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Summary

Simultaneous analysis of correlated traits that change with time is an important issue in genetic
analyses. Several methodologies have already been proposed for the genetic analysis of longitudinal
data on single traits, in particular random regression and character process models. Although the
latter proved, in most cases, to compare favourably to alternative approaches for analysis of single
function-valued traits, they do not allow a straightforward extension to the multivariate case. In this
paper, another methodology (structured antedependence models) is proposed, and methods are
derived for the genetic analysis of two or more correlated function-valued traits. Multivariate
analyses are presented of fertility and mortality in Drosophila and of milk, fat and protein yields in
dairy cattle. These models offer a substantial flexibility for the correlation structure, even in the case
of complex non-stationary patterns, and perform better than multivariate random regression
models, with fewer parameters.

1. Introduction

Genetic analysis of traits that change with time (or
any other independent and continuous variable) is
attracting increasing attention. Many studies have
already been done for the analysis of longitudinal
data on single traits including, for example, growth
curves in beef cattle (Meyer, 2001), age-specific fitness
components such as survival or reproductive output
(Pletcher et al., 1998), and lactation curves in dairy
cattle (Jaffrézic et al., 2002; Meuwissen & Pool, 2001).

However, the simultaneous analysis of two or more
correlated function-valued traits can also be import-
ant in practice. It would be useful, for example, to
study the changes in genetic correlation over time of
fitness components such as survival or reproductive
output in Drosophila, to have a more-precise genetic
evaluation of milk, fat and protein yields, or to study
the genetic correlation between milk production and
somatic cell counts in dairy cattle.

Random regression models (Diggle et al., 1994) are
the most commonly used at present for longitudinal
data analysis. Previous comparisons of models in the

univariate case, however, showed some drawbacks of
this approach. Their focus is on choosing the most
appropriate parametric function to fit individual
deviations, and covariance functions are obtained di-
rectly from this regression model. Correlation func-
tions are represented by quite complex polynomial
functions that might not always be the most appro-
priate. Furthermore, because polynomials do not have
asymptotes, they can hardly deal with correlation
structures that decrease asymptotically to zero. More-
over, polynomials can have odd behaviours at the
edges and high-order polynomials can show a ‘wiggly’
pattern, which is usually undesirable.

Extension of the random regression models to the
multivariate case is straightforward and has already
been used in several studies (Veerkamp & Thompson,
1998). It does, however, require a large number of
parameters to describe the covariance structure.
Moreover, similar difficulties to those observed in
the univariate case are to be expected, and ‘cross-
covariance’ functions obtained may not necessarily be
most appropriate.

Character process (CP) models, proposed by
Pletcher & Geyer (1999), have proved to compare* Corresponding author. e-mail : jaffrezic@dga2.jouy.inra.fr
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favourably to random regression models (Jaffrézic &
Pletcher, 2000). They were in general better able to fit
the covariance structure with fewer parameters, es-
pecially for asymptotic correlation patterns. This was
due mainly to their ability to model variance and
correlation separately. Extension of the CP models to
the multivariate case is not straightforward, however,
because parametric forms for ‘cross-correlation’
functions have still to be found.

Another method has recently been proposed by
Nunez-Anton & Zimmerman (2000), namely struc-
tured antedependence (SAD) models. The idea of this
approach is to model an observation at time t via a
regression over the preceding observations. The num-
ber of parameters is considerably reduced in the SAD
approach compared with the traditional antedepen-
dence models (Gabriel, 1962), thanks to a parametric
modelling of the antedependence coefficients and
innovation variances. They seem to offer similar ad-
vantages to CP models to fit the covariance structures
adequately with few parameters.

Until now, very few comparisons have been per-
formed for multivariate genetic longitudinal data
analyses, because random regression was the only
well-known approach available in this case. The aim
of this paper is to propose an extension of SAD
models to the genetic analysis of repeated measures
and to the multivariate case. Properties of these
models are studied, focusing especially on the shapes
of the variance and correlation functions that can be
obtained, and comparisons with CP models and ran-
dom regression are presented. Data on fertility and
mortality in Drosophila and on milk, fat and protein
yields in dairy cattle are studied.

2. Model

(i) Single-trait analysis

The idea of antedependence models, as originally
proposed by Gabriel (1962), is that an observation at
time j can be explained by the previous ones. An
antedependence structure of order r is defined by the
fact that the jth observation ( j>r) given the r pre-
ceding ones is independent of all other preceding
observations (Gabriel, 1962). This concept will be
generalized here to genetic analyses.

Although the process analysed is often continuous
over time (such as growth), measurements are avail-
able only for a set of discrete times. Specification of
the antedependence models relies on this discrete time
scale. For simplicity, it will be assumed in the model
presentation that measurements are equally spaced,
but this assumption can be relaxed.

Assuming that the measurement times are on a
discrete scale ( j=1, …, J ), let Yj be the phenotypic
observation at time j. As in classical quantitative

genetics, this can be decomposed as

Yj=mj+gj+ej, (1)

where mj is a non random function that includes fixed
effects and the mean curve in the population, gj is
the genetic effect and ej the permanent environmental
effect (including the residual).

Both the genetic and permanent environmental
parts can be modelled with an antedependence struc-
ture, although both models will not necessarily be
of the same order. Focusing on the genetic part,
if a second-order SAD model is assumed, it can be
written as

g1=�1 (2)

g2=w1g1+�2 (3)

gj=w1gjx1+w2gjx2+�j (4)

for j>2. Here, w1 and w2 are antedependence par-
ameters. For a SAD model of order r, r antedepen-
dence coefficients would be required (w1, w2, …, wr).
The error terms �j are assumed to be normally dis-
tributed with mean zero and variance vj

2, termed
‘ innovation variances’, that can change with time j. In
SAD models, Nunez-Anton & Zimmerman (2000)
propose using a parametric function for innovation
variances with, for example, a polynomial of time

log v2j=a+bj+cj2: (5)

In this case, only three parameters would be required
to model the innovation variances vj

2 regardless of the
number of times of measurement J, whereas, in tra-
ditional antedependence models as originally pro-
posed by Gabriel (1962), one parameter had to be
estimated at each time and therefore J innovation
variances vj

2 would have to be estimated here.
It is also possible to deal with unequally spaced data

by allowing the antedependence coefficients to depend
on the lag between two measurements, for example
as an exponential function as suggested by Nunez-
Anton & Zimmerman (2000). In this case, if the
measurement times are assumed to be (t1, t2, …, tJ), a
second order SAD model can be written as

g(t1)=�(t1) (6)

g(t2)=w1(t1, t2)g(t1)+�(t2) (7)

g(tj)=w1(tj, tjx1)g(tjx1)+w2(tj, tjx2)g(tjx2)+�(tj) (8)

for j=3, …, J. Any parametric function of time can
be considered for the antedependence parameters,
for example, an exponential function: w1(tj, tjx1)=
exp(xh1(tjxtjx1)) and w2(tj, tjx2)=exp(xh2(tjx
tjx2)).

The main difference from autoregressive models
lies in the initial condition g1=�1. Thanks to this
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condition, antedependence parameters are uncon-
strained, whereas, for an autoregressive model with
constant innovation variances and finite total vari-
ance, it is required that jwj<1.

SAD models require very few parameters for the
covariance structure and increasing the order of
antedependence involves only one extra parameter at
each step. Higher-order antedependence models allow
good flexibility in modelling the covariance structure,
even for complex non-stationary correlations, which
are not well accommodated by CP models, as will be
shown in the example below.

Although SAD models do not, in general, allow
simple analytic expressions for the covariance func-
tion, the covariance matrix can be calculated using the
Cholesky decomposition of its inverse (Pourahmadi,
1999). Let G be the genetic covariance matrix, which
has dimension JrJ, where J is the number of
measurement times. It can be shown that

Gx1=L0Dx1L, (9)

where L is a lower triangular matrix with 1s on the
diagonal and the negatives of the antedependence
coefficients wi (i=1, …, r, for a SAD(r)) as below-
diagonal entries, and D is a diagonal matrix with
innovation variances vj

2 ( j=1, …, J) as components.
An interesting computational property is that the
inverse, Gx1, of these covariance matrices is sparse.
Indeed, for a second-order antedependence model,
for instance, only the diagonal and first two sub-
diagonals are non-zero. Antedependence and inno-
vation variance parameters can be estimated by
REML procedures.

For first-order SAD models, if innovation var-
iances v2 are assumed constant for all the error terms
�j ( j=1, …, J), analytical forms for variance and
correlation functions can be obtained. At time of
measurement j, the genetic variance is given by

Var(gj)=
1xw2j

1xw2 v
2: (10)

Therefore, even for constant innovation variances, the
variance of the observed process can change with time,
which is not the case for a simple first order auto-
regressive model where Var(gj)=v2=(1xw2) (for jwj
<1). For jok, the covariance function of a SAD(1)
is given by

Cov(gj, gk)=w jxk 1xw2k

1xw2 v
2 (11)

and the correlation function is

Corr(gj, gk)=w jxk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1xw2k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1xw2j

p : (12)

Therefore, even for the simplest SAD model, the cor-
relation function is non-stationary, i.e. Corr(gj, gk)
does not depend only on the lag time j jxkj, in con-
trast to a first-order autoregressive model (AR(1))
in which the correlation function is given by
Corr(gj, gk)=wj jxkj. When measurement times are
equidistant, AR(1) is equivalent to a character pro-
cess model with constant variance and exponential
correlation.

For more complicated models, the relationship be-
tween the antedependence coefficients and innovation
variances with the actual correlation and variance
functions is far less straightforward than with CP
models, in which they are modelled directly. However,
in the SAD models, it is possible to increase the order
of antedependence (increasing the number of ante-
dependence parameters), which allows more flexibility
than do CP models, especially for the modelling of
non-stationary correlation functions.

(ii) Bivariate analysis

If two variables y1 and y2 are considered, it is possible
to extend structured antedependence models to study
the relationship between the two variables. As in the
univariate case, measurements are decomposed into
their genetic and permanent environmental compo-
nents. Both parts are then modelled with an antede-
pendence structure. For the genetic part, considering
for instance a first order bivariate SAD, the model can
be written as (for j>1)

g1 j=w1g1( jx1)+y1g2( jx1)+�1j (13)

g2j=w2g2( jx1)+y2g1( jx1)+�2j (14)

with the initial condition g11=�11 and g21=�21. The
error terms �1j and �2j are assumed to be bivariate
normally distributed with mean zero and variances v1j

2

and v2j
2 , respectively, and the correlation between �1j

and �2j is assumed to change with time j. Several
parametric functions of time could be considered. We
propose to use here

rj=Corr(�1 j, �2j)=exp(xl1 j)xexp(xl2 j), (15)

which is quite general and allows the correlation to be
positive or negative depending on time j. It would also
be possible to consider a constant correlation between
the two error terms.

This bivariate specification allows to model various
patterns of correlations between the two variables.
For example, measurements within trait over time
might not be highly correlated, but there might still be
a strong correlation over time between the two traits.
This will be achieved by low antedependence coef-
ficients w1 and w2, and high values for y1 and y2, as
well as for the correlation function rj.
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Assuming observations are ordered as: y=(y11, y21,
…, y1j, y2j, …, y1J, y2J)

0 the covariance matrices can
be obtained as: Gx1=L0Dx1L where D is a block-
diagonal matrix with innovation variances (v21j, v

2
2j)

( j=1, …, J) along the diagonal and the covariance
terms Cov(�1j, �2j)=v1j v2j rj on the subdiagonals. L
can be written as

1 0
0 1

xw1 xy1 1 0
xy2 xw2 0 1
0 0 xw1 xy1 1 0
0 0 xy2 xw2 0 1

. .
.

0 0 . . . xw1 xy1 1 0
0 0 . . . xy2 xw2 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

Matrix G, obtained from Gx1=L0Dx1L will always
be positive semi-definite, as D is a positive semi-
definite matrix and L is non-singular (Searle, 1982,
Chapter 7).

A useful feature of the bivariate SADmodels is that
the cross-correlation functions are in general not sym-
metrical (Corr(g1j, g2k)lCorr(g2j, g1k)), because the
correlation between, for example, body size at age 10
and weight at age 30 is not necessarily equal to the
correlation between body size at age 30 and weight at
age 10. Cross-correlation functions for bivariate SAD
models do not have simple parametric expressions.

(iii) Model selection

A logical first step in model selection is to choose the
appropriate SAD model for single function-valued
trait analyses of variables y1j and y2j, by increasing the
antedependence order (1, 2, …, r) until the additional
antedependence coefficient wr is close to zero, mean-
ing that no extra information on yj is added by yjxr

(for r<j). Because models are nested, a likelihood
ratio test can be used to check the significance of the
additional antedependence parameters.

Once the model has been chosen for the two vari-
ables independently, the bivariate model can be
selected. In general, antedependence orders for each
trait will not be larger in the bivariate than in the
univariate case, therefore the model selection pro-
cedure can start from the most complex model and
reduce the order by a stepwise approach.

For example, assuming a first-order model for the
genetic part in both univariate analyses

g1j=w1g1( jx1)+�1j (16)

g2j=w2g2( jx1)+�2j, (17)

it is then likely that a first order will also be sufficient
for the bivariate model

g1j=w1g1( jx1)+y1g2( jx1)+�1j (18)

g2j=w2g2( jx1)+y2g1( jx1)+�2j: (19)

The cross-correlation between the two variables g1j
and g2j at time j is modelled via the correlated error
terms �1j and �2j, and so this model could even be
reduced in some cases to

g1j=w1g1( jx1)+�1j (20)

g2j=w2g2( jx1)+�2j, (21)

with Corr(�1j, �2j)=rj as presented above. The likeli-
hood criterion will be used here to choose the most
appropriate model.

When higher-order antedependence models are
chosen in the univariate case, adding antedependence
terms into the bivariate analysis can reduce the initial
order. For example, a third-order univariate model

g1j=w11g1( jx1)+w12g1( jx2)+w13g1( jx3)+�1j (22)

can be reduced to a second-order model in a bivariate
analysis

g1j=w11g1( jx1)+w12g1( jx2)+y1g2( jx1)+�1j: (23)

Indeed, adding the second trait g2( jx1) and a corre-
lation between the error terms �1j and �2j can bring
more information on the first trait than the third
order g1( jx3).

The methodology section was based on modelling
of the genetic part, but a similar approach will be used
for the environmental part.

3. Examples

Two real examples were considered to illustrate these
methodologies : first, a bivariate analysis of fertility
and mortality rate in Drosophila ; and second, bivari-
ate analyses of milk and fat, and milk and protein
yields for dairy cattle. Calculations were performed
using ASREML (Gilmour et al., 2000). In order to fit
the SAD and the CP models, the OWN function,
which allows the user to specify his own covariance
matrix, was used. More details about the implemen-
tation of these models can be obtained from F. J.

(i) Drosophila reproduction and mortality data

Age-specific measurements of reproduction and mor-
tality rates were obtained from 56 different recombi-
nant inbred (RI) lines of Drosophila melanogaster,
which are expected to exhibit genetic variation in
longevity and reproduction (J. W. Curtsinger and
A. A. Khazaeli, unpublished). Age-specific measures
of mortality and average female reproductive output
were collected simultaneously from two replicate
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cohorts for each of 56RI lines. Live/dead observations
were made every day, and egg counts were made every
other day. For both mortality and reproduction, the
data were pooled into 11 5-day intervals for analysis.
Mortality rates were log transformed and reproductive
measures were square-root transformed so that the
age-specific measures were approximately normally
distributed.Thisdata setwaspreviously analysedusing
univariate models by Jaffrézic & Pletcher (2000).

(ii) Milk, fat and protein yields for dairy cattle

These data comprised records on 9277 cows in
first lactation from British herds, daughters of 464
Holstein–Friesian sires. The lactation stage of animals
at first test varied between 4 and 40 days, with suc-
cessive tests at approximately 30 day intervals. Re-
cords on milk, fat and protein yields were available,
with ten measurements per cow for each trait. Fixed
effects considered were the age at calving, the pro-
portion of North American Holstein genes and herd
test month. To describe the mean, a non-parametric
curve was used, fitting one mean at each test. Uni-
variate genetic analyses for milk production using this
data set were presented by Jaffrézic et al. (2002).

4. Results

(i) Drosophila data

(a) Single trait phenotypic analyses

Preliminary univariate analyses for fertility and mor-
tality were performed in order to select the most ap-
propriate SAD for both function-valued traits. Mod-
els of order r (r=1, 2, …, R) were considered until the
antedependence coefficient wR was close to zero. For
all SAD models, a quadratic function was used to
model innovation variances: Log v2j=a+bj+cj 2

(where j=1, …, 11 are the times of measurement).
These models were compared with a character process
with quadratic variance and exponential correlation

(CP) as well as to a quadratic random regression
model (RR2) (Jaffrézic & Pletcher, 2000).

Table 1 shows that, for both variables, a first-order
SAD model (SAD(1)) would be appropriate, because
there was no significant improvement in fit with a
second-order model. SAD(1) fitted much better than
a quadratic random regression model, despite having
fewer parameters, and almost as well as the CP model.

(b) Bivariate phenotypic analysis

As explained in the model selection section, as first-
order antedependence models fit well in the univariate
case, the order of the bivariate model need not be
larger. Estimates obtained for a first order bivariate
SAD model were (for j>1)

MortP( j)=0�70 MortP( jx1)x0�18 FertP( jx1)+�P1j

(24)

FertP( j)=0�68 FertP( jx1)x0�07 MortP( jx1)+�P2j:

(25)

The correlation between the error terms at time j is
given by

Corr(�P1j, �P2j)= exp(x0�37j)xexp(x0�18j): (26)

Quadratic functions of time were used to model the
logarithm of their variances

Var(�P1j)=exp(x0�07x0�03jx0�008j2) and
Var(�P2j)=exp(x0�91x0�31j+0�02j2):

The likelihood value with this model was 183.8,
with 12 parameters for the covariance structure. The
fit obtained with this SAD model was therefore much
better than with a bivariate quadratic random re-
gression model, which involved 21 parameters and
had a likelihood value of 67.7. SAD models seem to
allow, in this case, a better flexibility to model the
correlation structure between the two traits.

Table 1. Likelihoods and parameter estimates for univariate phenotypic
analyses of fertility and mortality rate in Drosophila. CP, character
process model with quadratic variance and exponential correlation; RR2,
quadratic random regression model ; NPCov, number of parameters in the
covariance structure

Model NPCov

Fertility Mortality

Log L

Parameters

Log L

Parameters

w1 w2 w1 w2

SAD(1) 4 390.1 0.75 x256.6 0.73
SAD(2) 5 390.6 0.73 0.03 x256.0 0.76 x0.04
CP 4 405.6 x259.4
RR2 6 339.6 x342.0
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Compared with univariate analyses for both vari-
ables, likelihood was considerably improved in the
bivariate model, taking into account the dependence
between fertility and mortality. The combined likeli-
hood in univariate analyses was 133.5 (sum of the two
univariate likelihood values given in Table 1 for the
SAD(1) models), whereas it was 183.8 for the bivari-
ate analysis, with only four extra parameters.

(c) Bivariate genetic analysis

The same bivariate SAD model was assumed for
both genetic and environmental parts. Comparison
with a quadratic random regression again showed
a much higher likelihood for the antedependence
model (Log L=322.8) than for the RR model (Log L
=134.7), despite having many fewer parameters for
the covariance structure (24 for the SAD model
compared with 42 for the RR). Antedependence
parameter estimates for the SAD models were (for
j>1), for the genetic part

MortG( j)=0�87 MortG( jx1)

+0�25 FertG( jx1)+�G1j (27)

FertG( j)=0�80 FertG( jx1)x0�08 MortG( jx1)+�G2j

(28)

with Corr(�G1j, �G2j)=exp(x0.17j)xexp(x0.0001j)
and

Var(�G1j)= exp(x2�05+0�96jx0�15j2),

Var(�G2j)= exp(x1�0x0�60j+0�03j2):

For the environmental part

MortE( j)=0�39 MortE( jx1)x0�45 FertE( jx1)+�E1j

(29)

FertE( j)=0�54 FertE( jx1)x0�02 MortE( jx1)+�E2j

(30)

with Corr(�E1j, �E2j)=exp(x0.28 j)xexp(x0.18 j), and

Var(�E1j)= exp(x0�77x0�08j+0�002j2),

Var(�E2j)= exp(x2�18x0�08j+0�009j2):

The genetic correlation between fertility and mor-
tality was found to be negative at most ages, as shown
in Fig. 1, except between fecundity at early ages and
mortality at late ages. The genetic correlation was
strongly negative between fecundity at late ages and
mortality. This correlation pattern is quite complex
and would be difficult to model with a simple par-
ametric function.
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Fig. 1. Contour plot of the genetic cross-correlation between mortality and fertility in Drosophila for the chosen
bivariate SAD model (Eqns 27–30).
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(ii) Dairy cattle data

(a) Single-trait phenotypic analyses

The same steps were followed to choose the most ap-
propriate antedependence model for milk, fat and
protein yields. Different orders of SAD models were
compared with character processes with quadratic
variance and exponential correlation (CP) or non-
stationary correlation (CPNS), as well as to quadratic
(RR2), cubic (RR3) and quartic (RR4) random re-
gression models. Fat and protein yields were multi-
plied by ten in order to have variances of about the
same order as for milk. Likelihoods for these different
models are given in Table 2. For the analysis of these
monthly records, times of measurement were sup-
posed to be j=1, …, 10.

Parameter estimates for the fourth-order SAD
model (SAD(4)) were (for j>4)

MilkP( j)=0�50 MilkP( jx1)+0�22 MilkP( jx2)

+0�10 MilkP( jx3)+0�05 MilkP( jx4)+�P1j

FatP( j)=0�37 FatP( jx1)+0�21 FatP( jx2)

+0�14 FatP( jx3)+0�11 FatP( jx4)+�P2j

ProtP( j)=0�51 ProtP( jx1)+0�22 ProtP( jx2)

+0�10 ProtP( jx3)+0�06 ProtP( jx4)+�P3j:

Univariate analysis for milk, fat and protein yields
showed that SAD models of order 1 were about

equivalent to CP models (Table 2). Increasing orders
of antedependence allowed more flexibility, especially
to fit the highly non-stationary correlation patterns,
and had a higher likelihood than CP models. SAD
models of order 3 or 4 performed better than RR3
models, and also better than an RR4 in the milk yield
analysis, while requiring far fewer parameters : seven
parameters for a SAD(4) model, 15 parameters for
an RR4 model. This difference in the number of par-
ameters would be even larger in a bivariate analysis :
55 parameters would be required for a bivariate
quartic regression but only 24 in a bivariate SAD(4)
model.

Genetic univariate analysis for milk production
using SAD models was also performed. It was found
that the genetic part was quite simple to model and
a first-order antedependence was sufficient, whereas a
third-order antedependence was needed for the en-
vironmental part, which had a much more complex
correlation structure. This model had a higher likeli-
hood than an RR4, with many fewer parameters (11
for the SAD model, 31 for the RR).

(b) Genetic bivariate analysis for milk and fat yields

As in previous univariate studies (Jaffrézic et al.,
2003), it was found that the antedependence order
required for the genetic part was lower than for the
environmental part. The chosen model was, for the
genetic part (for j>1)

FatG( j)=0�90 FatG( jx1)+0�03 MilkG( jx1)+�G1j

(31)

MilkG( j)=1�02 MilkG( jx1)x0�24 FatG( jx1)+�G2j

(32)

with Corr(�G1j, �G2j)=exp(x0.0001j)xexp(x0.38j),
and

Var(�G1j)= exp(x1�20x1�10j+0�09j2),

Var(�G2j)= exp(±1�62x1�09j+0�09j2):

For the environmental part

FatE( j)=0�46 FatE( jx1)+0�26 FatE( jx2)

+0�025 MilkE( jx1)+�E1j (33)

MilkE( j)=0�69 MilkE( jx1)+0�23 MilkE( jx2)

x0�32 FatE( jx1)+�E2j, (34)

with Corr(�E1j, �E2j)=exp(x0.007j)xexp(x0.57j), and

Var(�E1j)= exp(1�36x0�44j+0�03j2),

Var(�E2j)= exp(3�15x0�47j+0�04j2):

Table 2. Likelihoods for univariate phenotypic
analysis of milk, fat and protein yields in dairy cattle.
SAD, structured antedependence models up to order 4;
CP and CPNS, character process model with
quadratic variance and exponential correlation
stationary and non-stationary, respectively; RR,
quadratic, cubic and quartic random regression
models; NPCov, number of parameters in the
covariance structure. A constant term was added to all
the likelihood values to make them easier to read and
compare

Model NPCov

Log L

Milk Fat Protein

SAD(1) 4 x1731 346 1334
SAD(2) 5 1587 3674 4581
SAD(3) 6 2155 4798 5238
SAD(4) 7 2253 5217 5371

CP 4 x1874 604 1852
CPNS 5 x1505 1175 2593
RR2 6 677 4230 1948
RR3 10 1564 4943 4564
RR4 15 2046 5365 6163
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For this model, the likelihood was 3664 with 26
parameters to model the covariance structure, and
was higher than for a bivariate RR2 model with many
more parameters (LogL=1198 with 42 parameters).

Figure 2A, B gives the contour plots of the estimated
genetic and environmental cross-correlation functions
obtained with this model. As expected, the genetic
correlation between milk and fat yields was quite high
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Fig. 2. Genetic (A) and environmental (B) cross-correlation between milk and fat yields with the chosen SAD model
(Eqns 31–34).
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throughout lactation. It was highest (between 0.7 and
0.8) for late stages of lactation, and lowest between the
first test for fat yield and all the milk measurements.
The environmental cross-correlation was a little lower,

although it remained positive for the whole lac-
tation period. The highest values were found along
the diagonal (between milk and fat yields at the same
test), and were the lowest for early lactation stages.
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Fig. 3. Genetic (A) and environmental (B) cross-correlation between milk and protein yields with the chosen
SAD model (Eqns 35–38).
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(c) Genetic bivariate analysis for milk and protein
yields

The chosen model was, for the genetic part,

ProtG( j)=0�78 ProtG( jx1)+0�06 MilkG( jx1)+�G1j

(35)

MilkG( j)=1�14 MilkG( jx1)x0�64 ProtG( jx1)+�G2j

(36)

with Corr(�G1j, �G2j)=exp(x0.0006j)xexp(x1.46j),
and

Var(�G1j)= exp(x1�31x1�10j+0�10j2),

Var(�G2j)= exp(1�96x1�29j+0�11j2):

For the environmental part, it was

ProtE( j)=0�19 ProtE( jx1)+0�24 ProtE( jx2)

+0�11 MilkE( jx1)+�E1j (37)

MilkE( j)=0�87 MilkE( jx1)+0�24 MilkE( jx2)

x1�01 ProtE( jx1)+�E2j (38)

with Corr(�E1j, �E2j)=exp(x0.006j)xexp(x1.10j),
and

Var(�E1j)= exp(0�24x0�15j+0�008j2),

Var(�E2j)= exp(2�95x0�32j+0�02j2):

For this model, the likelihood was 4525, with 26
parameters to model the covariance structure, and
was higher than for a bivariate RR2 model with many
more parameters (LogL=1281 with 42 parameters).

Figure 3A, B gives the contour plot of the estimated
genetic and environmental correlations between milk
and protein yields obtained with this model. The
genetic cross-correlation was even higher than be-
tween milk and fat yields with values between 0.8 and
0.9 for most lactation stages. As previously, the lowest
correlation values were found between protein yield at
the first test and milk measurements. The environ-
mental correlation had a similar pattern as that be-
tween milk and fat yields, with the highest values
along the diagonal and a correlation decreasing as
tests became further apart.

5. Discussion

SAD models have recently been proposed in the
statistical literature (Nunez-Anton & Zimmerman,
2000) and seem to be a valuable alternative to other
methodologies for the genetic analysis of longitudi-
nal data. In particular, they offer a high degree of

flexibility to model the covariance structure with very
few parameters, and can even deal with complex non-
stationary patterns that were not well accommodated
with CP models, as observed in the milk production
study.

This paper presents an extension of the SAD mod-
els to the multivariate case that proved, in most cases,
to perform better than random regression with far
fewer parameters. The multivariate extension of RR
models requires a very large number of parameters ;
for example, a bivariate genetic analysis fitting only a
quadratic model for both genetic and environmental
parts requires 42 parameters, and if of cubic order for
both parts, the number of parameters jumps to 72. By
contrast, increasing the order of a SAD model adds
only eight parameters at each step.

Therefore, SAD models seem to be very promis-
ing for the analysis of genetic repeated measures and
other function-valued traits, in the univariate as well
as multivariate cases. Further research is still needed,
however, to study all the possible structures that can
be fitted with these models. As shown in this paper,
analytical formulae for variance and correlation
functions can be worked out for a simple first-order
SAD model when assuming constant innovation vari-
ances. In the general case, however, only recursive
formulae for the covariances can be written. It is
therefore much more difficult to obtain the relation-
ships between antedependence parameters, innovation
variances and the actual variance and correlation
functions of the process, and to be able to study their
properties. A complex simulation study would prob-
ably be required for that purpose, considering all
the different possible models. Similar difficulties are
encountered for the eigenfunctions of the process.
Their relationship with matrices L and D is not at all
straightforward and it is therefore extremely difficult
to study their properties and the underlying assump-
tions, because no analytical expression is available.

Antedependence models are often suggested to
analyse cumulative effects. It might therefore be use-
ful in subsequent research to undertake analyses of
cumulative mortality and milk yields to investigate
this and to compare with alternative methods of
analysing cumulative data. Estimates obtained here
for the cross-correlation functions seem to be quite
reasonable. However, additional bivariate genetic
studies will have to be performed in order to validate
these results.

In this study, antedependence coefficients were
assumed constant over time. It would, however, be
possible to relax this assumption as suggested by
Nunez-Anton & Zimmerman (2000), and this would
be particularly appropriate for unequally spaced data.
In fact, the antedependence coefficient will not be
the same – for example, when one observation and
that preceding it are separated by one or two days.
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Parametric functions of time can be used for the
antedependence coefficients, such as an exponential
function of the lag between two measurements. Ad-
ditional flexibility of the SAD models can also be
obtained by incorporating heterogeneous innovation
variances, and, because they were assumed here to
change with time, it is also possible to include other
factors of heterogeneity (such as herd, for the dairy
cattle data). This extension is straightforward, be-
cause a structural model (Foulley & Quaas, 1995) is
already used to model the time dependence of the
innovation variances.
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