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Abstract

In this note we give a simple proof of the endpoint regularity for the uncentred Hardy–Littlewood maximal
function on R. Our proof is based on identities for the local maximum points of the corresponding
maximal functions, which are of interest in their own right.
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1. Introduction

Let d be a positive integer and Rd denote the d-dimensional Euclidean space. For
f ∈ L1

loc(Rd), the centred Hardy–Littlewood maximal operator is defined by

M( f )(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)| dy

for any x ∈ Rd, where B(x, r) is the ball in Rd centred at x with radius r and |B(x, r)|
denotes the volume of B(x, r). As is well known, the operatorM is bounded on Lp(Rd)
for any 1 < p ≤ ∞ and maps L1(Rd) into L1,∞(Rd). In 1997, Kinnunen [6] first studied
the regularity of M and showed that M is bounded on the Sobolev spaces W1,p(Rd)
for all 1 < p ≤ ∞, where the Sobolev spaces W1,p(Rd), 1 ≤ p ≤ ∞, are defined by

W1,p(Rd) := { f : ‖ f ‖1,p = ‖ f ‖Lp(Rd) + ‖∇( f )‖Lp(Rd) <∞}

and ∇( f ) = (∂ f /∂x1, . . . , ∂ f /∂xd) is the weak gradient. See [4] for the basic properties
of Sobolev functions. Subsequently, Kinnunen and Lindqvist [7] gave a local version
of the original boundedness on W1,p(Ω), where Ω is an open set of Rd. This paradigm
that an Lp-bound implies a W1,p-bound was extended to a fractional version in [8] and
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to a bilinear version in [3] and to a multisublinear version in [10]. Later, the continuity
of M : W1,p → W1,p for p > 1 was established by Luiro in [11] and in [12] for its
local version. (Continuity is not immediate from boundedness because of the lack of
linearity.)

As usual, the endpoint case p = 1 is significantly different from the case p > 1, not
only because M( f ) < L1(Rd) whenever f is nontrivial, while the maximal operator
acts boundedly on Lp for p > 1, but also because L1(Rd) is not reflexive (so weak
compactness arguments used when 1 < p < ∞ are not available for p = 1). Since
Kinnunen’s result does not hold for p = 1, understanding the regularity in the endpoint
case seems to be a deeper issue. In this regard, one of the main questions was posed
by Hajlasz and Onninen in [5]:

Question 1.1. Is the operator f 7→ |∇M( f )| bounded from W1,1(Rd) to L1(Rd)?

In 2002, Tanaka [13] first gave a positive answer to Question 1.1 for the uncentred
Hardy–Littlewood maximal function in the case d = 1. More precisely, Tanaka
considered the uncentred Hardy–Littlewood maximal operator defined by

M̃( f )(x) = sup
s,t>0

1
s + t

∫ x+t

x−s
| f (y)| dy,

and showed that if f ∈ W1,1(R), then M̃( f ) has a weak derivative in L1(R) and

‖(M̃( f ))′‖L1(R) ≤ 2‖ f ′‖L1(R).

This result was later refined by Aldaz and Pérez Lázaro [1] who showed, under the
assumption that f is of bounded variation on R, that M̃( f ) is absolutely continuous
and

‖(M̃( f ))′‖L1(R) ≤ Var( f ),

where Var( f ) denotes the total variation of f . This yields

‖(M̃( f ))′‖L1(R) ≤ ‖ f ′‖L1(R), (1.1)

if f ∈ W1,1(R).
In this paper, we will continue to focus on Question 1.1. By studying the behaviour

of the local maxima of M̃( f ) on R, we will present a simple proof of the inequality
(1.1) for f ∈ W1,1(R). More precisely, we shall prove the following result.

Theorem 1.2. If f ∈ W1,1(R), then M̃( f ) is absolutely continuous, and

‖(M̃( f ))′‖L1(R) ≤ ‖ f ′‖L1(R).

Remark 1.3. Obviously, Theorem 1.2 is an improvement of Tanaka’s result in [13].
We remark that our proof is different from the proof of (1.1) given by Aldaz and Pérez
Lázaro in [1], where the authors deduced that ‖(M̃( f ))′‖L1(R) ≤ ‖ f ′‖L1(R) by proving
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that Var(M̃( f )) ≤ Var( f ). Here, we will give a direct proof of the former inequality:
M̃( f ) is weakly differentiable and the weak derivative is integrable on R, which is
equivalent to the absolute continuity of M̃( f ) on R. This implies Var(M̃( f )) ≤ Var( f )
under the hypothesis f ∈ W1,1(R). Our method is quite elementary and simple. The
main ingredients are identities at the local maximum points of M̃( f ), which are
of interest in their own right (see Lemma 2.4). For the centred Hardy–Littlewood
maximal operator M, Kurka [9] recently showed that Var(M( f )) ≤ C Var( f ) with a
certain constant C > 1, if f is of bounded variation on R. However, our method does
not work forM. An interesting question to ask is whether the corresponding result to
Theorem 1.2 forM also holds, provided f ∈ W1,1(R) with constant C = 1.

The rest of this paper is organised as follows. After presenting some key lemmas
in Section 2, we will prove Theorem 1.2 in Section 3. It should be pointed out that
the main ideas in our proof are greatly motivated by [2, 13], but some new techniques
are also necessary. Throughout this paper, the letter C, sometimes with additional
parameters, will stand for positive constants, not necessarily the same one at each
occurrence, but independent of the essential variables.

2. Some notation and lemmas

Let us begin with the following definition.

Definition 2.1. We say that a point x0 is a local maximum of f if there exists α > 0
such that

f (x0) ≥ f (x0 − h), f (x0) ≥ f (x0 + h) for 0 < h < α.

Lemma 2.2. If f is continuous and integrable on R, then M̃( f ) is continuous on R and
M̃( f )(x) ≥ | f (x)| for all x ∈ R. Moreover, if f ∈W1,1(R), then both f and M̃( f ) vanish
at infinity.

Proof. When ‖ f ‖L1(R) = 0, it follows from the continuity of f that f ≡ 0 and the
conclusions are obvious. Thus, we may assume that ‖ f ‖L1(R) > 0 for the entire proof.
It follows from the continuity of f and the Lebesgue differentiation theorem that

M̃( f )(x) ≥ | f (x)| ∀x ∈ R.

We shall prove the continuity of M̃( f ). For any x, h ∈ R, one can easily check that

|M̃( f )(x + h) − M̃( f )(x)| ≤ sup
s,t>0

1
s + t

∫ x+t

x−s
| f (y + h) − f (y)| dy.

For any ε > 0, we set δ1 = 2‖ f ‖L1(R)/ε. Since f is uniformly continuous on [x −
2δ1, x + 2δ1], for any ε > 0 there exists 0 < δ < δ1 such that | f (y) − f (z)| < ε for all
y, z ∈ [x − 2δ1, x + 2δ1] with |y − z| < δ. We consider the following two cases:

(i) If s + t ≤ δ1, then for all |h| < δ,

1
s + t

∫ x+t

x−s
| f (y + h) − f (y)| dy ≤

1
s + t

∫ x+t

x−s
ε dy < ε.
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(ii) If s + t > δ1, then for all h,

1
s + t

∫ x+t

x−s
| f (y + h) − f (y)| dy ≤

2
s + t
‖ f ‖L1(R) < ε.

Thus, for any ε > 0, there exists δ > 0 such that

|M̃( f )(x + h) − M̃( f )(x)| < ε

for all |h| < δ. The continuity of M̃( f ) follows from this.
Moreover, if f ∈ W1,1(R), then f is absolutely continuous on R and its classical

derivative is equal to the weak derivative almost everywhere. From the fundamental
theorem of calculus, for any x ∈ R,

f (x) − f (0) =

∫ x

0
f ′(t) dt.

Taking x→∞, by the dominated convergence theorem,

lim
x→∞

f (x) =

∫ ∞
0

f ′(t) dt + f (0),

but then limx→∞ f (x) = 0 since we also have f ∈ L1(R). Similarly, limx→−∞ f (x) = 0.
Thus f vanishes at infinity.

We claim that M̃( f ) vanishes at infinity. Since f vanishes at infinity, for any ε > 0
there exists B1 > 0 such that | f (x)| < ε for all |x| > B1. Let B2 = B1 + ‖ f ‖L1(R)/ε. For
any |x| > B2,

M̃( f )(x)≤ sup
s,t>0

max{s,t}>B2−B1

1
s + t

∫ x+t

x−s
| f (y)| dy + sup

s,t>0
max{s,t}≤B2−B1

1
s + t

∫ x+t

x−s
| f (y)| dy

≤
‖ f ‖L1(R)

B2 − B1
+ ε = 2ε,

which confirms our claim. �

Remark 2.3. We remark that the first part of Lemma 2.2 can be obtained from [1,
Lemma 3.4]. In the second part of Lemma 2.2, the condition f ∈ W1,1(R) can be
weakened to f being an integrable function of bounded variation on R. In fact, the
function of bounded variation has one-sided limits everywhere, thus the limits at
infinity must be zero because of the integrability of f . By the same argument as in
the proof of Lemma 2.2, we can show that M̃( f ) vanishes at infinity.

The next lemma deals with the local maximum points of the corresponding maximal
function. It will play a key role in the proof of Theorem 1.2.

Lemma 2.4. Let f : R→ R be continuous and integrable. If x0 is a local maximum of
M̃( f ), then M̃( f )(x0) = | f (x0)|.
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Proof. We shall prove the lemma by considering the following two cases.

Case 1. Suppose M̃( f )(x0) is attained for some s0 ≥ 0, t0 ≥ 0 such that

M̃( f )(x0) =
1

s0 + t0

∫ x0+t0

x0−s0

| f (x)| dx. (2.1)

We may assume that s0, t0 > 0 (since the other cases can be obtained by a simple
modification of our arguments). For any fixed 0 < ε < min{s0, t0},

M̃( f )(x0) =
1

s0 + t0

∫ x0+t0

x0−s0

| f (x)| dx

=
s0 − ε

s0 + t0

1
s0 − ε

∫ x0−ε

x0−s0

| f (x)| dx +
t0 − ε
s0 + t0

1
t0 − ε

∫ x0+t0

x0+ε

| f (x)| dx

+
2ε

s0 + t0

1
2ε

∫ x0+ε

x0−ε

| f (x)| dx

≤
s0 + t0 − 2ε

s0 + t0
M̃( f )(x0) +

2ε
s0 + t0

1
2ε

∫ x0+ε

x0−ε

| f (x)| dx.

Therefore,

M̃( f )(x0) ≤
1
2ε

∫ x0+ε

x0−ε

| f (x)| dx.

Letting ε → 0 gives M̃( f )(x0) ≤ | f (x0)|. Combining this with Lemma 2.2 yields
M̃( f )(x0) = | f (x0)|.

Case 2. Suppose there are no s0, t0 ≥ 0 such that (2.1) holds. Without loss of generality,
we may assume that M̃( f )(x0) is not attained for any s ≥ 0. Then

M̃( f )(x0) = sup
s>k,t>0

1
s + t

∫ x0+t

x0−s
| f (x)| dx ∀k = 1, 2, . . . .

Otherwise, there exists some M > 0 such that

M̃( f )(x0) = sup
0<s≤M,t>0

1
s + t

∫ x0+t

x0−s
| f (x)| dx,

which gives a contradiction. Clearly,

M̃( f )(x0) ≤ sup
s>k

1
s
‖ f ‖L1(R) ∀k = 1, 2, . . . ,

which implies M̃( f )(x0) = 0 and, from Lemma 2.2, M̃( f )(x0) = | f (x0)| = 0. This
completes the proof. �

Lemma 2.5. Let f be a function on R. Let (a, b) be an interval such that both f and
M̃( f ) are continuous on (a, b). Suppose that M̃( f )(x) > | f (x)| for any x ∈ (a, b) and
M̃( f ) is strictly monotonic on (a, b). Then M̃( f ) is absolutely continuous on (a, b)
provided that one of the following conditions holds:
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(i) −∞ < a < b <∞;
(ii) a = −∞, b <∞ and limx→−∞ M̃( f )(x) exists;
(iii) a > −∞, b =∞ and limx→∞ M̃( f )(x) exists;
(iv) a = −∞, b =∞ and both limx→−∞ M̃( f )(x) and limx→∞ M̃( f )(x) exist.

Proof. One can easily check that there exists C > 0 such that M̃( f )(x) ≤ C for any
x ∈ (a, b), provided one of the conditions (i)–(iv) holds. We may assume M̃( f ) is
strictly increasing on (a, b). Let G := {x ∈ (a, b) : (M̃( f ))′(x) =∞}. It suffices to show
that |M̃( f )(G)| = 0.

We shall prove G = ∅. Fix x0 ∈ (a, b). By the continuity of f at the point x0, there
exists δ > 0 such that

| f (x)| < | f (x0)| + 1
2 (M̃( f )(x0) − | f (x0)|)

for any |x − x0| ≤ δ. This together with the definition of M̃( f ) yields that, for any ε > 0,
there exist s0 > 0 and t0 > 0 such that s0 + t0 > δ and

M̃( f )(x0) <
1

s0 + t0

∫ x0+t0

x0−s0

| f (y)| dy + ε.

For any h ∈ (0, δ),

M̃( f )(x0) − M̃( f )(x0 − h)

≤
1

s0 + t0

∫ x0+t0

x0−s0

| f (y)| dy + ε −
1

s0 + t0 + h

∫ x0+t0

x0−h−s0

| f (y)| dy

≤
1

s0 + t0

∫ x0+t0

x0−s0

| f (y)| dy + ε −
1

s0 + t0 + h

∫ x0+t0

x0−s0

| f (y)| dy

=
h

(s0 + t0)(s0 + t0 + h)

∫ x0+t0

x0−s0

| f (y)| dy + ε

≤
h

δ(s0 + t0)

∫ x0+t0

x0−s0

| f (y)| dy + ε ≤
h
δ

C + ε. (2.2)

Since ε > 0 is arbitrary, (2.2) implies

1
h

[M̃( f )(x0) − M̃( f )(x0 − h)] ≤
1
δ

C for h ∈ (0, δ),

and hence (M̃( f ))′(x0) ,∞. Thus G = ∅, and then |M̃( f )(G)| = 0. This completes the
proof. �

3. Proof of Theorem 1.2

For f ∈ W1,1(R), f is absolutely continuous on R and vanishes at infinity. By
Lemma 2.2, M̃( f )(x) ≥ | f (x)| for all x ∈ R and M̃( f ) is continuous and vanishes at
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infinity. Therefore, the set A := {x ∈ R : M̃( f )(x) > | f (x)|} is open. We can write A as
a countable union of disjoint open intervals:

A =
⋃

j

I j :=
⋃

j

(α j, β j),

where M̃( f )(α j) = | f (α j)| and M̃( f )(β j) = | f (β j)|. Moreover, if α j = −∞ or β j = +∞,
then f (α j) = M̃( f )(α j) = 0 and f (β j) = M̃( f )(β j) = 0.

Since constant segments are not allowed, we claim that each interval I j satisfies
only one of the following conditions:

(i) M̃( f ) is strictly increasing on I j;
(ii) M̃( f ) is strictly decreasing on I j;
(iii) there exists b j ∈ I j such that M̃( f ) is strictly decreasing on (α j, b j) and is strictly

increasing on (b j, β j).

Otherwise, there exist α j < c1 < c2 < c3 < β j such that

M̃( f )(c1) < M̃( f )(c2), M̃( f )(c2) ≥ M̃( f )(c3) or

M̃( f )(c1) ≤ M̃( f )(c2), M̃( f )(c2) > M̃( f )(c3).

From the Weierstrass extreme value theorem and the continuity of M̃( f ), there exists
a local maximum of M̃( f ) in [c1, c3] at least. But this contradicts Lemma 2.4.

Next, we shall conclude that M̃( f ) is absolutely continuous on I j and

Var(M̃( f ); I j) ≤ Var( f ; I j), (3.1)

where Var( f ; I j) denotes the total variation of f on I j. If I j satisfies (i) or (ii), M̃( f ) is
absolutely continuous on I j by Lemma 2.5 and

Var(M̃( f ); I j) = |M̃( f )(β j) − M̃( f )(α j)| = | | f (β j)| − | f (α j)| | ≤ Var(| f |; I j) ≤ Var( f ; I j).

Thus (3.1) holds. If I j satisfies (iii),

Var(M̃( f ); I j) = (M̃( f )(β j) − M̃( f )(b j)) + (M̃( f )(α j) − M̃( f )(b j))
< (| f (β j)| − | f (b j)|) + (| f (α j)| − | f (b j)|)
≤ | f (β j) − f (b j)| + | f (α j) − f (b j)| ≤ Var( f ; I j)

and again (3.1) holds. On the other hand, by Lemma 2.5 again, M̃( f ) is absolutely
continuous on (α j, b j) and on (b j, β j). Then M̃( f ) maps sets of measure zero in (α j, b j)
and in (b j, β j) onto sets of measure zero. Thus, for any set G ⊂ I j of measure zero,

|M̃( f )(G)| ≤ |M̃( f )(G ∩ (α j, b j))| + |M̃( f )(G ∩ (b j, β j))| = 0,

which implies that M̃( f ) maps sets of measure zero in I j onto sets of measure
zero. Since M̃( f ) is continuous and of bounded variation on I j, M̃( f ) is absolutely
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continuous on I j and thus has a weak derivative v on each I j. Moreover, the weak
derivative coincides with the classical derivative almost everywhere.

Next, similarly to Tanaka’s arguments in [13], we will prove that M̃( f ) is weakly
differentiable on R with

(M̃( f ))′ = | f |′χAc + vχA, (3.2)

where χA and χAc denote the indicator functions of the sets A and Ac. Indeed, for any
ϕ ∈ C∞c (R), M̃( f )ϕ is absolutely continuous on I j. By integration by parts,∫

I j

M̃( f )(x)ϕ′(x) dx = (| f (β j)|ϕ(β j) − | f (α j)|ϕ(α j)) −
∫

I j

v(x)ϕ(x) dx.

It follows that∫
R

M̃( f )(x)ϕ′(x) dx =

∫
A
M̃( f )(x)ϕ′(x) dx +

∫
Ac
M̃( f )(x)ϕ′(x) dx

=
∑

j

(| f (β j)|ϕ(β j) − | f (α j)|ϕ(α j)) −
∫

A
v(x)ϕ(x) dx +

∫
Ac
| f (x)|ϕ′(x) dx. (3.3)

Also, fϕ is absolutely continuous on I j. By integration by parts again,∑
j

(| f (β j)|ϕ(β j) − | f (α j)|ϕ(α j)) −
∫

A
v(x)ϕ(x) dx +

∫
Ac
| f (x)|ϕ′(x) dx

=

∫
A
| f (x)|ϕ′(x) dx +

∫
A
| f |′(x)ϕ(x) dx −

∫
A

v(x)ϕ(x) dx +

∫
Ac
| f (x)|ϕ′(x) dx

=

∫
R

| f (x)|ϕ′(x) dx +

∫
A
| f |′(x)ϕ(x) dx −

∫
A

v(x)ϕ(x) dx. (3.4)

Obviously, | f | is weakly differentiable on R because | f | is absolutely continuous on R,
so for any ϕ ∈ C∞c (R), ∫

R

| f (x)|ϕ′(x) dx = −

∫
R

| f |′(x)ϕ(x) dx.

Therefore, ∫
R

| f (x)|ϕ′(x) dx +

∫
A
| f |′(x)ϕ(x) dx −

∫
A

v(x)ϕ(x) dx

= −

∫
R

(| f |′(x)χAc (x) + v(x)χA(x))ϕ(x) dx.

Combining this with (3.3) and (3.4) yields (3.2).
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It follows from (3.1) and (3.2) that

‖(M̃( f ))′‖L1(R) =

∫
A
|(M̃( f ))′(x)| dx +

∫
Ac
|(M̃( f ))′(x)| dx

=

∫
A
|v(x)| dx +

∫
Ac
| | f |′(x)| dx =

∑
j

Var(M̃( f ); I j) +

∫
Ac
| | f |′(x)| dx

≤
∑

j

Var(| f |; I j) +

∫
Ac
| | f |′(x)| dx =

∑
j

∫
I j

| | f |′(x)| dx +

∫
Ac
| | f |′(x)| dx

≤

∫
R

| | f |′(x)| dx = Var(| f |) ≤ Var( f ) = ‖ f ′‖L1(R).

Finally, since M̃( f ) is weakly differentiable on R and (M̃( f ))′ ∈ L1(R), M̃( f ) is
absolutely continuous on R.
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