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1. Introduction

We show that if X is a Banach space of infinite dimension and nh is a Hausdorff
measure, where h is continuous, then there exists a measurable set KczX such that
0<fj!'(K)< + oo. We also characterize the normed spaces in which the unit ball can be
covered by a sequence of balls whose radii rn< 1 converge to zero as n-*co.

First we define the concept of a Hausdorff small metric space. We say that a metric
space (X, d) is Hausdorff small if there exists a sequence of balls of X, {B(xn, rj), such
that limrB = 0 and X = \Jn^NB(xn, rn) for every natural number N. We prove that a
metric space X is Hausdorff small if, and only if, there exists heJ^0 such that the
Hausdorff measure nh satisfies n\X) = 0. (Here 3tf0 is the class of monotonic increasing
functions h:\_0, +oo)->[0, +oo], continuous on the right such that h(0)=0 and h(t)>0
for every r>0 (Rogers [8]).) For brevity we will say small metric space instead of
Hausdorff small metric space.

We see then that the family of small subspaces of X is a <r-ideal and prove that the a-
ideal of small subspaces is larger than that generated by precompact subspaces.

The t7-ideal of the small subsets of a metric space X has many properties in common
with those of the sets of first category or those of zero measure. For instance, in a
separable metric space, assuming Martin's hypothesis, the union of fewer than
continuum many small sets is small. We want to thank A. Duran Guardeno for
permitting us to include his proof of this fact.

The main theorem of this paper is that if G is a non-locally compact complete metric
group with an invariant metric d and hejfQ is a continuous function, there exists a
compact subset KczX such that 0<fih(K)< +oo. As a consequence, the unit ball of a
Frechet space X is small if, and only if, X is finite dimensional.

It also follows that, in a non-locally compact Polish group, a universally measurable
small subset is a Haar zero set in the sense of Christensen [1]. We prove also that there
exists a Haar zero set which is not small.

We further prove that a dense hyperplane of a Banach space is not small. The proof
of this fact depends on results of Banach space theory.

Finally it is proved that the unit ball of a normed space X can be covered by a
sequence of balls whose radii rn < 1 converge to zero with n if, and only if, X is small.
We must observe that T. W. Korner [7] previously proved that a Banach space of
infinite dimension cannot be covered by a sequence of balls whose radii rn < 1 converge
to zero. Later J. Connett [2, 3] obtained some related results, in particular he proved
that the unit ball of a Banach space of infinite dimension cannot be covered by a
collection of subsets {Di}fll of diameter diam(Df)<2 such that limdiam (£),) = ().
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218 J. ARIAS DE REYNA

2. Small metric spaces

Definition 1. Let {X, d) be a metric space. We say that X is small if there exists a
sequence of balls B(xn, rn) such that:

(1) limrn = 0.

(2) For every N, [j^NB(xn,rn) = X.

\{(X,d) is small, {xn:ne^} is countable and dense. So (X, d) is a separable space.

Proposition 2. / / (X, d) is totally bounded, it is small.

Proof. For every n, there exists a finite number of balls B(xn
k, l/ri) that cover X:

X = ( J f i ! B(xl, l/n). Now it is enough to consider the sequence

B(x\, 1), . . . , B(x^, 1), B(x\, 1/2),..., B(x2
Ki, 1/2), B{x\, 1/3),....

If (X, d) is a metric space, we say that A cz X is small if the space A with the induced
metric is small.

Proposition 3. Let (X, d) be a metric space and A<=X. A is small if, and only if, there
exists a sequence of balls of X (B(xn, rn)) such that:

(1) limrn = 0.

(2) For every N, A a [jn^NB(xn, rn).

Proof. If A is small, there exist balls with centres in A satisfying (1) and (2).
If there exist balls of X that satisfy (1) and (2), for every n such that A n B(xn, rn) =f= 0,

we choose yn e A n B(xn, rn) and, for every n with A n B(xn, rn) = 0, we choose yn e A
arbitrarily. We consider the balls of A BA(yn, 2rn). We have lim 2rn = 0 and also, for every

Proposition 4. Let (X,d) be a metric space. The collection JV = {ACX:A is small} is a
a-ideal.

Proof. It is obvious that §eJ/~. Let B<zA&Jf. By Proposition 3 we have BtJf.
Let An&Jf for every neN. Then there exist balls B(xl,rj) such that limr£ = 0 and

Anc\Jk^KB(xn
k,rl) for every KeN. We can suppose that, for every n,r"k<\/n. If we

arrange the balls B(xl, r"k) in a sequence {B(zm, p j ) we have:

(1) limpm = 0. Indeed for every eeO, there exists N such that l/N<e. So r£<e for
every n^.N and keN. Further, for every ie{l ,2 , . . . ,N— 1}, limk_tBrk = 0. Thus
pm > E only for finitely many indices m.

(2) For every M > 0 and every n, there exists K(ri) such that (JmgMB(zm,pm)=>
[JBixlrl) and it follows that [jm^MB(zm,

Thus u An is a small metric space.
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Theorem 5. (Assuming Martin's hypothesis). For <X<K let Ax be small subspaces of a
separable metric space (X, d). Then u Ax is small if K< 2C°.

Proof. (A. Duran Guardeno). Let (B(zn, 6n)) be a sequence which consists of all the
balls with centres in a fixed countable dense subset of X and rational radii.

Since Ax is small, Aa(=P\N\Jn^NB(x^,r£) and limB_oorJ = 0. We can assume without
loss of generality that, for every a and n, there exists meN such that xn = zm and r* = 5m,
so B(Xl,C = B(zm,8m).

We define the sets am = {neu>:8n<l(m+l)}, cx = {neco: there exists k such that
B(xJ,rJ) = B(z , , y} and the subsets si = {am:meo)}, 3& = 2! = {co} and # = {ca:a<K:} of

Now we use a proposition which is valid assuming Martin's hypothesis.
Let si, 3$, <6, 3) be families of subsets of a> such that

(1) AnC is finite for every Aesi and

(2) B\<us/0 is infinite for every Be&& and every finite family

(3) D \ u # 0 is infinite for every Ds3> and every finite family

(4) si is countable and @), <£ and 9 have cardinals less than the cardinal of the
continuum.

Then there is an / c w such that:

A\I is finite if A e si;

B\I is non-empty if Be@, infinite if Be@\s/;

Cnl is finite if C e # ;

D n / is non-empty if D e ®, infinite if

(Fremlin [5, p. 30].)
We check that the hypotheses of this theorem are verified.

(1) amnca is a finite set for every mew and OL<K. Since limn_QOrJj = 0, r%>l/m only
for a finite number of indices n.

(2) \(o\\JmeFam\ = a> for every finite subset F C O J . This follows easily because (J m 6 f am =
ap if p = maxF.

(3) IcoXy.efCa^to for every finite subset F C K , since every cx contains only a finite
number of indices n such that Sn>l.

(4) By definition, si is countable and 38, # and ® have cardinal numbers less than
that of the continuum.

Let / be the set obtained in the theorem and let P = co\I.
In order to prove that u Ax is small we are going to prove the following assertions:

(a) lim(5n = 0.
/!-*OO

Indeed, given meN, since amnP is finite it follows that <5n^l/(m+l) for every nsP
except for a finite number of indices.
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(b) [JAxczf][j B(zn,dn).
neP

Let PN = {neP:n^.N} for every N and let <X<K. Since cx\P is a finite set, the set of
balls {B(zn, 5n):nePN} contains the set of balls {B(xn, rn):weco} except for a finite
number. So A^[]N\jnePNB(zn,5n).

Thus u A,, is small.

3. Small metric spaces and Hausdorff measures

Let Jtf denote the class of functions from [0, + oo)-+[0, +oo], monotonic increasing
for t^.0, positive for t>0 and continuous on the right for all t^.0. Let Mf0 be the subset
of all he2? such that /i(0)=0. Every he 2? defines a metric exterior measure //*, called a
Hausdorff measure (Rogers [6]).

Proposition 6. Let (X, d) be a metric space. Then X is small if, and only if, there exists
0 (continuous) such that (ih{X) = 0.

Proof. Let heJV0 be such that fih(X)=0. Then there exists a sequence (£„) of sets
with £ /i(diam(£n)) < + oo so that each point of X belongs to infinitely many of the sets
£„ (Rogers [6, p. 59]).

Let xneEn and rn = diam(£n). We have X = f]N\Jn^NB(xn,rn) and limrn = 0. So X is
small.

If X is small there exists a sequence (B(xn, rn)) of balls such that X = f]N [jn^NB{xn, rn)
and limrn = 0. We can assume rn decreasing. Since limrB = 0, there exists heJfo such that
h(2rn) = 2~". We can assume also that h is continuous. Now X = f]N\Jn3.NB(xn,rn) and
X h(diam(B(xn, rn))) = £ h(2rn) < + oo. So n\X) = 0.

We now prove the main theorem of this paper. We shall need the concept introduced
by Kuratowski [7] of a-measure of a bounded subset of a metric space.

If [X, d) is a metric space and A <r X is bounded, we define the a-measure a(A) of A as
the infimum of the set of real numbers e>0 such that A can be covered by a finite
number of sets of diameter less than e.

An infinite subset A of X is said to be a-minimal if a.(A) = a(B) for every infinite
subset B of A. This concept is due to Dominguez Benavides [4]. In [4] it is proved that,
if X is an infinite and bounded metric space, then there exists an a-minimal subset A of
X. Furthermore, if X is not totally bounded there exists an a-minimal set A such that
a.(A)>0. Finally, if A is an a-minimal subset, then for every positive number E, there
exists an infinite subset B of A such that a(A) — e<d(x,y)<u(A) + s for every xeB, ysB,

Theorem 7. Let (G, d) be a non-locally compact complete metric group whose metric d
is left invariant. Let h be a continuous function in Jf0. There exists a compact subset LczG
such that 0<^'"(L)< +oo, where nh is the Hausdorff measure.

Proof. Since G is not locally compact, every ball contains an a-minimal subset M
such that a(M)>0. So there exists a sequence (MB) of a-minimal subsets satisfying
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<x(Afn)>0 for every n, a(Mn) converges to zero and eeMncB(e, l/ri), where e is the unit
element of G.

We denote by S the set of finite sequences of <y = {0,1,2,...}. The sequence of 0
elements coincides with the empty set and belongs to S. If seS, we denote by \s\ the
length of the sequence s. If seS and necowe denote by sn the sequence of length \s\+ 1
that extends s and whose last term is n. If s, t e S we denote by st the sequence of length
\s\ + \t\ and whose terms are those of s followed by those of t.

Choose £>0 such that 6£<h(<x(M2)) and, for every seS, choose 6s>0 such that £ =

We will define; by induction on the length of s, for every s e S, a ball B(xs, rs), a real
number <5s>0, and a natural number J(s) such that, if as = a(M7(s)), we have:

(1) x9 = e, r 9 = l ;

(2) \t — as|<<5s implies \h(t) — /i(as)|<£s;

(3) 0<SM<att2SM<3rt and ru = 5Ji;

(4) <xs - 5J3 < d{xsn, xsm) «xs + 6J3 if n ± m, and d(xsn, xs) < rJ2;

(5) *(«J = I.-=oMO;
(6) {xOT:n£aj} is an a-minimal set of a-measure a.,.

To begin the induction, condition (1) determines the centre and radius of B(x9, r0), we
now choose J(0) = 2 and <x0 = a(M2). It is clear that M2<=B(e, 1/2) = B(x0, r0/2). Finally 50

is chosen using the continuity of h so that (2) and (3) are satisfied.
Suppose we have already defined the centre and radius of the ball B(xs, rs), and we

know J(s), <xs and <5S, we now define xsn, rsn, <xsn, 5sn and J(sn) for every n.
Since a(Mn) and diam(Mn) converge to zero, we can choose J(sri) such that

diam(M/(sn))<^s/6 and also, if <xsk = a.(MJlsn)), then Ka^^^^hiaJ. To see that this can
be done we use that h(t)>0 for every r>0 , /i(0) = 0, h is continuous and that we can
choose asn = asm although nj=m. We let rsn = SJ3 and then diam(MJ(sn))<rsn/2.

Now we take a countably infinite subset / f c M ; w such that x, ye A, x^y implies
as — 8J3<d(x,y)<as + 5J3. We write xsA = {xsn:nea>}. It is clear that, since
MJ(s) c B(e, rJ2), (4) and (6) hold. Here we are using the fact that G is a group.

As we have already defined asn, we can, because of the continuity of h, find 5sn

satisfying (2) and (3).
We observe that B(xs, rs) => B(xsn, rsn). Indeed, if x e B(xsn, rsn) we have d(x, x,) g d(x, xj +

d(xsn, xs) < rsn + rJ2 = <y3 + rjl < rJ2 + rJ2 = rs. Further, if n ± m, B{xsn, rsn) n B(xsm, rsm) = 0
because d(xsn,xsm)><xs-5J3>ds—SJ3 = SJ3 + 8J3 = rsn + rsm. Finally the radii of these
balls satisfy rsn = bj3<rj2 and therefore r s<(l /2) | s | and rs converges to zero as |s|-»oo.

We define L=f]n=0\J^=nB(xs,rs). This space is homeomorphic to Jf, the space of
all sequences of natural numbers, by the map T\Jf-*L which sends t to the unique
point of the set nn°=o^(x«i»»riin)- This set is a singleton because r,|B converges to zero as
n-*co.

We now calculate the diameter of LnB(xs,rs). If x,yeLnB(x,,rs), xeB(xsn,rsn) and
yeB(xsm,rsm) we have, supposing n + m,

d{x, y) g d(x, xj + d(xsn, xsm) + d(xsm, y)
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and

d(x, y) ^ d(xsn, xsm) - d(x, xj - d(y, xsm)

= <xs-c5s.

If n = m,

d(x, y) ^ 2rsn = 2(5 J3) < 2(as/3) < a ,

So

as - Ss £ diam (L n B(xs, rs)) g

We write Bs = B(xs,rs), L=\JM=nBsnL and we have

nL))-
*&

es<e.

We also have

|s| = n Z Z *(«*)= Z
\s\=nk = O | r | = n + l

and we obtain nh(L)^h(o^) + s< +00.
We now prove that n\L)>0. We choose natural numbers N(0),N(l),... such that:

(a) N(0) satisfies

MO)- z
(b) For every fc = 0 , 1 , . . . , N(0), the number N(l) satisfies

h(ak)- Z
n=0

<£,.

(c) Assuming that we have chosen N(0),N( 1),...,N(n — l), we choose N(n) such that,
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for every s e Pn = fl*=i {0.1. • • •, #(*)}. we have

223

N(n)

Then we obtain, for every seP|S|,

n = 0
V h(a. )

Z *s,+ Z

and, since M*s)=El«l=»''(a«). we have

sueP,

Let K = f]"=o{0»1»---.^(»)}<=-/r- I I i s clear that K is compact. We are going to
prove that the image K' of K under the homeomorphism T, K' = T(/C) c L, has positive
measure n"(T(K)).

Let X ' c u G , be an open cover of K'. There exists a p>0 so that every subset of K'
of diameter ^ p is contained in the same Gn. As diam(BsnK')!gdiam(f?snL)^as+<5s

and dsk<<xsk<diam(MJ(sk))<SJ6 we have

and diam(Bsn/C') converges uniformly to zero as |s|->oo. There exists n such that \s\ — n
implies that Bsr\K'cGm{s) for some index m(s). Let J = {m(s):sePn}. It is clear that
K'cz [jmeJ Gm and J is a finite set.

For every meJ there is a finite sequence t such that K'nGmciB, and there are points
x,yeK'nGm such that xeBfmi, yeB(m2 and m^m^ It follows that diam(K'nGm)^
a, — 5,. For every meJ, let fm denote the finite sequence t determined in this way.

We have

meJ meJ

On the other hand

• z
|I | + k
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so, if/ = sup|tm|,

m seP.

This proves that fih(K')^h(a1i)/2>0.

Corollary 8. Lex X be a complete metric vector space. X has a small neighborhood of
0 if, and only if, X is finite dimensional.

Proof. If X is not locally compact, the construction of the theorem and Proposition
6 proves that every small subset of X has an empty interior.

Otherwise, if X is locally compact, it is finite dimensional and trivially small.
From Corollary 8 it follows that there exist separable metric spaces that are not

small. A metric space (X, d) is separable if, and only if, there exists an equivalent metric
d' such that (X, d') is totally bounded. So the concept of small metric space is not
invariant under homeomorphism.

Christensen [1] defines the concept of Haar zero set in a abelian Polish group G as
follows: A universally measurable subset is a Haar zero set if, and only if, there exists a
probability measure / i o n G such that every translation of the set is a zero set for the
measure fi. Here a set is universally measurable if it is measurable for every Radon
probability defined on G.

Now if A is small in G and G is not locally compact, there exists a continuous h such
that fih(A) = 0, and, by Theorem 7, a subset Lcr G such that 0<fik(L)< +oo. If we define
the probability n(X) = nh(LnX)/n\L), we have that, since //* is an invariant measure,
n(a + A) = 0 for every aeG.

So we have proved the following:

Proposition 9. Let G be an abelian Polish group that is not locally compact. If A is a
universally measurable and small, then A is a Haar zero set.

Let X be an infinite dimensional separable Banach space. Let Y be an hyperplane and
v$Y. Let fi be a Lebesgue measure on the segment [0,v~\. It is clear that (a+Y)n[0,v\
has at the most one point. Hence, if Y is universally measurable, Y is a Haar zero set. If
Y is closed, it is a Haar zero set but it is not small.

Theorem 10. Let X be an infinite dimensional Banach space. The hyper planes of X are
not small subsets.

Proof. Suppose that Y is a small hyperplane. We shall construct a small Banach
space L of infinite dimension. We can assume that Y is dense because, if Y is closed, we
can take L= Y.

Let (zn) be a normalized basic sequence contained in the hyperplane Y and let / be a
linear form defined on X such that Ker(/)= Y.

Let Zx be the Banach space generated by the basic sequence (z2n) and Z2 that
generated by (z2n + 1). Since Zj and Z2 are infinite dimensional Banach spaces and Y is
small, there exists uleZl and u2eZ2 such that / ( u J ^ O and /(«2)^=0. Substituting, if
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necessary, the base (zk) by (ekzk), where |et| = 1, we can assume that f{ul)>0>f(u2),

"l=ZM2n22n> «2=Z"2n+lZ2n+l and uJ^O, uln+1^0.

Let Z be the space generated by the base (zn). Let us renorm Z so that

II °°
Za*z*n

VII

II

00

Yakzk
1

We define Qn:Z-*Z which transforms £j° akzk into X*°=B+i a*zk afld, for every ueZ, set

|||U||| = sup||Qn(H)||.

It is clear that, for every z e Z, we have

Therefore |||-||| is a norm in Z. By a standard argument, Z with the new norm ||||||, is
complete. Finally

|||Q J«) | | | = sup ||Qn(em(u))|| = sup \\Qn(u)\\ ̂  HMH

as we wished to prove.

In order to construct the small Banach space L, we define first the following set:

B = {(ak):akZO,ZakzkeYnZ and \\\Zakzk\\\<l}.

The set B satisfies the following assertions:
(1) B is convex.
(2) Let {an

k)eB for every neN and let r n^0 such that £ r n = l . Then there exists
(sk)eB such that X"=i r»flt = s* f o r e v e r v

Indeed, let an = J^Lt a\zkeU (where (7 = {zeZ:|||z|||< 1} denotes the unit ball of
Z). Then a = £ rnan e (/. So, if (zf) is the sequence of coordinate functional, we
have

If /(a) = 0, we can choose sk = £™= t rBoJ- If /(a)f 0 we notice that /(Qm(z))=/(z)
for every zeZ and that there exists A>0 such that either f(a + A.ul)=0 or
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2) = 0. Hence we substitute a by b^a + XQJ^u^) or b = a + kQm(u2). We take
m such that |||2>|||< 1. Finally we choose sk such that b = YJskzk.

(3) B=>{(an):an^0, £ a n < 1 a nd there exists N such that n^N implies an = 0}.
Since |||zn||| = supm||em(zn)|| = sup{||zn||,O} = ||zn|| = 1 and /(zn) = 0, the property follows.

(4) There exists a sequence (Nk) of real positive numbers such that lim Nk = + oo and,
if (ak)eB and meN, there exists n^m with Nn(0,...,0,an,an+,,...)eB.

Since Z n Y is small, there exists a sequence of balls B(vk,rk) such that limrt = 0 and

The vector space generated by {zuz2,...} is dense in Z. Therefore we can assume that
every vk belongs to this space. We can assume too that vk belongs to the space
generated by {zl,z2,...,zk} adding balls, if necessary.

Now let (ak)eB. As a — £akzkeUnY, for every m, there exists n^m such that
asB(vn,rn). So |||a-i;n|||<rn. Therefore |||<2n(a-tv>|||<rn; but Qn{vn) = 0, then
lllGrK)!!!^,., that is Qn(a/rn)eU, so £"= , ,+ lK/O^e l /nY and, consequently,
(l/rn)(0,...,0,an+1,an + 2 , . . .)eB.

Now if we take Nn+l = \/rn, it is clear that lim Nn = + oo and assertion (4) is proved.
With this properties of B, we can define L. Let L be the set of sequences of real

numbers (xn) such that there exist (an)eB and a positive number M verifying |xn| ^Man

for every neN. Since B is convex, it follows that L is a vector space.
For every (xn)eL, we put ||(xn)|

every ne^J}. It is clear that 0^1
aeU. From xn\^ran and \yn\^sbn, it follows that

= inf{r>0: there exists (an)eB such that |xn|^ran for
(xn)||< + co, ||a(xn)|| = |a|||(xn)|| for every (xJeL and

and we obtain ||( | | | | | | | | | |
For every natural number k, |||zk||| = l. So, if (ak)eB, we have a = YjakzkeU and then

Let (xn)eL. If \xn\<>ran, then |xn|grang2r. So |xn|^2||(xn)|| and the proof that ||-|| is
a norm on L is finished.

We must prove now that L is complete and small.

(a) L is a Banach space

Consider the sequence (vvn) in L such that XIKnlH + oo. We have to prove that the
series £ wn is convergent in L.

Lwt wn = (xk). We can suppose that EFlhill"^1- Let rn>||w|| be such that £ r , ,= l- By
definition of ||wn||, there exists {ak)eB such that |xj
every IceN, the series X™=ix* 's convergent since

for every keN. Then, for
. Write x ^ ^ i ^ and
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consider the sequence w — (xk). We have weL because

n = l
^ Z rnan

k = bk
n = l

N
V v"
Li Xkn= 1

00

V y"L, Ak ^ Z v H Z M Z <
n=N+l \n = N+l / \ n = W+l

where

t»= Z r

\ JV+1

Z
= JV+1

satisfies

*- Z
n = l

^ Z rn)sk.
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and, by property (2) of B, there exists (sk)eB such that bk^sk for every keN.
Further, as

we obtain, by property (2) of B, that there exists (sk)eB such that Z^°=JV+I ^n0^5*-

This proves that | |w—£^=1 wB||g£™=JV + 1 rB and concludes the proof of (a),

(b) L is small.

Set Xn = {(x1 , . . . ,xn ,0 ,0, . . . ) : | | (x1 , . . . ,xn ,0 ,0, . . . ) | |^ l} . Kn is contained in L and it is
obvious that it is compact. So we can choose points wj|e Kak= 1,2,..., Hn, such that

Now we arrange the balls B(Wk, 2/JVJ in a sequence B(i!k, pk). As l imN n =+co , it
follows that limpt = 0.

The balls B(vk,pk), k^N, cover {(xB)eL:||(xB)||< 1} for every N. Indeed, let w = (xn)eL
be such that ||(xB)||< 1. There exists a sequence (ak)eB verifying |x n | ^a t .

By property (4), given mefoJ, there exists n^m such that JVn(0,... ,aB,aB+1,.. .)eB. It
follows that (0,..., 0, xn, xn + j , . . . ) = t)t e L and IKII ^ 1/NB. Moreover (xu..., xn_ „ 0,0,...) =
v2eL and ||u2||^||w
wj such that ||tf2 —w*!

| < 1 . So v2eKn and, by the above construction, there exists
^ I/AT..

Then we have w = Vi + v2,

and weB(w"k,2/Nn).
As L is infinite dimensional, (a) and (b) contradict Corollary 8 so Y can not be small.
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Theorem 11. Let X be a normed space. The unit ball of X can be covered by a
sequence of balls whose radii rn<\ converge to zero if, and only if, X is small.

Proof. If X is small, it is obvious that B(0,1) can be covered by a sequence of balls
B(xn, rn) such that rn < 1 and rn converge to zero.

Assume that B(0,1)<= \j™= 0B(xn,rn) with rn<\ and l imrn=0. We will prove that
B(0,1), and hence X, is small.

If B(0, l)<=[jT=oB(xtt,rn), it follows that, for every r > 0 and aeX, B(a,r)<=\J?=0B(a +
rxtt, rrn).

Let s = <s(0),s(l),...,s(w—1)> be a finite sequence of natural numbers. We say that
\s\ = n is the length of s. We define

and rs = rs(0)rs(1)...rs(B_1).
Now we consider the balls Bs = B(xs,rs) with | s | ^ l . We have

J n ,rsrn)=Q Bsn.

Let Si be the set of finite sequences of natural numbers of length ^ 1 and
finite subset. Then

(J BS=(J B,
seS%\F seSt

Indeed, if te F is of maximal length in F,

n = 0
= U Bs

ssS,\F

It is clear that the set of balls Bs is countable.
If we form a sequence with these balls (B(zn, pn)), then lim pn = 0. Indeed, given e > 0, if

r s>e, we have rs(o)''s<i(---rs(n-i)>e- Then (suprt)
| s |>e. But (suprk)<l and (supr t)

| s |>e
imply | s |^m. As rn<\, rs (0 )rs (1 ) . . .rs ( l l_1)>£ implies rs(i)>£ and therefore s(i)^k. So rs^e
except for a finite number of sequences seS^ There are at most (k+l)m sequences such
that r s>e.

Theorem 12. Let X be a separable Banach space of infinite dimension. There exists a
small subset AeX such that A + A = X.

Proof. Let (*„) be a dense sequence in X. Let (rn) be a sequence of positive real
numbers such that limrn = 0. Define

nu
JV neN
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It is clear that A is small. Also, as \Jn^NB{xn, rn) is an open dense set, it follows that
B = X\A is a set of first category.

Let xeX. The set (x — B)uB is of first category. Choose y1£(x — B)vB and define
y2

 = x—y1. Then we have x = yl+y2, yi^B and y2 = x—yl£x—(x — B) = B.
Hence xeA + A.

Remark. This set A is not contained in a countable union of totally bounded sets,
uPn. Indeed, if AcuPn, then Ac^>Pn. But Pn is compact, so closed and with empty
interior. Then X = A u B would be of first category.
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