four dimensions, Proposition 6.1 provides us with fibrations that satisfy nearly all
the assumptions required to apply Theorem 3.23. However, the torus action does not
guarantee that the parity of the elliptic divisor is 1. To proceed, we must add hypotheses
to ensure that this is the case.

Proposition 6.3  Let f: (M*, w) — R? be a toric manifold. Then the parity of the elliptic
divisor obtained from Proposition 6.1 is 1, and therefore M admits a stable generalized
complex structure compatible with f.

Proof By Proposition 6.1, we have that f is a boundary fibration, and therefore by
Theorem 3.23 the manifold M admits an elliptic symplectic structure. As each of the
preimages of the faces of the moment polytope is a symplectic submanifold of (M, w),
the symplectic structure provides each component of the elliptic divisor with a natural
co-orientation for which the intersections have positive index. It follows that the parity
of the elliptic divisor is 1. ]

6.2 Simple examples

We give examples of boundary fibrations obtained from torus actions which will serve
as the building blocks for the connected sum procedure.

Example 6.4 (CP*) Consider the standard toric structure on CP?. Proposition 6.3
implies that f is a homologically essential boundary fibration and that CP? admits
an elliptic divisor with parity 1 (three lines intersecting at different points). Therefore,
CP? admits a stable generalized complex structure compatible with its moment map.

Example 6.5 (@2) We consider @2, i.e., CP? with the orientation opposite to the
standard complex structure. As an oriented manifold, this is not a toric manifold, but
there is still a T?-action with connected isotropies present. Therefore, Proposition
6.1 implies that the quotient map is a homologically essential boundary fibration.
Consequently, by Theorem 3.23, there exists a compatible elliptic symplectic structure
with imaginary parameter on CP’. The parity of the elliptic divisor is —1, so this

——2
symplectic structure does not induce a stable generalized complex structure. As CP  is
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not almost complex, it cannot have a stable generalized complex structure, and hence
this problem cannot be remedied.

Example 6.6 (S* x S*) Let (S x $?) be given its standard toric structure, i.e., the
symplectic form is the product of the standard area forms and T? acts on rotation
by S' one each of the factors. Proposition 6.3 implies that the quotient map is a
homologically essential boundary fibration and that $* x $* admits a compatible
stable generalized complex structure.

Example 6.7 (S*) Consider $* c C? x R, and let T? act in the standard way on C?.
This provides an effective T?-action on S* with connected isotropies. Therefore, by
Proposition 6.1, we find that the quotient map is a homologically essential boundary
fibration. Consequently, Theorem 3.23 implies the existence of a compatible elliptic
symplectic structure with imaginary parameter on S*. The parity of the divisor is —1.
Justas CP2, §* is not almost-complex, so the index cannot be fixed by making different
choices of divisor or orientations.

The following example of a boundary fibration appears also in [9].

Example 6.8 (S®> x S')  There are two interesting T?-actions on S> x S'. First, con-
sider S* c C? as the unit sphere and restrict the natural T?-action on C? to S°. This
provides an effective T2-action on S with S' isotropy at all points in the intersection
with the coordinate hyperplanes. Extending the T?-action trivially to the S!-factor
provides an effective T2-action on S* x S! with only S! isotropy groups. The quotient
map

fi: (S xS, Dy) - (IxS',{0,1} x S")

then becomes a homologically essential boundary fibration by Proposition 6.1. Note
that D is given by the union of two disjoint tori.

Another T?-action on §* x S! is obtained by letting one S! act by rotation on one of
the coordinates of S* ¢ C?, and let the other act by multiplication on S. The quotient
map

f23 (83 X Sl, D2) g (Dz, BDZ)

then again becomes a homologically essential boundary fibration by Proposition 6.1.
In this case, D, is a single torus. In both cases, Theorem 3.23 implies the existence
of a compatible elliptic symplectic structure with zero elliptic residue. Moreover, as
the vanishing locus of the elliptic divisor is smooth and co-orientable, we obtain two
stable generalized complex structures on S* x S!.

The example we consider next is more elaborate than the previous ones. The
existence of stable generalized complex structures on these spaces is a consequence
of the more general Theorem 2 from [31].

Example 6.9 ((#nS' x $?) x S') In [27], it is shown that for 2g + h > 1, the man-
ifold M = (#(2g + h —1)S' x §?) x S! admits an effective T?-action with connected
isotropy groups over a base, B, which is a surface of genus g with s small open disks
removed. In fact, part of the action is just rotation of the last S'-factor, so this action
has no fixed points (a fact that also follows from the Euler characteristic of M being 0).
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By Proposition 6.1, we conclude that there exists a homologically essential bound-
ary fibration

f((#(2g+h- 1)S1 X SZ) X SI,D) — (B, 9B).

The degeneracy locus consists of /1 disjoint tori—precisely, the number of boundary
components of B, and is in particular co-orientable. Consequently, by Theorem 3.23,
there exists a compatible (smooth) stable generalized complex structure on M whose
type change locus has h connected components.

To illustrate the elliptic-elliptic trade theorem we give some examples:

Example 6.10 (CP?)  Applying Theorem 5.3 to Example 6.4 yields several boundary
Lefschetz fibrations f: (CP?, D) - (N, dN). The number of elliptic-elliptic and Lef-
schetz singularities adds up to 3, but any combination is possible. See also Figure 1 and
Remark 6.13.

Example 6.11(S*)  Applying Theorem 5.3 to Example 6.7 yields a boundary Lefschetz
fibration f: (8%, D) — (D?, oD?) with two Lefschetz singularities. Because the parity
of the original divisor on $* is —1, the new divisor D will be non-co-orientable.
Therefore, it is nonorientable, and as it admits an S'-fibration, it must then be a Klein
bottle.

6.3 Main class of examples

Using the above examples as building blocks, we can now construct many more
examples.

Theorem 6.12  The manifolds in the following two families admit homologically essen-
tial boundary fibrations:

o Xpo=#n(S? x S?)#0(S' x S?), with n, £ € N,
o Yoo i= #n(CPz#m@Z#@(S1 x §%), with n,m,l € N,

whenever their Euler characteristic is nonnegative. Therefore, each of these manifolds
admits a compatible elliptic symplectic structure, which induces a stable generalized
complex structure if 1 — by + b is even.

Proof In the previous section, we exhibited boundary fibrations on (CPz,@2 and
$% x §% with 3, 3,4 points in D[2], respectively. Therefore, we may apply Theorem 4.6
inductively to obtain homologically essential boundary fibrations on X, o and Yy, 1,0
for all possible values of # and m, including n = m = 0 by Example 6.7. The number of
points in D[2] for these manifolds is 21 + 2 and 1 + m + 2, respectively. Therefore, we
can apply Corollary 4.8, respectively, n + 1 and LMTM |-times to obtain homologically
essential boundary fibrations on X, ; and Y, ¢, for  <n +1, ['”T’”J’ZJ, respectively.
A simple computation of the Euler characteristic of these manifolds shows that this
is precisely when their Euler characteristic is nonnegative. The parity of the divisor in

——
CP?,CP’, and S? x §? is 1,-1,1, respectively. Therefore, Theorem 4.6 gives us that
the parity of X, o and Y, 0 is (-1)""*. Corollary 4.8 gives us that the parity of
the divisor in X, ¢ and Y, . is (=1)""1*¢. By Theorem 3.23, these manifolds admit

https://doi.org/10.4153/50008414X22000116 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X22000116

Fibrations in semitoric and generalized complex geometry 683

compatible elliptic symplectic structures. These induce stable generalized complex
structures when (-1)""1** = 1, which is to say that 1 — b, + b7 is even. ]

The following remarks elaborate on the assumptions on the #, m, and ¢ in the above
theorem.

Remark 6.13 (Euler characteristic) The condition on the Euler characteristic is
necessary. Indeed, a simple application of Mayer-Vietoris shows that if f: M* — %2
is a boundary Lefschetz fibration over a surface with k corners, and ¢ singular fibers,
then y(M) = k + £. In particular, we find that the Euler characteristic of a manifold
admitting a boundary Lefschetz fibration is necessarily nonnegative. Therefore, we
conclude that we found all members of the families appearing in Theorem 6.12 that
admit boundary fibrations.

Remark 6.14 (Betti numbers) The existence of a generalized complex structure on
a manifold implies the existence of an almost-complex structure. Such a structure
cannot exist when 1 — by + bJ is odd, which explains that we found all members of the
families appearing in Theorem 6.12 that admit stable generalized complex structures
arising from boundary fibrations.

Remark 6.15 (Torus actions) Torus actions persist under taking connected sums of
disjoint manifolds at fixed points [27]. In fact, [27] provides a classification of simply
connected four-manifolds with effective torus actions and connected isotropy groups.
The manifolds admitting such actions are precisely the manifolds X, o, Yy, m,0, and
S* appearing in Theorem 6.12. Whenever such a T2-action is present, it is possible
to ensure that the elliptic symplectic structure arising from Theorem 6.12 is T2-
invariant, and hence we obtained all such simply connected four-manifolds admitting
T2-invariant stable generalized complex structures.

In the nonsimply connected case, [27] also provides a classification of effective
nonfree torus actions with only S'-isotropy groups on compact oriented connected
four-manifolds. It is proved that any of these manifolds is of the form as described in
the Example 6.9, and hence we have also obtained all manifolds with such actions and
T2-invariant stable generalized complex structures.

6.4 Relation to semitoric geometry

We finish by relating our results to semitoric geometry. Recall that a focus—focus
singularity of a completely integrable system (M, w, f) is a point p € M where there
are Darboux coordinates (xi, y1, X2, ¥2) for w in which f takes the form

f
(Xl,}’l,xz))/z) — (Xl)/z —X2)1, X1X2 + }’1)’2)~

Semitoric manifolds [28] are generalizations of four-dimensional toric manifolds
where the moment map, besides elliptic and elliptic—elliptic singularities, may also
have focus-focus singularities. If we use the above Darboux coordinates to define
complex coordinates

1 . .
(W, wy) = Z(X1 +y2+ i(x —)’2)’?‘1 )2t i(x1 +}’2))’
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we see that the point p becomes a Lefschetz singularity of the moment map f.

Proposition 6.16 Moment maps of semitoric manifolds are boundary Lefschetz fibra-
tions. Consequently, semitoric manifolds admit compatible stable generalized complex
structures, for which the elliptic divisor is the preimage of the boundary of the moment
map image.

Proof In light of Theorem 3.23 and the toric case (Proposition 6.3), we need only
argue that the map is homologically essential. This follows because the homotopy type
of M\D is obtained from a regular fiber by adding 2-cells along the vanishing cycles
corresponding to each Lefschetz singularity. [ ]

Remark 6.17 Theorem 5.3 trades an elliptic-elliptic singularity for a Lefschetz
singularity in the context of a fibration without further geometric structures. This is
reminiscent of the nodal-trade/Hamiltonian Hopf bifurcation from semitoric geome-
try [32, 33] in the context of Lagrangian fibrations. In the Hamiltonian Hopf bifur-
cation, elliptic—elliptic singularities are traded for focus—focus singularities, which
by the above are equivalent to Lefschetz singularities. However, these maps interact
differently with the underlying geometric structure. Notably, in the semitoric version,
the base of the fibration has a singular integral affine structure which helps with the
extension of the fibration beyond a neighborhood of the singularities involved.

The converse trade for semitoric geometry, similar to our Theorem 5.4, appeared in
[24]. There, the authors also make use of the singular integral affine structure present
in such integrable systems.
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