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1. Introduction

We show that if X is a Banach space of infinite dimension and u" is a Hausdorff
measure, where h is continuous, then there exists a measurable set K< X such that
0 < u"(K)< + oo0. We also characterize the normed spaces in which the unit ball can be
covered by a sequence of balls whose radii 7, <1 converge to zero as n—co.

First we define the concept of a Hausdorff small metric space. We say that a metric
space (X, d) is Hausdorff small if there exists a sequence of balls of X, (B(x,,r,)), such
that limr,=0 and X =U,,§NB(x,,, r,) for every natural number N. We prove that a
metric space X is Hausdorff small if, and only if, there exists he  #, such that the
Hausdorff measure u* satisfies u*(X)=0. (Here 3, is the class of monotonic increasing
functions h:[0, + 00)—>[0, + 0], continuous on the right such that #(0)=0 and h{f)>0
for every t>0 (Rogers [8]).) For brevity we will say small metric space instead of
Hausdorff small metric space.

We see then that the family of small subspaces of X is a o-ideal and prove that the o-
ideal of small subspaces is larger than that generated by precompact subspaces.

The o-ideal of the small subsets of a metric space X has many properties in common
with those of the sets of first category or those of zero measure. For instance, in a
separable metric space, assuming Martin’s hypothesis, the union of fewer than
continuum many small sets is small. We want to thank A. Duran Guardefio for
permitting us to include his proof of this fact.

The main theorem of this paper is that if G is a non-locally compact complete metric
group with an invariant metric d and heJ#, is a continuous function, there exists a
compact subset K <X such that 0<u*(K)< + . As a consequence, the unit ball of a
Fréchet space X is small if, and only if, X is finite dimensional.

It also follows that, in a non-locally compact Polish group, a universally measurable
small subset is a Haar zero set in the sense of Christensen [1]. We prove also that there
exists a Haar zero set which is not small.

We further prove that a dense hyperplane of a Banach space is not small. The proof
of this fact depends on results of Banach space theory.

Finally it is proved that the unit ball of a normed space X can be covered by a
sequence of balls whose radii r,<1 converge to zero with n if, and only if, X is small
We must observe that T. W. Korner [7] previously proved that a Banach space of
infinite dimension cannot be covered by a sequence of balls whose radii r,<1 converge
to zero. Later J. Connett [2, 3] obtained some related results, in particular he proved
that the unit ball of a Banach space of infinite dimension cannot be covered by a
collection of subsets {D;}2, of diameter diam(D;) <2 such that lim diam(D,)=0.
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2. Small metric spaces

Definition 1. Let (X,d) be a metric space. We say that X is small if there exists a
sequence of balls B(x,, r,) such that:

(1) limr,=0.

(2) Forevery N, | )2~ B(x,, 1) =X.

If (X, d) is small, {x,:ne N} is countable and dense. So (X, d) is a separable space.
Proposition 2. If (X, d) is totally bounded, it is small.

Proof. For every n, there exists a finite number of balls B(x}, 1/n) that cover X:
X ={J&z, B(x}, 1/n). Now it is enough to consider the sequence

B(xi, 1),..., B(xk,, 1), B(x1,1/2),..., B(x%,,1/2), B(x3,1/3), ...

If (X, d) is a metric space, we say that A< X is small if the space A with the induced
metric is small.

Proposition 3. Let (X,d) be a metric space and Ac X. A is small if, and only if, there
exists a sequence of balls of X (B(x,,r,)) such that:

1) limr,=0.
(2) For every N, Ac U,.gzv B(x,, r,).

Proof. If A is small, there exist balls with centres in A satisfying (1) and (2).

If there exist balls of X that satisfy (1) and (2), for every n such that A B(x,,r,) #0,
we choose y,e AnB(x,,r,) and, for every n with AnB(x,,r)=0, we choose y,cA4
arbitrarily. We consider the balls of A B (y,,2r,). We have lim 2r,=0 and also, for every
N, A= UngN B 4(xn 1)< UngN B 4(y,, 2r,)c A.

Proposition 4. Let (X, d) be a metric space. The collection /" ={Ac X:A is small} is a
o-ideal.

Proof. It is obvious that e .4#". Let Bc Ae.4". By Proposition 3 we have Be A"

Let A,e A for every neN. Then there exist balls B(x}, ri) such that imr{=0 and
A,c U,@KB(x:, rp) for every KeN. We can suppose that, for every n,ri<1/n. If we
arrange the balls B(x}, r;) in a sequence (B(z,, p,,) we have:

(1) limp,,=0. Indeed for every ¢€0, there exists N such that 1/N <e. So rj<e for
every n=N and keN. Further, for every ie{l,2,...,N—1}, lim,_ i =0. Thus
pm>¢ only for finitely many indices m.

(2) For every M>0 and every n, there exists K(n) such that U,,,g M B(Zps pm) >
Uz kem B(xi, %) and it follows that | > y B(zpm, pr) > U A,

Thus U A4, is a small metric space.
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Theorem 5. (Assuming Martin’s hypothesis). For a <k let A, be small subspaces of a
separable metric space (X, d). Then U A, is small if k <2°.

Proof. (A. Duran Guardefio). Let (B(z,,9,)) be a sequence which consists of all the
balls with centres in a fixed countable dense subset of X and rational radii.

Since A, is small, A, \y{Jn>w~B(x3 73 and lim,_, r5=0. We can assume without
loss of generality that, for every « and n, there exists me N such that xi=z,, and r;=4,,
so B(X3,r3) = B(z,, 0,n)-

We define the sets a,={new:d,<l(m+1)}, c,={new: there exists k such that
B(x§, rj)=B(z,,6,)} and the subsets & ={a,:mew}, B=2={w} and ¥={c a<x} of
P(w).

Now we use a proposition which is valid assuming Martin’s hypothesis.

Let o7, B, €, 2 be families of subsets of w such that

(1) AnC is finite for every Ae o« and Ce;

(2) B\u#, is infinite for every Be # and every finite family o/, < o/\{B};

(3) D\u¥, is infinite for every De 2 and every finite family €,<%\{D};

(4) & is countable and #, ¥ and 2 have cardinals less than the cardinal of the
continuum.

Then there is an I cw such that:

A\ is finite if A€o
B\I is non-empty if Be 2, infinite if Be %\«
Cn 1 is finite if Ce¥;
DI is non-empty if De 2, infinite if De 2\%.

(Fremlin [5, p. 30].)

We check that the hypotheses of this theorem are verified.

(1) a,nc, is a finite set for every mew and a<k. Since lim, . r;=0, r;>1/m only
for a finite number of indices n.

(2) |@\mer am|=w for every finite subset F — w. This follows easily because | ),ne p @, =
a,if p=maxF.

(3) |w\Uacha|=w for every finite subset F <k, since every ¢, contains only a finite
number of indices »n such that §,> 1.

(4) By definition, &/ is countable and %, ¥ and 2 have cardinal numbers less than
that of the continuum.

Let I be the set obtained in the theorem and let P=w\I.
In order to prove that U A4, is small we are going to prove the following assertions:

(a) lim 8,=0.
3

Indeed, given meN, since a,,n P is finite it follows that §,<1/(m+ 1) for every ne P
except for a finite number of indices.
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(b) ) 4.<) LZJN B(z,, 3,).

a<xk N n2
neP

Let Py={neP:n= N} for every N and let a<x. Since c,\P is a finite set, the set of
balls {B(z,,d,):ne Py} contains the set of balls {B(x,r,):new} except for a finite
number. S0 A, < \x Uncr, B(zs 8,)-

Thus U A, is small.

3. Small metric spaces and Hausdorff measures

Let s# denote the class of functions from [0, + 00)-[0, + c0], monotonic increasing
for =0, positive for t>0 and continuous on the right for all t>0. Let 5#, be the subset
of all he # such that h(0)=0. Every he # defines a metric exterior measure u*, called a
Hausdorff measure (Rogers [6]).

Proposition 6. Let (X,d) be a metric space. Then X is small if, and only if, there exists
he 3, (continuous) such that u*(X)=0.

Proof. Let he#, be such that u*(X)=0. Then there exists a sequence (E,) of sets
with Zh(diam(E,,)) < + o0 so that each point of X belongs to infinitely many of the sets
E, (Rogers [6, p. 59]).

Let x,€E, and r,=diam(E,). We have X =)y Ja>n B(x,,1,) and limr,=0. So X is
small.

If X is small there exists a sequence (B(x,,r,)) of balls such that X =(\y |,z n B(Xn 1)
and limr,=0. We can assume r, decreasing. Since limr,=0, there exists he 5, such that
h(2r,)=27". We can assume also that h is continuous. Now X ="\ J,»n B(X,,,) and
Y h(diam(B(x,, r,))) =Y h(2r,) < + . So p*(X)=0.

We now prove the main theorem of this paper. We shall need the concept introduced
by Kuratowski [7] of a-measure of a bounded subset of a metric space.

If (X, d) is a metric space and A< X is bounded, we define the a-measure a(A4) of 4 as
the infimum of the set of real numbers £¢>0 such that 4 can be covered by a finite
number of sets of diameter less than ¢.

An infinite subset 4 of X is said to be o-minimal if «(4)=a(B) for every infinite
subset B of A. This concept is due to Dominguez Benavides [4]. In [4] it is proved that,
if X is an infinite and bounded metric space, then there exists an ¢-minimal subset A of
X. Furthermore, if X is not totally bounded there exists an a-minimal set 4 such that
o(A4)>0. Finally, if A is an a-minimal subset, then for every positive number ¢, there
exists an infinite subset B of A such that a(4)—e<d(x, y)<a(A)+¢ for every xeB, yeB,

XFy.
Theorem 7. Let (G, d) be a non-locally compact complete metric group whose metric d
is left invariant. Let h be a continuous function in 3¢,. There exists a compact subset Lc G

such that 0 < u"(L) < + oo, where u* is the Hausdorff measure.

Proof. Since G is not locally compact, every ball contains an a-minimal subset M
such that a(M)>0. So there exists a sequence (M,) of a-minimal subsets satisfying
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a(M,)>0 for every n, a(M,) converges to zero and ee M, B(e, 1/n), where e is the unit
element of G.

We denote by S the set of finite sequences of w={0,1,2,...}. The sequence of 0
elements coincides with the empty set and belongs to S. If seS, we denote by |s| the
length of the sequence s. If se S and new we denote by sn the sequence of length |s|+1
that extends s and whose last term is n. If 5,1 S we denote by st the sequence of length
|s| + |¢| and whose terms are those of s followed by those of .

Choose >0 such that 6¢<h(a(M,)) and, for every seS, choose ¢>0 such that ¢=

es Es:
zAWe will define; by induction on the length of s, for every seS, a ball B(x,,r), a real
number 6,>0, and a natural number J(s) such that, if a;=a(M,,), we have:

(1) xp=e,ro=1;

(2) |t—a| <&, implies |h(t) — h(o)| <&

(3) O0<d,<a, 26,<3r, and r,,=38,/3;

(4) a,—0/3 <d(x,,, Xm) <0, + 0/3 if n£m, and d(x,,, x;) <r/2;
(5) ha) =T 0 (e,

(6) {x;:new} is an a-minimal set of a-measure a,.

To begin the induction, condition (1) determines the centre and radius of B(xy, ry), we
now choose J(@)=2 and ay=a(M,). It is clear that M, < B(e, 1/2) = B(xg, 4/2). Finally 5,
is chosen using the continuity of h so that (2) and (3) are satisfied.

Suppose we have already defined the centre and radius of the ball B(x,,r,), and we
know J(s), a, and &,, we now define x,,, r,,, «,,, d,, and J(sn) for every n.

Since a(M,) and diam(M,) converge to zero, we can choose J(sn) such that
diam (M ) <8,/6 and also, if a, =a(M,), then h(a)=Y", ., h(a,,). To see that this can
be done we use that h(t)>0 for every t>0, h(0)=0, h is continuous and that we can
choose o, =a,, although n#m. We let r,,=6,/3 and then diam(M j,) <r.,/2.

Now we take a countably infinite subset 4c M, such that x,ye A4, x#y implies
a,—0/3<d(x,y)<a,+8,/3. We write xA={x,new}. It is clear that, since
M, < Ble,ry/2), (4) and (6) hold. Here we are using the fact that G is a group.

As we have already defined a,, we can, because of the continuity of h, find d,,
satisfying (2) and (3).

We observe that B(x,,r,)> B(x,,r,). Indeed, if x € B(x,, r,,) we have d(x, x,) <d(x, x,) +
d(xgp, X)) <Tgy+1/2=06/3+r/2<r/2+r1/2=r, Further, if n#m, B(xs, Tss) O B(Xgm> Tsm) =0
because d(x,,, X;m) >, —0/3>0,—0/3=0/3+d,/3=r,,+r,, Finally the radii of these
balls satisfy r,,=68,/3<r/2 and therefore r,<(1/2)"*! and r, converges to zero as |s|—co.

We define L={),=0|Js=n B(X5; 7). This space is homeomorphic to .#, the space of
all sequences of natural numbers, by the map T: 4 —L which sends ¢t to the unique
point of the set (i B(X,, Ij»)- This set is a singleton because r,|, converges to zero as
n— oo,

We now calculate the diameter of LnB(x,,ry). If x, ye LnB(x,,1,), xe B(x,,, r,,) and
y € B(Xm, I'se) We have, supposing n+#m,

d(x’ y) é d(x’ x."l) + d(xsm xsm) + d(xsmr y)
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Sro+d(Xo, Xom) + P om
S6/3+a,+64/3+64/3
=oa,+ 0,
and
d(x, y) Z d(Xgn, Xgm) — d(X, X5) — (Y, X ;)
=a,—d,/3—2(3,/3)
=0, — 0.
If n=m,
d(x, y) £ 2r,,=2(84/3) < 2(a,/3) < ;.
So
a,— 0, <diam(Ln B(x,,r))<a,+9,.

We write B,=B(x,,r), L=| 5= B, L and we have

< ; g, <E.
|sl=n

; h(diam(B,nL))— Y h(ay)
Is|=n

Isl=n

We also have

T He= ¥ 3 Had= T h)=h

Is]=n ltl=n+1
and we obtain u*(L) < h(ay) + &< + co.
We now prove that u*(L)>0. We choose natural numbers N(0), N(1),... such that:
(a) N(O) satisfies

N(0)
’h(%)— Y, hia)| <eo

(b) For every k=0, 1,..., N(0), the number N(1) satisfies

N()

hm) — 3 he,)| <es

(c) Assuming that we have chosen N(0), N(1),..., N(n—1), we choose N(n) such that,
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for every se P,=[[;=5{0, 1,..., N(k)}, we have

N(n)
W)= 3. ha)

<g,
Then we obtain, for every se Py,
N(sD
h(ds) <&+ h(asn) =&+ Z h(asu)
n=0 suel’I’H|
< 2 &gt Z h(asu)<“'
[t]£1 S“EP|1|+2
< ¥ et Y hl)
|t|Sn—1 sueP

Is|+n

and, since h(a) =Y ;1= (%), We have

h(as) - Z h(asu) < Z Eg-

suePMMl || Sm—1
Let K=]_[,‘:°=0{0, l,...,N(m}c . It is clear that K is compact. We are going to
prove that the image K’ of K under the homeomorphism T, K'= T(K) < L, has positive
measure u(T(K)).
Let K'< wG, be an open cover of K'. There exists a p>0 so that every subset of K’
of diameter Zp is contained in the same G,. As diam(B;n K') £diam(B,n L) La,+ J;
and d, <agy <diam(M ;) <6,/6 we have

U+ 0, SOJ6+3,/6=8/3<r/2<(1/2)1*1

and diam(B,nK') converges uniformly to zero as |s|—»co. There exists n such that |s|=n
implies that B,nK'< G, for some index m(s). Let J={m(s):se P,}. It is clear that
K'c( Jmes G, and J is a finite set.

For every meJ there is a finite sequence ¢ such that K'nG,, < B, and there are points
x,yeK'nG,, such that xeB,, , yeB,,, and m;#m,. It follows that diam(K'nG,)2
a,—8,. For every me J, let t,, denote the finite sequence t determined in this way.

We have

Y h(diam(G,) 2 ¥ h(diam(G))2 ¥ h(a, —3, )2 —e+ Y. h(x,).
m melJ melJ mel]

On the other hand

h(ax,,,) > Z h(ar,,u) - | &

‘m“erll f+k
-
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so, if j=sup|t,|,

Y h(diam(G,)) = —2e+ ¥ h(a) = — 3e+ h(og) = h(ag)/2>0.
m seP

i

This proves that u*(K’) = h(xg)/2>0.

Corollary 8. Lex X be a complete metric vector space. X has a small neighborhood of
0 if, and only if, X is finite dimensional.

Proof. If X is not locally compact, the construction of the theorem and Proposition
6 proves that every small subset of X has an empty interior.

Otherwise, if X is locally compact, it is finite dimensional and trivially small.

From Corollary 8 it follows that there exist separable metric spaces that are not
small. A metric space (X, d) is separable if, and only if, there exists an equivalent metric
d’ such that (X,d’) is totally bounded. So the concept of small metric space is not
invariant under homeomorphism.

Christensen [1] defines the concept of Haar zero set in a abelian Polish group G as
follows: A universally measurable subset is a Haar zero set if, and only if, there exists a
probability measure u on G such that every translation of the set is a zero set for the
measure u. Here a set is universally measurable if it is measurable for every Radon
probability defined on G.

Now if 4 is small in G and G is not locally compact, there exists a continuous & such
that u"(A4)=0, and, by Theorem 7, a subset L <G such that 0 <u"(L) < + co. If we define
the probability u(X)=u* L~ X)/u*(L), we have that, since u” is an invariant measure,
uw(a+ A)=0 for every aeG.

So we have proved the following:

Proposition 9. Let G be an abelian Polish group that is not locally compact. If A is a
universally measurable and small, then A is a Haar zero set.

Let X be an infinite dimensional separable Banach space. Let Y be an hyperplane and
v¢ Y. Let u be a Lebesgue measure on the segment [0, v]. It is clear that (a+ Y)n [0, v]
has at the most one point. Hence, if Y is universally measurable, Y is a Haar zero set. If
Y is closed, it is a Haar zero set but it is not small.

Theorem 10. Let X be an infinite dimensional Banach space. The hyperplanes of X are
not small subsets.

Proof. Suppose that Y is a small hyperplane. We shall construct a small Banach
space L of infinite dimension. We can assume that Y is dense because, if Y is closed, we
can take L=Y.

Let (z,) be a normalized basic sequence contained in the hyperplane Y and let f be a
linear form defined on X such that Ker(f)=Y.

Let Z, be the Banach space generated by the basic sequence (z,,) and Z, that
generated by (z,,+,). Since Z, and Z, are infinite dimensional Banach spaces and Y is
small, there exists u; €Z, and u,eZ, such that f(u;)#0 and f(u,)#0. Substituting, if
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necessary, the base (z,) by (g:z,), where |¢,|=1, we can assume that f(u,)>0> f(u,),
u =Y Wz Uy =Y e iZaer a0d UL, 20, ud,,, 20.
Let Z be the space generated by the base (z,). Let us renorm Z so that

[2e] o
Z az ||| = 21: Q,Zy
n

We define Q,:Z—Z which transforms ) P a,z, into ) %, ., a,2, and, for every ue Z, set
el =svp | @ats]

It is clear that, for every ze Z, we have

0lufl < +co,

e =]l

e+ oflf < llll + il

e = ][

Therefore |||-||| is 2 norm in Z. By a standard argument, Z with the new norm |||
complete. Finally

3

|, is

@m0l =sup 1@ @ntw)]| =sup [| Q]| < ||

as we wished to prove.
In order to construct the small Banach space L, we define first the following set:

B={(a):a,20,Y a,z,€e YnZ and |||} apz,f| <1}.

The set B satisfies the following assertions:

(1) B is convex.
(2) Let (af)eB for every neN and let r,20 such that ) r,=1. Then there exists
(s € B such that } 2, r,a;<s, for every ke N.
Indeed, let a,=Y 2, ajz,€ U (where U={ze Z:|||z||| <1} denotes the unit ball of
Z). Then a=) r,a,eU. So, if (z}) is the sequence of coordinate functionals, we
have

zt(@)= Y, rzf(a)= Y, r.a320.
n=1 n=1

If f(a)=0, we can choose s,=Y =, r,a;. If f(a)#0 we notice that f(Q,.(2))=f(2)
for every zeZ and that there exists A>0 such that either f(a+Aiu,)=0 or
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f(a+ Au;)=0. Hence we substitute a by b=a+4Q,(u,) or b=a+4Q,(u,). We take
m such that |||b||| < 1. Finally we choose s, such that b=} s,z,.

(3) Bo{(a,):a,20, Y a,<1 and there exists N such that n2 N implies a,=0}.
Since |||z,]||=supm||Qm(z.)||=sup{||z.|}, 0} =]||z.||=1 and f(z,) =0, the property follows.

(4) There exists a sequence (N,) of real positive numbers such that lim N, = + co and,
if (a,) € B and me N, there exists n=2m with N,(0,...,0,a,,d,,,,...)€B.

Since ZN'Y is small, there exists a sequence of balls B(v,r,) such that limr,=0 and
Uken Bour)2UNY.

The vector space generated by {z,,z,,...} is dense in Z. Therefore we can assume that
every v, belongs to this space. We can assume too that v, belongs to the space
generated by {z,,z,,...,z,} adding balls, if necessary.

Now let (a,)eB. As a=) az,eUNY, for every m, there exists n=m such that
aeB(v,r). So ||la—v,|||<r.. Therefore ||Q(a—v)||<rs but Q,v,)=0, then
llea)|l|<r. that is Qa/r)eU, so Y= .. (a/r)zeUnY and, consequently,
(1/r)0,...,0,a,41,0,+3,...)EB.

Now if we take N, ., =1/r,, it is clear that lim N,= + oo and assertion (4) is proved.

With this properties of B, we can define L. Let L be the set of sequences of real
numbers (x,) such that there exist (a,)e B and a positive number M verifying |x,,|§Ma,,
for every ne N. Since B is convex, it follows that L is a vector space.

For every (x,)€ L, we put ||(x,)||=inf{r>0: there exists (a,) € B such that |x,|<ra, for
every neN}. It is clear that 0<||(x,)|| < + oo, ||a(x,)||=]|al|||(xn)]| for every (x,)eL and
aeR. From |x,|<ra, and |y,|<sb,, it follows that

X S(r+s a ,
ARG r+s " r+s "

and we obtain ||(x,) + (y)|| S || x|+ ||
For every natural number &, |||z.|||=1. So, if (a)) € B, we have a=Y a,z,€ U and then

ae=|l|laxz | =[| Qs - 1(@) ~ Qu(@[| £ |[| Qi - 1(@|I| +[[| Q@)|l| = 2] | all| = 2.

Let (x,)e L. If |x,|<ra,, then |x,|Sra,<2r. So |x,|<2||(x,)|| and the proof that ||-|| is
a norm on L is finished.
We must prove now that L is complete and small.

(a) L is a Banach space

Consider the sequence (w,) in L such that } ||w,||< 4 c0. We have to prove that the
series Z w, is convergent in L.

Lwt w,=(x;). We can suppose that ) ©||w,||<1. Let r,>||w|| be such that ¥ r,=1. By
definition of ||w,,||, there exists (a;)e B such that |x; <r.a; for every keN. Then, for
every keN, the series ) 2, x; is convergent since |xj|<2r,. Write Xy =32, x; and
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consider the sequence w=(x,). We have we L because

|xk|§

0
X X
n=1

©
é Z rna:=bk
n=1

and, by property (2) of B, there exists (s,) € B such that b, <s, for every ke N.
Further, as

N 0 o0 0 0
x-S xl=| ¥ xls ¥ ona=( ¥ n) ¥ ona
n=1 n=N+1 n=N+1 n=N+1 n=N+1
where
w0 -1 ©
te={ Y r,) r, satisfies Y ,=1,
n=N+1 n=N+1

we obtain, by property (2) of B, that there exists (s;) € B such that Y 2y, t,ai<s,. So

o0
<t Y n)se
n=N+1

This proves that ||[w—Y"_, w,||<Y'% v, r, and concludes the proof of (a).
(b) L is small.

Set K,={(xy,.--» %, 0,0,..):|[(x,...,%,0,0,..)||£1}. K, is contained in L and it is
obvious that it is compact. So we can choose points wie K, k=1,2,..., H,, such that

=

Xk
1

Xy —
n

Hy

K,= | B(wi, 1/N,).
k=1

Now we arrange the balls B(wj,2/N,) in a sequence B(v,, p,). As imN,=+ 0, it
follows that lim p, =0.

The balls B(v,, p,), k=N, cover {(x,) e L:||(x,)|| <1} for every N. Indeed, let w=(x,)eL
be such that ||(x,)|| < 1. There exists a sequence (a,) € B verifying |x,| < a,.

By property (4), given me N, there exists n=m such that N,(0,...,a,,a,,,,...)€B. It
follows that (0,...,0, X,, X, +,...) =0, € Land ||v,|| £ 1/N,. Moreover (x,,...,X,_,,0,0,...)=
v,el and ||v,||<||w||<1. So v,eK, and, by the above construction, there exists
w} such that ||, —wi|| S 1/N,,.

Then we have w=v, +v,,

[wi—wli<lwe—val|+[lesl| S 2/N,

and we B(wy, 2/N,).
As L is infinite dimensional, (a) and (b) contradict Corollary 8 so Y can not be small.
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Theorem 11. Let X be a normed space. The unit ball of X can be covered by a
sequence of balls whose radii r, <1 converge to zero if, and only if, X is small.

Proof. If X is small, it is obvious that B(0, 1) can be covered by a sequence of balls
B(x,, r,) such that r,<1 and r, converge to zero.

Assume that B(0,1)c U,‘:":o B(x,,r,) with r,<1 and limr,=0. We will prove that
B(0, 1), and hence X, is small.

If B0, 1) = | )i B(x,, 1), it follows that, for every r>0 and ae X, B(a,r)<| oo Bla+
rX,, IT,).

Let s=<{s(0),5(1),...,s(n—1)> be a finite sequence of natural numbers. We say that
|s|=n is the length of s. We define

Xs=Xg0) Hs)yXs(y "+ Psin— 1)yXsin - 1)

and r;=ryo)ls1)-- - Tsin—1)-
Now we con51der the balls B,= B(x,, r,) with |s|>l We have

B,c O B(x;+rX,, rr,) = O B,,.
n=0 n=0

Let S, be the set of finite sequences of natural numbers of length =21 and FcS§, a
finite subset. Then

B,= | B,oB(0,1).

seS\F seS,

Indeed, if te F is of maximal length in F,

B= ) Ba= | B,

seS \F

It is clear that the set of balls B, is countable.

If we form a sequence with these balls (B(z,, p,)), then lim p,=0. Indeed, given &> 0, if
ry>e, we have ryofyy)---Fsm—1)>¢ Then (supry)'®'>e But (supr)<1 and (supry)'>e
imply |s[§m. As r, <1, ryo)s1)- - - Tsin—1)>¢ implies r,;>¢ and therefore s(i)<k. So r,<e
except for a finite number of sequences se§,. There are at most (k+ 1)™ sequences such
that r,>e.

Theorem 12. Let X be a separable Banach space of infinite dimension. There exists a
small subset A=X such that A+ A=X.

Proof. Let (x,) be a dense sequence in X. Let (r,) be a sequence of positive real
numbers such that limr,=0. Define

A= ) U B(x,r,)-

N neN
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It is clear that A is small. Also, as | ),y B(x,,7,) is an open dense set, it follows that
B=X\A is a set of first category.

Let xe X. The set (x—B)UB is of first category. Choose y, ¢(x—B)uUB and define
y,=x—y,. Then we have x=y,+y,, y,;¢B and y,=x—y ¢é¢x—(x—B)=B.
Hence xe A + A.

Remark. This set A is not contained in a countable union of totally bounded sets,
UP,. Indeed, if AcuUP,, then AcuUP,. But P, is compact, so closed and with empty
interior. Then X = AU B would be of first category.
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