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Abstract
We introduce a broad class of multi-hooking networks, wherein multiple copies of a seed are hooked at each step at
random locations, and the number of copies follows a predetermined building sequence of numbers. We analyze the
degree profile in random multi-hooking networks by tracking two kinds of node degrees—the local average degree
of a specific node over time and the global overall average degree in the graph. The former experiences phases
and the latter is invariant with respect to the type of building sequence and is somewhat similar to the average
degree in the initial seed. We also discuss the expected number of nodes of the smallest degree. Additionally, we
study distances in the network through the lens of the average total path length, the average depth of a node, the
eccentricity of a node, and the diameter of the graph.

1. Introduction

Trees have long been in the focus of research on random graphs. The classic types, such as those that
appear in data structures [3,10,14,15] and digital processing [6,12,20], grow incrementally, one node
at a time. In more recent times, authors considered more complex types of random graphs grown by
adjoining entire graphs to a growing network [1,2,5,7,11,13,16,21]. We consider a growing network
model in which the number of components attached at a stage follows a predetermined building sequence
of numbers.

Societies and social networks grow and change over time in multiple random ways, which
include growth patterns that add “components” at each step. Networks grown by adding com-
ponents reflect these dynamics better than networks evolving on single node additions. One can
embed a graph in a predetermined growth structure leading to multiple scenarios of growing
networks.

In this paper, we develop a model where networks grow by hooking multiple copies of the seed
at multiple nodes of the growing network chosen in a random fashion and study the theoretical and
statistical properties of the networks so generated.

2. The building sequence

We assume that a network grows by attaching a number of components at each step to the existing
structure, which starts with 𝜏0 ≥ 2 vertices. In the next subsection, we give a formal definition. Here, we
only say a word on the number of components added at each step. After 𝑛 steps of growth, the number
of components attached to obtain the next network is 𝑘𝑛, a predetermined sequence of nonnegative
numbers.
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2.1. Regularity conditions

Let 𝜏0 ≥ 2. This represents the number of nodes in a building block (a seed). We grow the network
by adding a number of copies of the seed at places called latches. At each latch, a designated vertex
in the seed (called the hook) is fused with the latch. A formal definition of this process is given in the
sequel.

We shall consider adding 𝑘𝑛 ≥ 1 copies of the seed to construct the (𝑛 + 1)st network, under the
following regularity conditions:

(R1) 𝑘𝑛 ≤ 𝜏0 + (𝜏0 − 1)
∑𝑛−1

𝑖=0 𝑘𝑖 .
(R2) lim𝑛→∞ 𝑘𝑛/

∑𝑛
𝑖=0 𝑘𝑖 = 𝑎 ∈ [0, 1].

(R3) lim𝑛→∞ 𝜏0/𝑘𝑛 = 𝑏 ≥ 0.

A sequence of nonnegative integers {𝑘𝑛}
∞
𝑛=0 satisfying (R1)–(R3) is called a building sequence. Condi-

tion (R1) is to guarantee the feasibility of choosing latches. At no point in time does the process require
more (distinct) latches than the number of nodes existing in the network. Conditions (R2)–(R3) facili-
tate the existence of limits for properties of interest and expedite finding their values. Note that 𝑎 = 0
and 𝑏 = 0 are both allowed. For instance, for a constant sequence 𝑘𝑛 = 𝑘 ∈ N, we have 𝑎 = 0, and
𝑏 = 𝜏0/𝑘 > 0, whereas when 𝑘𝑛 = 𝑛 + 1, we have both 𝑎 = 0 and 𝑏 = 0.

Regularity conditions (R1)–(R3) are not too restrictive and the class covered by the investigation
remains very broad. The examples that come up in practice satisfy these regularity conditions. For
example, at one extreme, the building sequence 𝑘𝑛 = 1 builds networks of linear growth, including
trees. At the other extreme, the case of equality in Condition (R1) builds a deterministic network where
the entire vertex set is chosen at each step (a take-all model); such extremal case grows the network
exponentially fast.

3. The multi-hooking network

A network grows as follows. We start with a connected seed graph 𝐺0 with vertex set of size 𝜏0
and edge set of size 𝜂. One of the vertices in the seed is designated as a hook (vertex ℎ). When
a copy of the seed is adjoined to the network, it is the seed’s hook that latches into that larger
graph. The hooking is accomplished by fusing together the hook and a latch (vertex) chosen from the
network.

At step 𝑛, 𝑘𝑛−1 copies of the seed are hooked into the graph, 𝐺𝑛−1 = (𝑉𝑛−1, E𝑛−1), with vertex set
𝑉𝑛−1 and edge set E𝑛−1, that exists at time 𝑛 − 1. To complete the 𝑛th hooking step, we sample 𝑘𝑛−1
latches from the graph 𝐺𝑛−1. The selection mechanism can take a number of forms, such as choosing
distinct hooks as opposed to allowing repetitions.

We use the notation |𝐴| for the cardinality of a set 𝐴. We consider a uniform model that selects 𝑘𝑛−1
distinct nodes in the network, with all

( |𝑉𝑛−1 |
𝑘𝑛−1

)
subsets being equally likely. In the language of statistics,

this boils down to sampling without replacement.
Figure 1 illustrates a seed and a network grown from it in three steps under the building sequence

𝑘𝑛 = 𝑛+1. So, 𝐺1 grows by choosing a latch from 𝐺0 (the starred node in 𝐺0), 𝐺2 grows by choosing the
two starred nodes from 𝐺1, and 𝐺3 grows by choosing the three starred nodes from 𝐺2. The networks
in Figure 1 have loops and multiple edges, as we do not restrict the study to simple graphs.

3.1. Notation

The notation Hypergeo(𝑡, 𝑟, 𝑠) stands for the hypergeometric random variable associated with the
random sampling of 𝑠 objects out of a total of 𝑡 objects, of which 𝑟 objects are of a special type. So, the
hypergeometric random variable counts the number of special objects in the sample.

It is customary to call the cardinality of the vertex set of a graph the order of the graph and reserve
the term size of the graph to the cardinality of the set of edges in the graph. Let 𝑉𝑛 be the set of vertices
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Figure 1. A seed (top) with a hook and three networks grown from it (second row) under the building
sequence 𝑘𝑛 = 𝑛 + 1. The white vertices in the network 𝐺1, 𝐺2, and 𝐺3 represent the reference vertex.

of the graph 𝐺𝑛, and E𝑛 be the set of edges of that graph. Thus, the seed 𝐺0 = (𝑉0, E0) is a connected
graph with the set 𝑉0 of vertices and the set E0 of edges.

Let 𝜏𝑛 be the order of the graph at age 𝑛. Hence, the cardinality of the vertex set 𝑉0 of the seed is
|𝑉0 | = 𝜏0. The 𝑛th hooking step adds 𝑘𝑛−1 copies of the seed at 𝑘𝑛−1 distinct latches chosen uniformly at
random from 𝐺𝑛−1. Each copy contributes 𝜏0 −1 new vertices to the network. The reason for subtracting
1 is the absorption of the hook. This gives the recurrence

𝜏𝑛 = 𝜏𝑛−1 + 𝑘𝑛−1 (𝜏0 − 1). (1)

Unwinding this recurrence, we obtain

𝜏𝑛 = (𝜏0 − 1)
𝑛∑
𝑖=1

𝑘𝑖−1 + 𝜏0. (2)

We use the notation deg(𝑣) to denote the degree of node 𝑣 in a given graph, and we set ℎ∗ = deg(ℎ).

3.2. Useful limits

By the regularity conditions, we can argue from (2) that

𝜏𝑛
𝑘𝑛−1

= (𝜏0 − 1)
1

𝑘𝑛−1

𝑛−1∑
𝑖=0

𝑘𝑖 +
𝜏0

𝑘𝑛−1
→

𝜏0 − 1
𝑎

+ 𝑏 =: 𝛾.

Reorganize (1) as

1 =
𝜏𝑛−1

𝜏𝑛
+

𝑘𝑛−1

𝜏𝑛
(𝜏0 − 1).
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to find the limit
𝜏𝑛−1

𝜏𝑛
= 1 −

𝑘𝑛−1

𝜏𝑛
(𝜏0 − 1) → 1 −

(𝜏0 − 1)
𝛾

.

4. A degree profile of the network

Various aspects of the degrees of nodes in a network are of interest in different contexts. For example, in
the language of epidemiology, the degree of a node may be a useful representation of a highly infective
person. From a health policy point of view, having knowledge about the degrees in conjunction with
other graph parameters may help in identifying hot spots that trigger outbreaks and may be useful in
controlling and mitigating the contagion. In the context of a social network, the degree of a node may
represent the popularity and social skills of the person represented by the node.

Equally interesting are the global overall average degree in the entire graph (where we look at all the
nodes), the local degree of a specific node during its temporal evolution, and the number of nodes of
the smallest degree. We deal with the average behavior of each of these in a separate subsection. The
different aspects of the degree complete a profile of the graph.

4.1. Evolution of the degree of a specific node

Suppose a node appears for the first time at step 𝑗 . What will become of its degree at step 𝑛? At step
𝑗 , several copies are added. To avoid a heavy notation identifying the time of appearance 𝑗 , the copy
number, which node within the copy to be tracked, and 𝑛, we use a simpler notation that needs only 𝑗
and 𝑛, for after all nodes of the same degree in the seed have the same distribution over time.

Theorem 4.1. Suppose {𝑘𝑛}
∞
𝑛=0 is a building sequence of the family of graphs {𝐺𝑛}

∞
𝑛=1. Let 𝑋 𝑗:𝑛 be the

degree of a node at time 𝑛 that had appeared for the first time at step 𝑗 . If initially its degree (in the
seed) is 𝛿, then we have

E[𝑋 𝑗:𝑛] = 𝛿 + ℎ∗
𝑛−1∑
𝑖= 𝑗

𝑘𝑖
𝜏𝑖

=
ℎ∗𝑎

(1 − 𝑎)(𝜏0 − 1) + 𝑎𝑏
(𝑛 − 𝑗) + 𝑜(𝑛 − 𝑗) + 𝑂 (1).

Proof. Suppose a node 𝑣 appears at time 𝑗 for the first time. So, it belongs to one of the copies adjoined
to the graph at that time. As the graph evolves, in any single step, the degree of 𝑣 can increase, if it is one
of the nodes selected as latches in that step; otherwise its degree stays put, and when it does increase, it
goes up by ℎ∗ = deg(ℎ), the degree of the hook in the seed. This gives rise to a recurrence:

𝑋 𝑗:𝑛 = 𝑋 𝑗:𝑛−1 + ℎ∗I𝑛−1 (𝑣),

where I𝑛−1 (𝑣) is an indicator of the event of choosing 𝑣 among the 𝑘𝑛−1 latches of that step of growth.
On average, we have

E[𝑋 𝑗:𝑛] = E[𝑋 𝑗:𝑛−1] + ℎ∗

(𝜏𝑛−1−1
𝑘𝑛−1−1

)(𝜏𝑛−1
𝑘𝑛−1

) = E[𝑋 𝑗:𝑛−1] + ℎ∗
𝑘𝑛−1

𝜏𝑛−1
.

Unwinding the recurrence, we obtain the exact average:

E[𝑋 𝑗:𝑛] = 𝛿 + ℎ∗
𝑛−1∑
𝑖= 𝑗

𝑘𝑖
𝜏𝑖

.
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By the limits in Subsection 3.2, we obtain

E[𝑋 𝑗:𝑛] = 𝑂 (1) + 𝑜(𝑛 − 𝑗) +
ℎ∗𝑎

(1 − 𝑎)(𝜏0 − 1) + 𝑎𝑏
(𝑛 − 𝑗).

�

Remark 4.1. If 𝑎 = 0 the E[𝑋 𝑗:𝑛] is only 𝑜(𝑛 − 𝑗).

Remark 4.2. Consider the case 𝑎 > 0. The average in Theorem 4.1 indicates that the degree of a
specific node experiences phases. The degree of a node in the early phase with 𝑗 = 𝑗 (𝑛) = 𝑜(𝑛) grows
linearly with its age in the network. When 𝑗 (𝑛) ∼ 𝜌𝑛, for 0 < 𝜌 < 1, we still get a linear growth,
but the coefficient of linearity is attenuated to (1 − 𝜌)(ℎ∗𝑎/[(1 − 𝑎)(𝜏0 − 1) + 𝑎𝑏]). At 𝜌 = 1, we have
E[𝑋 𝑗:𝑛] = 𝑜(𝑛).

Remark 4.3. If 𝑎 = 0, we can only assert that E[𝑋 𝑗:𝑛] = 𝑜(𝑛 − 𝑗) + 𝛿. In this case, a finer analysis is
needed to identify the leading order of the average degree of a node that appears at time 𝑗 . For instance,
in the case of a tree grown from the complete graph 𝐾2, we have 𝛿 = 1, ℎ∗ = 1, 𝑘𝑛 = 1, and 𝑎 = 0. The
exact formula in this case yields

E[𝑋 𝑗:𝑛] = 1 +

𝑛−1∑
𝑖= 𝑗

1
𝑖 + 2

= 𝐻𝑛+1 − 𝐻 𝑗+1 + 1.

Whence, we have the phases

E[𝑋 𝑗:𝑛] ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ln 𝑛, if 𝑗 is fixed;
ln

𝑛

𝑗 (𝑛)
, if 𝑗 (𝑛) → ∞ and 𝑗 (𝑛) = 𝑜(𝑛);

ln
1
𝜌
, if 𝑗 (𝑛) ∼ 𝜌𝑛, 0 < 𝜌 < 1;

1, if 𝑗 (𝑛) = 𝑛 − 𝑜(𝑛).

4.2. The overall average degree

The main result about the overall average degree in the graph is developed in this section. The result is
expressed in terms of 𝜂, the number of edges in the seed graph.

Theorem 4.2. Suppose {𝑘𝑛}
∞
𝑛=0 is a building sequence of the family of graphs {𝐺𝑛}

∞
𝑛=1. Let 𝑌𝑛 be the

degree of a randomly chosen node in the graph 𝐺𝑛 at age 𝑛. We have

lim
𝑛→∞
E[𝑌𝑛] =

2𝜂

𝜏0 − 1
.

Proof. Upon hooking 𝑘𝑛−1 copies of the seed to 𝑘𝑛−1 distinct nodes of 𝐺𝑛−1 = (𝑉𝑛−1, E𝑛−1), we add
𝜂𝑘𝑛−1 edges to the graph. Therefore, we have

|E𝑛 | = |E𝑛−1 | + 𝜂𝑘𝑛−1.

This recurrence has the solution

|E𝑛 | = 𝜂

(
1 +

𝑛−1∑
𝑖=0

𝑘𝑖

)
.
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Using the classical First Theorem of Graph Theory, we obtain

∑
𝑣∈𝑉𝑛

deg(𝑣) = 2|E𝑛 | = 2𝜂

(
1 +

𝑛−1∑
𝑖=0

𝑘𝑖

)
.

Scaling the equation by 𝜏𝑛, we get

1
𝜏𝑛

∑
𝑣∈𝑉𝑛

deg(𝑣) =
2𝜂

𝜏𝑛

(
1 +

𝑛−1∑
𝑖=0

𝑘𝑖

)
.

Taking limits, and using Eq. (2), we obtain

lim
𝑛→∞
E[𝑌𝑛] = 0 + lim

𝑛→∞
2𝜂

∑𝑛−1
𝑖=0 𝑘𝑖

𝜏𝑛
=

2𝜂

𝜏0 − 1
.

�

Remark 4.4. The average degree in the seed is 2𝜂/𝜏0. For any building sequence, the asymptotic
average degree in the graph is 2𝜂/(𝜏0 − 1), only slightly higher than the average degree in the initial
seed. This should be anticipated because the additions introduce a number of copies of the seed, each
of which has the degree properties of the seed with the hook eliminated.

4.3. Nodes of the smallest degree

We study only the nodes of the smallest degree. Let 𝑑∗ be the smallest degree in the seed. Note that the
smallest admissible degree in the graph is 𝑑∗. After the network grows, the smallest degree in it may be
𝑑∗ or higher. Let 𝑋𝑛 be the number of nodes of degree 𝑑∗ at time 𝑛. Thus, 𝑋0 is the number of nodes of
degree 𝑑∗ in the seed. Later graphs can have more nodes of degree 𝑑∗. The seed in Figure 1 has 𝑑∗ = 2,
and 𝑋0 = 1, 𝑋1 = 2, 𝑋2 = 3, and 𝑋3 = 3.

4.3.1. Stochastic recurrence
In the evolution at step 𝑛, we hook 𝑘𝑛−1 copies of the seed to the graph 𝐺𝑛−1. Let 𝐴0 be the event
deg(ℎ) = 𝑑∗ and I𝐴0 be an indicator that assumes value 1, if deg(ℎ) = 𝑑∗, otherwise, it assumes the
value 0. A latch of degree 𝑑∗ in the sample will have a higher degree (namely, its degree goes up to
𝑑∗ + deg(ℎ)) in 𝐺𝑛. So, we lose such vertices in the count of 𝑋𝑛. If the hook degree is 𝑑∗, every hooked
copy contributes only 𝑋0 − 1 vertices of degree 𝑑∗.

For the case when 𝑘𝑛−1 = 1 and the latch is ℓ, the change from 𝑋𝑛−1 to 𝑋𝑛 for the four cases can be
seen as shown in the table below:

deg(ℓ) = 𝑑∗ deg(ℓ) ≠ 𝑑∗

deg(ℎ) = 𝑑∗ (𝑋𝑛−1 − 1) + (𝑋0 − 1) 𝑋𝑛−1 + (𝑋0 − 1)
deg(ℎ) ≠ 𝑑∗ (𝑋𝑛−1 − 1) + 𝑋0 𝑋𝑛−1 + 𝑋0

Thus, for any value of 𝑘𝑛−1, the count 𝑋𝑛 therefore satisfies a (conditional) stochastic recurrence:

𝑋𝑛 = 𝑋𝑛−1 + (𝑋0 − 1 − I𝐴0) Hypergeo(𝜏𝑛−1, 𝑋𝑛−1, 𝑘𝑛−1)

+ (𝑋0 − I𝐴0)(𝑘𝑛−1 − Hypergeo(𝜏𝑛−1, 𝑋𝑛−1, 𝑘𝑛−1)). (3)
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4.3.2. The average proportion of nodes of degree 𝑑∗

Take (conditional) expectation of (3) to get

E[𝑋𝑛 |𝐺𝑛−1] = 𝑋𝑛−1 + (𝑋0 − 1 − I𝐴0)
𝑋𝑛−1

𝜏𝑛−1
𝑘𝑛−1

+ (𝑋0 − I𝐴0)

(
𝑘𝑛−1 −

𝑋𝑛−1

𝜏𝑛−1
𝑘𝑛−1

)
=

(
1 −

𝑘𝑛−1

𝜏𝑛−1

)
𝑋𝑛−1 + (𝑋0 − I𝐴0)𝑘𝑛−1. (4)

Theorem 4.3. Suppose {𝑘𝑛}
∞
𝑛=0 is a building sequence of the family of graphs {𝐺𝑛}

∞
𝑛=1, starting from

a seed with 𝑋0 nodes of the smallest degree 𝑑∗. Let 𝑋𝑛 be the number of vertices of this degree in the
graph after 𝑛 steps of evolution according to the building sequence. We have

E[𝑋𝑛] = (𝑋0 − I𝐴0)

𝑛∑
𝑖=1

𝑘𝑖−1

𝑛∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
+ 𝑋0

𝑛∏
𝑗=1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
.

Subsequently, the average proportion converges to a limit independent of the limits 𝑎 and 𝑏; namely we
have the convergence

E

[
𝑋𝑛

𝜏𝑛

]
→

𝑋0 − I𝐴0

𝜏0
.

Proof. Taking a double expectation of (4) yields

E[𝑋𝑛] =

(
1 −

𝑘𝑛−1

𝜏𝑛−1

)
E[𝑋𝑛−1] + (𝑋0 − I𝐴0)𝑘𝑛−1. (5)

This recurrence equation is of the standard linear form

𝑦𝑛 = 𝑔𝑛𝑦𝑛−1 + ℎ𝑛, (6)

with solution

𝑦𝑛 =
𝑛∑
𝑖=1

ℎ𝑖

𝑛∏
𝑗=𝑖+1

𝑔 𝑗 + 𝑦0

𝑛∏
𝑗=1

𝑔 𝑗 . (7)

So, the sought solution for the average of the number of nodes of degree 𝑑∗ (for 𝑛 ≥ 1) is

E[𝑋𝑛] = (𝑋0 − I𝐴0)

𝑛∑
𝑖=1

𝑘𝑖−1

𝑛∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
+ 𝑋0

𝑛∏
𝑗=1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
.

The strategy for the asymptotic part of the statement is two-fold: We prove the existence of a limit (under
any building sequence) for the proportion from the exact solution. We then find the value of the limit
from the recurrence under the mild regularity conditions imposed on the building sequence.

First, express the expected proportion as

E

[
𝑋𝑛

𝜏𝑛

]
= (𝑋0 − I𝐴0)

𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑛

𝑛∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
+

𝑋0

𝜏𝑛

𝑛∏
𝑗=1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
; (8)
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at 𝑖 = 𝑛, the first product does not exist, and is taken to be 1, as usual. Let

𝑐𝑛 =
𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑛

𝑛∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
=

𝑛−1∑
𝑖=1

𝑘𝑖−1

𝜏𝑛

𝑛∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
+

𝑘𝑛−1

𝜏𝑛
;

We manipulate this to turn it into a recurrence as follows:

𝑐𝑛+1 =
𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑛+1

𝑛+1∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
+

𝑘𝑛

𝜏𝑛+1

=
𝜏𝑛

𝜏𝑛+1

(
1 −

𝑘𝑛

𝜏𝑛

) 𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑛

𝑛∏
𝑗=𝑖+1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
+

𝑘𝑛

𝜏𝑛+1

=

(
𝜏𝑛 − 𝑘𝑛

𝜏𝑛+1

)
𝑐𝑛 +

𝑘𝑛

𝜏𝑛+1

=

(
𝜏𝑛+1 − (𝜏0 − 1)𝑘𝑛 − 𝑘𝑛

𝜏𝑛+1

)
𝑐𝑛 +

𝑘𝑛

𝜏𝑛+1

=

(
𝜏𝑛+1 − 𝜏0𝑘𝑛

𝜏𝑛+1

)
𝑐𝑛 +

𝑘𝑛

𝜏𝑛+1

Rearrange the recurrence in the form

𝑐𝑛+1 −
1
𝜏0

= 𝑐𝑛 −
𝜏0𝑘𝑛

𝜏𝑛+1
𝑐𝑛 +

𝑘𝑛

𝜏𝑛+1
−

1
𝜏0

=

(
𝑐𝑛 −

1
𝜏0

) (
𝜏𝑛+1 − 𝜏0𝑘𝑛

𝜏𝑛+1

)
,

leading to the inequality ����𝑐𝑛+1 −
1
𝜏0

���� ≤ ����𝑐𝑛 − 1
𝜏0

���� ����𝜏𝑛+1 − 𝜏0𝑘𝑛 + 𝑘𝑛

𝜏𝑛+1

����
=

����𝑐𝑛 − 1
𝜏0

���� 𝜏𝑛
𝜏𝑛+1

≤

����𝑐𝑛−1 −
1
𝜏0

���� 𝜏𝑛
𝜏𝑛+1

×
𝜏𝑛−1

𝜏𝑛
...

≤

����𝑐0 −
1
𝜏0

���� 𝜏𝑛
𝜏𝑛+1

×
𝜏𝑛−1

𝜏𝑛
× · · · ×

𝜏0

𝜏1
.

Noting that the sum in 𝑐𝑛 is empty at 𝑛 = 0, we have 𝑐0 = 0 and the bounds simplify to 0 ≤ |𝑐𝑛−1/𝜏0 | ≤

1/𝜏𝑛. So, both inferior and superior limits of |𝑐𝑛 − 1/𝜏0 | are equal to 0, which furnishes the existence of
a limit for 𝑐𝑛 equal to 1/𝜏0, too.

As for the remainder part

𝑟𝑛 :=
𝑋0

𝜏𝑛

𝑛∏
𝑗=1

(
1 −

𝑘 𝑗−1

𝜏𝑗−1

)
,

in (8), it clearly converges to 0, as 𝜏𝑛 is increasing, and the product is bounded from above by 1. Plugging
in the limits lim𝑛→∞ 𝑐𝑛 = 1/𝜏0 and lim𝑛→∞ 𝑟𝑛 = 0 in (8), we reach the conclusion that

lim
𝑛→∞
E

[
𝑋𝑛

𝜏𝑛

]
=

𝑋0 − I𝐴0

𝜏0
.
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�

Remark 4.5. In the case when the hook is not of the smallest degree 𝑑∗, we have E[𝑋𝑛/𝜏𝑛] → 𝑋0/𝜏0.
The initial proportion of nodes of the smallest degree in the seed is preserved on average in larger
subsequent graphs.

Remark 4.6. In the case when the hook is of the smallest degree 𝑑∗, we have E[𝑋𝑛/𝜏𝑛] → (𝑋0 −1)/𝜏0.
The long-term proportion of nodes of the smallest degree is less than the proportion of nodes of degree
𝑑∗ in the seed.

Remark 4.7. In the case when the hook is the only node of the smallest degree 𝑑∗ in the seed, we have
𝑋0 = 1, and E[𝑋𝑛/𝜏𝑛] → 0, for all 𝑛 ≥ 1. Indeed, the degree 𝑑∗ disappears after the first latching at the
initial hook and never reappears.

Remark 4.8. The limit in Theorem 4.3 is more than just an ultimate value in the take-all case. In this
case, it is the actual value for each 𝑛 ≥ 0, which can be seen from the recurrence. The only term that
does not vanish is the last term in sum, yielding (𝑋0 − 𝐼𝐴0)𝑘𝑛−1/𝜏𝑛 = (𝑋0 − 𝐼𝐴0)/𝜏0.

5. Distances in the network

We measure node distances in 𝐺𝑛 relative to a reference point (vertex). We take the reference to be the
hook of 𝐺0. We look at two (related) kinds of distances: The total path length and the average distance
in the graph. Let the nodes of the 𝑛th graph be labeled with the numbers 1, 2, . . . , 𝜏𝑛, with 1 being
reserved for the reference vertex and the rest of the nodes are arbitrarily assigned distinct numbers from
the set {2, . . . , 𝜏𝑛}. The depth of a node in the network is its distance from the reference vertex (i.e., the
length of the shortest path from the node to the reference vertex measured in the number of edges). We
denote the depth of the 𝑖th node in the 𝑛th network by Δ𝑛,𝑖 The total path length is the sum of all depths;
namely it is

𝑇𝑛 =
𝜏𝑛∑
𝑖=1

Δ𝑛,𝑖 .

For instance, the networks 𝐺0, 𝐺1, 𝐺2, and 𝐺3 in Figure 1 have total path lengths 𝑇0 = 3, 𝑇1 = 6, 𝑇2 = 18,
and 𝑇3 = 45, respectively.

5.1. Average total path length

As the network grows, at step 𝑛, a sample of size 𝑘𝑛−1 latches is chosen from 𝐺𝑛−1 to grow 𝐺𝑛−1 into 𝐺𝑛.
Suppose these latches are ℓ1, . . . , ℓ𝑘𝑛−1 at depths 𝑑1, . . . , 𝑑𝑘𝑛−1 . In view of the absorption of the hooks of
the added graphs, a copy’s hook fused at the 𝑗 th latch adds 𝜏0 − 1 nodes, which appear in 𝐺𝑛 at depths
equal to their distance from the hook of the copy translated by an additional distance from the latch to
the reference vertex. So, collectively, the vertices of the copy hooked to ℓ 𝑗 increase the total path length
by 𝑇0 + (𝜏0 − 1)𝑑 𝑗 . We have a conditional recurrence:

E[𝑇𝑛 |𝐺𝑛−1, 𝑑1, . . . , 𝑑𝑘𝑛−1] = 𝑇𝑛−1 +

𝑘𝑛−1∑
𝑗=1

(𝑇0 + (𝜏0 − 1)𝑑 𝑗).

Averaging over the graphs and the choices of the latches within, we get

E[𝑇𝑛] = E[𝑇𝑛−1] + 𝑇0𝑘𝑛−1 + (𝜏0 − 1)
𝑘𝑛−1∑
𝑗=1
E[Δ𝑛−1,ℓ 𝑗 ] . (9)
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Lemma 5.1.
𝑘𝑛−1∑
𝑗=1
E[Δ𝑛−1,ℓ 𝑗 ] =

𝑘𝑛−1

𝜏𝑛−1
E[𝑇𝑛−1] .

Proof. Condition on the event ℓ1 = 𝑖1, . . . , ℓ𝑘𝑛−1 = 𝑖𝑘𝑛−1 , to get

𝑘𝑛−1∑
𝑗=1
E[Δ𝑛−1,ℓ 𝑗 ] =

𝑘𝑛−1∑
𝑗=1

∑
1≤𝑖1<𝑖2< · · ·<𝑖𝑘𝑛−1 ≤𝜏𝑛−1

E[Δ𝑛−1,ℓ 𝑗 | 𝑑1 = 𝑖1, . . . 𝑑𝑘𝑛−1 = 𝑖𝑘𝑛−1 ]

× P(𝑑1 = 𝑖1, . . . , 𝑑𝑘𝑛−1 = 𝑖𝑘𝑛−1 ).

The subsets of size 𝑘𝑛−1 latches that appear in a sample of vertices from 𝐺𝑛−1 are all equally likely, and
we get

𝑘𝑛−1∑
𝑗=1
E[Δ𝑛−1,ℓ 𝑗 ]

=
1(𝜏𝑛−1

𝑘𝑛−1

) 𝑘𝑛−1∑
𝑗=1
E

⎡⎢⎢⎢⎢⎣���
∑

1≤𝑖1<𝑖2< · · ·<𝑖𝑘𝑛−1 ≤𝜏𝑛−1

Δ𝑛−1,ℓ 𝑗
���
������ ℓ1 = 𝑖1, . . . ℓ𝑘𝑛−1 = 𝑖𝑘𝑛−1

⎤⎥⎥⎥⎥⎦ .

Let us write out the inner sum in expanded form:

Δ𝑛−1,1 + Δ𝑛−1,2 + · · · + Δ𝑛−1,𝑘𝑛−1

+ Δ𝑛−1,1 + Δ𝑛−1,2 + · · · + Δ𝑛−1,𝑘𝑛−1−1 + Δ𝑛−1,𝑘𝑛−1+1

...

+ Δ𝑛−1,𝜏𝑛−1−𝑘𝑛−1+1 + Δ𝑛−1,𝜏𝑛−1−𝑘𝑛−1+2 + · · · + Δ𝑛−1,𝜏𝑛−1 .

Upon a reorganization collecting similar terms, we get(
𝜏𝑛−1−1

𝑘𝑛−1 − 1

)
(Δ𝑛−1,1 + Δ𝑛−1,2 + · · · + Δ𝑛−1,𝜏𝑛−1 ) =

(
𝜏𝑛−1−1

𝑘𝑛−1 − 1

)
𝑇𝑛−1.

Plugging this expression in the expectation, we proceed to

𝑘𝑛−1∑
𝑗=1
E[Δ𝑛−1,ℓ 𝑗 ] =

( 𝜏𝑛−1−1
𝑘𝑛−1−1

)(𝜏𝑛−1
𝑘𝑛−1

) E[𝑇𝑛−1] =
𝑘𝑛−1

𝜏𝑛−1
E[𝑇𝑛−1] .

�

Theorem 5.1. Suppose {𝑘𝑛}
∞
𝑛=0 is a building sequence of the family of graphs {𝐺𝑛}

∞
𝑛=1, starting from

a seed of total path length 𝑇0. Let 𝑇𝑛 be the total path length after 𝑛 steps of evolution according to the
building sequence. We have

E[𝑇𝑛] = 𝑇0𝜏𝑛

(
𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑖
+

1
𝜏0

)
.
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Proof. By Lemma 5.1 and the recurrence (9), we have a recurrence for the average total path length:

E[𝑇𝑛] = E[𝑇𝑛−1] + 𝑇0𝑘𝑛−1 +
(𝜏0 − 1)𝑘𝑛−1

𝜏𝑛−1
E[𝑇𝑛−1]

=

(
1 +

(𝜏0 − 1)𝑘𝑛−1

𝜏𝑛−1

)
E[𝑇𝑛−1] + 𝑇0𝑘𝑛−1.

Again, the recurrence is of the standard form (6) with the solution (7). In the specific case at hand, this
solution is

E[𝑇𝑛] = 𝑇0

𝑛∑
𝑖=1

𝑘𝑖−1

𝑛∏
𝑗=𝑖+1

(
1 +

(𝜏0 − 1)𝑘 𝑗−1

𝜏𝑗−1

)
+ 𝑇0

𝑛∏
𝑗=1

(
1 +

(𝜏0 − 1)𝑘 𝑗−1

𝜏𝑗−1

)
.

The recurrence (1) on the order of the graph simplifies the solution into telescopic products

E[𝑇𝑛] = 𝑇0

𝑛∑
𝑖=1

𝑘𝑖−1

𝑛∏
𝑗=𝑖+1

𝜏𝑗

𝜏𝑗−1
+ 𝑇0

𝑛∏
𝑗=1

𝜏𝑗

𝜏𝑗−1
= 𝑇0𝜏𝑛

(
𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑖
+

1
𝜏0

)
.

�

5.2. Average depth

Theorem 5.1 provides a benchmark for the calculation of the average depth. Let the depth of a randomly
selected node in the 𝑛th network be 𝐷𝑛.

Corollary 5.1.

E[𝐷𝑛] = 𝑇0

𝑛∑
𝑖=1

𝑘𝑖−1

𝜏𝑖
+ 𝐷0.

Proof. Given a specific development leading to 𝐺𝑛, the average depth in that graph is

E[𝐷𝑛 |𝐺𝑛] =
Δ𝑛,1 + · · · + Δ𝑛,𝜏𝑛

𝜏𝑛
=

𝑇𝑛

𝜏𝑛
.

Upon taking expectation, it follows that E[𝐷𝑛] = E[𝑇𝑛]/𝜏𝑛. The form given in the statement ensues
from Theorem 5.1. �

Corollary 5.2. Under the regularity conditions (R1)–(R3), we have the asymptotic equivalent

E[𝐷𝑛] =
𝑎𝑇0

𝜏0 − 1 + 𝑎𝑏
𝑛 + 𝑜(𝑛), as 𝑛 → ∞.

Remark 5.1. Corollary 5.2 is more useful when

lim
𝑛→∞

𝑘𝑛∑𝑛
𝑖=0 𝑘𝑖

= 𝑎 ≠ 0.

When 𝑎 = 0, as in the case of trees for example, one needs to sharpen the argument to find the leading
asymptotic term, as we do in some specific cases below.
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5.3. Distances under specific building sequences

At one extreme, there is the sequence of least possible growth (𝑘𝑛 = 1). At the other extreme, we have
a take-all model (𝑘𝑛 = 𝜏𝑛) in which all the nodes of 𝐺𝑛 are taken as latches for 𝜏𝑛 copies of the seed.

In the case of 𝑘𝑛 = 𝑘 , for fixed 𝑘 ∈ N, of nearly the least growth, the average depth is

E[𝐷𝑛] = 𝑇0

𝑛∑
𝑖=1

𝑘

𝜏𝑖
+ 𝐷0.

The limit 𝑎 in regularity condition (R2) is 0, and Corollary 5.2 only tells us that E[𝐷𝑛] = 𝑜(𝑛). However,
we can sharpen the asymptotic equivalence from the specific construction of the case.

Here, we have 𝜏𝑖 = (𝜏0 − 1)𝑖 + 𝜏0, which gives

E[𝐷𝑛] =
𝑇0𝑘

𝜏0 − 1

𝑛∑
𝑖=1

1
𝑖 + 𝜏0

𝜏0−1
+ 𝐷0.

In terms of the generalized harmonic numbers1

𝐻𝑛 (𝑥) =
1

1 + 𝑥
+

1
2 + 𝑥

+ · · · +
1

𝑛 + 𝑥
,

the depth in the near-least-growth is compactly expressed as

E[𝐷𝑛] =
𝑇0𝑘

𝜏0 − 1
𝐻𝑛

(
𝜏0

𝜏0 − 1

)
+ 𝐷0 ∼

𝑇0𝑘

𝜏0 − 1
ln 𝑛, as 𝑛 → ∞.

Remark 5.2. The case 𝑘 = 1 and 𝜏0 = 2 grows a recursive tree. The seed is a rooted tree on two vertices,
in which 𝑇0 = 1 and 𝐷0 = 1

2 . In this case, the average depth becomes

E[𝐷𝑛] = 𝐻𝑛 (2) +
1
2
= 𝐻𝑛+2 − 1 ∼ ln 𝑛, as 𝑛 → ∞,

which recovers a known result [19].

Remark 5.3. At the other end of the spectrum, there is the take-all model, in which 𝑘𝑖 = 𝜏𝑖 , leading
at step 𝑛 to a graph of order 𝜏𝑛 = 𝜏𝑛+1

0 . Here, the limit 𝑎 is (𝜏0 − 1)/𝜏0 and the limit 𝑏 is 0. According
to Corollary 5.2, we have E[𝐷𝑛] ∼ 𝐷0𝑛, as 𝑛 → ∞. This asymptotic estimate can be sharpened as the
case is amenable to exact calculation:

E[𝐷𝑛] = 𝑇0

𝑛∑
𝑖=1

𝜏𝑖−1

𝜏𝑖
+ 𝐷0 = 𝑇0

𝑛∑
𝑖=1

1
𝜏0

+ 𝐷0 = 𝐷0(𝑛 + 1).

6. Eccentricity

The eccentricity 𝐶 (𝑣) of a node 𝑣 in a graph G is the distance between 𝑣 and a vertex farthest from
𝑣 in G. The eccentricity is instrumental in constructing a notion of the diameter of a graph (extreme
distances). We use the eccentricity of the hook and the various latches selected in 𝐺𝑛−1 to determine
the diameter of the graph 𝐺𝑛.

The eccentricity is technically defined as follows. If Q is a path in a graph G, we denote its length
by |Q| (the number of edges in it). There can be several paths joining two vertices 𝑢 and 𝑣 in G, and the

1Customarily, 𝐻𝑛 (0) is denoted by 𝐻𝑛 .
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distance between 𝑢 and 𝑣, denoted by 𝑑 (𝑢, 𝑣), is the length of the shortest such path. That is, with P(𝑢, 𝑣)
denoting the collection of paths between 𝑢 and 𝑣, the distance between these two nodes is given by

𝑑 (𝑢, 𝑣) = min
Q∈P(𝑢,𝑣)

|Q|.

The eccentricity 𝐶 (𝑣) of a vertex 𝑣 in a graph with vertex set V is:

𝐶 (𝑣) = max
𝑢∈V

𝑑 (𝑣, 𝑢) = max
𝑢∈V

min
Q∈P(𝑣,𝑢)

|Q|.

For instance, the eccentricity in Figure 1 of the reference vertex of 𝐺0 is 2, of the reference vertex in 𝐺1
is 2 as well, but of the reference vertex in 𝐺2 is 4 and becomes 6 in 𝐺3.

6.1. Eccentricity of a node in 𝑮𝒏

The 𝑘𝑛−1 nodes selected as latches from the graph 𝐺𝑛−1 = (𝑉𝑛−1, E𝑛−1) are vertices that play a key role
in designing the network at stage 𝑛 and onward and contribute significantly in determining the diameter
of the graph at the next stage.

As a node’s eccentricity changes over time, its value at step 𝑛 in 𝐺𝑛 may be different from its value
at step 𝑛− 1 in 𝐺𝑛−1. We need an eccentricity notation reflecting the possible change over time. For that
we use 𝐶𝑛 (𝑣) to speak of the eccentricity of a vertex 𝑣 in 𝐺𝑛.

If 𝑣 ∈ 𝑉𝑛 is a vertex in a copy of 𝐺0 latched at a vertex ℓ𝑖 ∈ 𝑉𝑛−1, we express that by saying 𝑣 ∈ 𝑉𝑐𝑜𝑖

0 ,
otherwise we say 𝑣 ∈ 𝑉𝑛−1. We now introduce some notation:

1. L𝑛 = {ℓ1, ℓ2, · · · ℓ𝑘𝑛 } is the set of latches selected in the graph 𝐺𝑛 to produce the graph 𝐺𝑛+1.
2. 𝐶𝑛 (𝑣) = 𝐶𝑛 (𝑣) |𝐺𝑛−1,L𝑛−1. This is the conditional eccentricity 𝐶𝑛 (𝑣) of the node 𝑣 in the graph

𝐺𝑛, given 𝐺𝑛−1 and the 𝑘𝑛−1 latches in it.
3. For any 𝑣 ∈ 𝑉𝑛−1, we define 𝑑#

𝑣 = maxℓ 𝑗 ∈L𝑛−1 𝑑 (𝑣, ℓ 𝑗). So, 𝑑#
𝑣 is the maximum distance from 𝑣 to the

nodes in L𝑛−1.

Also, in what follows we use the notation IC to indicate a predicate (condition) C. So, it is 1, when C

holds, and is 0, otherwise.

Theorem 6.1. Suppose {𝑘𝑛}
∞
𝑛=0 is a building sequence of the family of graphs {𝐺𝑛}

∞
𝑛=1. Let 𝑣 be a node

in the graph 𝐺𝑛. Conditional upon the choice of the latches ℓ1, . . . , ℓ𝑘𝑛−1 in 𝐺𝑛−1, the eccentricity 𝐶𝑛 (𝑣)
is given by

𝐶𝑛 (𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{𝐶𝑛−1 (𝑣), 𝑑

#
𝑣 + 𝐶0 (ℎ)}, if 𝑣 ∈ 𝑉𝑛−1;

max{𝑑 (𝑣, ℎ) + 𝐶𝑛−1 (ℓ𝑖),

max{𝐶0(𝑣), (𝑑 (𝑣, ℎ) + 𝑑#
ℓ𝑖
+ 𝐶0 (ℎ))I{𝑘𝑛−1>1}}}, if 𝑣 ∈ 𝑉𝑐𝑜𝑖

0 .

Proof. The graph 𝐺𝑛 is obtained by attaching a copy of the seed 𝐺0 at each of the latches ℓ1, ℓ2, · · · , ℓ𝑘𝑛−1

selected in the graph 𝐺𝑛−1.
We denote the vertex set of the 𝑟th copy of the seed, for 𝑟 = 1, . . . , 𝑘𝑛−1, by 𝑉co𝑟

0 . We now compute
the distance from a node 𝑣 to a vertex 𝑢 in 𝐺𝑛 by considering the four cases:

𝑢 ∈ 𝑉𝑛−1 𝑢 ∈ 𝑉
co 𝑗

0
𝑣 ∈ 𝑉𝑛−1 𝑑 (𝑣, 𝑢) 𝑑 (𝑣, ℓ 𝑗) + 𝑑 (ℎ, 𝑢)
𝑣 ∈ 𝑉co𝑖

0 𝑑 (𝑣, ℎ) + 𝑑 (ℓ𝑖 , 𝑢) 𝑑 (𝑢, 𝑣)I𝑖= 𝑗 + (𝑑 (𝑣, ℎ) + 𝑑 (ℓ𝑖 , ℓ 𝑗) + 𝑑 (ℎ, 𝑢))I𝑖≠ 𝑗
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For a given 𝑣 ∈ 𝑉𝑛, the maximum (over the range of 𝑢 and 𝑗) in each block is

𝑢 ∈ 𝑉𝑛−1 𝑢 in a copy
𝑣 ∈ 𝑉𝑛−1 𝐶𝑛−1 (𝑣) 𝑑#

𝑣 + 𝐶0 (ℎ)
𝑣 ∈ 𝑉co𝑖

0 𝑑 (𝑣, ℎ) + 𝐶𝑛−1 (ℓ𝑖) max
{
𝐶0 (𝑣),

(
𝑑 (𝑣, ℎ) + 𝑑#

ℓ𝑖
+ 𝐶0 (ℎ)

)
I{𝑘𝑛−1>1}

}
The result now follows. �

Remark 6.1. Suppose a vertex ℓ is chosen as a latch from 𝐺𝑛−1. From Theorem 6.1, we pick up the top
line and write

𝐶𝑛 (ℓ) = max{𝐶𝑛−1 (ℓ), 𝑑
#
ℓ + 𝐶0(ℎ)}.

If 𝑘𝑛−1 = 1, then 𝑑#
ℓ = 0, in which case we have 𝐶𝑛 (ℓ) = max{𝐶𝑛−1 (ℓ), 𝐶0(ℎ)}.

7. Diameter of the graph 𝑮𝒏

The diameter of a connected graph with vertex set V is the longest distance between any two nodes in
it [4]. That is, the diameter is the maximum eccentricity, max𝑣∈V 𝐶 (𝑣). For example, the diameters of
the graphs 𝐺0, 𝐺1, 𝐺2, and 𝐺3 in Figure 1 are, respectively, 2, 4, 6, and 10.

We now introduce some additional notation:

1. Д̃𝑛 = Д𝑛 |𝐺𝑛−1,L𝑛−1. This is the conditional diameter Д𝑛 of the graph 𝐺𝑛 given 𝐺𝑛−1 and the 𝑘𝑛−1
latches in L𝑛−1 (see Subsection 6.1 for the definition of L𝑛−1).

2. Only for 𝑘𝑛 > 1, we define 𝑞𝑛 = maxℓ,ℓ̃∈L𝑛 𝑑 (ℓ, ℓ̃) = maxℓ∈L𝑛 ℓ#. Thus, 𝑞𝑛 computes the maximum
distance between any two latches in 𝐺𝑛.

3. 𝛼𝑛 = maxℓ∈L𝑛 𝐶𝑛 (ℓ). Thus, 𝛼𝑛 is the maximum eccentricity of a latch in 𝐺𝑛.

Theorem 7.1. Suppose {𝑘𝑛}
∞
𝑛=0 is a building sequence of the family of graphs {𝐺𝑛}

∞
𝑛=1. The conditional

diameter Д̃𝑛 = Д𝑛 |𝐺𝑛−1,L𝑛−1 of a graph of age 𝑛 is given by

Д̃𝑛 = max{Д𝑛−1, (2𝐶0 (ℎ) + 𝑞𝑛−1)I{𝑘𝑛−1>1}, 𝐶0(ℎ) + 𝛼𝑛−1}.

Proof. The (conditional) diameter Д̃𝑛 of 𝐺𝑛 may remain the same as the diameter Д𝑛−1 of 𝐺𝑛−1,2 unless
we can find longer paths in 𝐺𝑛. The latter case arises, if

(a) There is a pair 𝑥 and 𝑦 of latches in 𝐺𝑛−1, and a pair of vertices (say 𝑢 in the copy latched at 𝑥 and 𝑣 in
the copy latched at 𝑦), such that 𝑑 (𝑢, 𝑥) +𝑑 (𝑥, 𝑦) +𝑑 (𝑦, 𝑣) > Д𝑛−1. The case can be, only if 𝑘𝑛−1 > 1.
The longest such distance is obtained by maximizing over 𝑥, 𝑦, 𝑢 and 𝑣 to obtain 2𝐶0 (ℎ) + 𝑞𝑛−1.3

(b) Or, we can find a vertex 𝑢 far enough from a latch ℓ in 𝐺𝑛−1 and another vertex 𝑣 in the copy
latched at ℓ such that 𝑑 (𝑢, ℓ) + 𝑑 (ℓ, 𝑣) > Д𝑛−1. The longest such distance is obtained by
maximizing over ℓ, 𝑢 and 𝑣 to obtain 𝛼𝑛−1 + 𝐶0 (ℎ).

The longest distance in the graph is the maximum of the three possibilities discussed. �

Remark 7.1. Consider the case where, at stage 𝑛 (for each 𝑛 ≥ 1), we pick among the 𝑘𝑛−1 latches
two, say ℓ, ℓ̃ in 𝐺𝑛−1, such that 𝑑 (ℓ, ℓ̃) is the diameter of 𝐺𝑛−1. Note that this selection mechanism is no
longer random in the sense discussed in all the preceding sections. Let us call the diameter of the graph
so constructed Д∗

𝑛−1. This is only possible if 𝑘𝑛−1 > 1, for each 𝑛. By arguments similar to what we used
in the proof of Theorem 7.1, we get Д∗

𝑛 = 2𝐶0(ℎ) + Д∗
𝑛−1. Unwinding we get Д∗

𝑛 = 2𝑛𝐶0 (ℎ) + Д0.

2In the graph 𝐺2 in Figure 1, if we pick the three latches at distances 2,3,4 from the top vertex, the diameter of the graph so obtained in step 3
will be equal to Д2, the diameter of 𝐺2.

3This situation occurs in the graph 𝐺3 in Figure 1.
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Remark 7.1 shows that, under this special hooking mechanism, the diameter Д𝑛 at step 𝑛 only requires
the knowledge of the seed graph and 𝑛. It does not take into consideration how many latches were picked
at stages 1 through 𝑛 − 1 as long as there are two latches ℓ, ℓ̃ picked at each stage such that 𝑑 (ℓ, ℓ̃) is
maximum.
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