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1. Introduction. Let g(x) be real and continuous in the infinite open

interval ( - 00,00) and let y,(x,λ), y«(x,λ) be the solutions of

(1.1) y"+{λ-q{x)}y = 0"

with the initial conditions

(1.2) y,(<U) = i , y/(θ,;) = o, y,(θ,λ) = o, yί'{0,λ) = i.

For appropriate homogeneous real boundary conditions at % — -co, x = oo of

the differential operator

(1.3) Lx = q(x) - ~ ,

there corresponds real symmetric positive definite matrix

(1.4) P{u,) - P(ut) = (pjk{th) -Pshiμύ) , U,ft = 1,2),

— oo < Wj < &O < oo ,

such that we have Weyl2)-Stone's3) expansion (in the sense of Lrconvergence):

(1.5) for real-valued f(x) ε Z i ( - oo, oo),

/(*) - lim Γ du{ I ] Πvy(Λr,«)rfΛ *(«)Γ /(s)^*(^«)*}.

Recently and independently of each other, E. C. Titchmarsh4) and K. Kodaira5)

Received December 20, 1949. (Added March 5, 1950). The result was communicated to
Prof. K. Kodaira at Princeton, who informed to the author that a similar treatment
may be carried on by Prof. N. Levinson. So a copy of the manuscript was sent to Prof.
Levinson, who, in his letter of February 25, informed to the author that his work was
submitted to the Duke Math. Journal in May, 1949. He says that his method is dif-
ferent from the pressent note; he proceeds in his proof from the Parseval relation of
the Sturm-Liouville orthonormal functions.

J) The case of finite or half finite open interval may be treated exactly in the same

manner. Moreover (apparently) general equation (PU)z^)\ + {λr(ξ) — s(ξ))z = 0 may

be reduced to (1.1) by the Liouville Transformation x= Γ(j&-V)J/2^>, y *= (pr)v<Az.
2> Uber gewδhnlichc Difϊerentialgleichungen mit Singularitaten und die zugehδrigen Ent-

wicklungen willkϋrlichen Funktionen, Math. Ann., 68 (1910), 220-269.

*> Linear transformations in Hubert space, Amer. Math. Soc. Coll. Publ. XV (1932).
4 ) Eigenfunction expans i sons associated wi th second order differential equat ions, Oxford

(1946).
5 ) T h e eigenvalue prob lem for o r d i n a r y differential equat ions of the second order and

Heisenberg ' s theory of S-matrices, Amer . J. of Math. , 71 (1949), 921-945.
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gave the explicite formula for the«. density matrix (1.4). The result is much

important, since it enables us to unify the classical expansion theorem such as

Fourier series and integrals, the Bassel-, Hermite- or Laguerre-function expan-

sions etc. Titchmarsh's method makes use of Cauchy's calculus of residues and

does not rely upon the theory of integral equations nor the theory of Hubert

space. Kodaira's method is a modernization, by the theory of Hubert space, of

WeyΓs original method. The purpose of the present paper is to show that W-

S-T-K's theory may be obtained, by making use of WeyΓs analysis (see 2 below),

as a natural limiting case of the classical expansion theorem due to Hilbert-

Schmidt which concerns with the case of finite closed interval.

2. Preliminaries (Wey'ls analysis). For the sake of exposition and com-

pleteness we first develop, with or without proof, WeyΓs analysis/0

Let, for 0 ^ x ^ b < oo ,

(2.1) LxF(x, λ) = λF(x, λ), LxG(x, λ') = λ'G(x, λ').

We have Green's formula

(2.2) (/' - λ) Γ FGdx = Γ{FLXG -GLxF}dx = f {- FG" + F"G)dx
Jo Jo Jo

= Wo(F, G) - WX(F, G), where

WX(H,K) = H{x)K'(x) - H'(x)K(x).

We see, by putting λ' = λ9 that Wx(F(x,λ), G(x,λ)) is independent of x. Let

(2.3) Wχ{F(x,λ)9 G(x,λ)) =ω(;).

Next let

(2.4) F(x, λ) = y2(x9 λ), G(b, λ) = - sin β, G'(b, λ) = cos β,

then
(2.5) α)(j)= Wb{F{x,λ), G(x,λ)) = F(b,λ) cos β + F'(b,λ) sin β.

Thus the condition ω(λ0) = 0 is equivalent to the condition that Λo is an eigen-

value of
L*y = λy9 l jv(O) 4- 0-/(0) = 0, y(b) cos β + y'(b) sin β = 0,

the corresponding eigenfunction bsing yz(x9λ). Hence the roots Λo of ω(λ) = 0
must be real.

The homogeneous real boundary condition at x = b of the solution of

= λy:

(2.6) {yι{b, λ) + hb{λ)y,(b, λ)} cos β + {y/(b9 λ) + hb(λ)y»'(b, λ) sin 0 = 0

defines

(2 7ϊ Λ*r;̂  - .yi(M)cosj9 +y/(b,λ) sin β
K } m λ ) ~ yi{b, λ) cos /S+^'^^siβ *

H. Weyl or E. C. Titchmarsh, loc. cit.
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Since the denominator is ω(λ), hb{λ) is a meromorphic function in λ whose poles

are all real. The numerator is also an ω{λ) and thus the zeros of hb{λ) are also

all real. Thus, if

(2.8)

describes a finite circle Cb(λ) in the complex plane when z describes the real

axis. Since

the centre of the circle CbU) is given by

The radius n(λ) of the circle Cb{λ) is given by

yι{b,λ) Wb{y*,yi)

= (2\v\^ \yi(x9λ)\2dxyι

9 (λ = u + iυ),
Jo

since Wb{y\9y*) = WOO>J,.?S) = !

(2.10) yj{x, X) = ^ ( Ϊ ^ T ?

and hence, by Green's formula,

(2.11)

Thus, by (2.9) and

v Γ |j*(*, Λ)|«Λ = 2 v f ^2(x,
Jo Jo

we see that the interior of Cb{λ) corresponds to the lower (upper) z-plane if

v > 0 {v < 0). Thus, since

_ _ _

the two conditions v > 0, h e the interior of the circle Cj(Λ) is equivalent to

I yi'(b,λ)
V yΛbV 0
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By (2.10) and by a simple calculation we see that it is equivalent to

iWb{yι + hy29yi + Έys) > 0.

Hence, if ι; = 3 M > 0 > we have, by Green's formula and W0(y>2,yi) = - 1 ,

Wo(y*,y*) = 0, Wo(yi9yi) = 0, Wo(yi,y*) = 1,

2z> f b j + hyt\-dx = *(PFOO>J + 7*y2,^ + ^30
Jθ

- Wb{yι + fty-,y, + Eyi)) < iW*(yι + ftys,y, + hy2) = 2Q(h).

Therefore if v = 3(Ό > 0, the two conditions h e= the interior of Ĉ (A) and

h e the perimeter of C&(Λ) are respectively equivalent to

(2.12) [b\yι{x,λ) + ^ U , i ) | ^ < r 5 3 W and = ιr J

o

Thus, if Q(λ) * 0 ,

(2.13) b<V implies

and hence

(2.14) C(ϋ) = Π

is either i) a circle with a positive radius
LV2(#,Λ)|2<&;)~] {the limit circle case),

_ . 0

or ii) a point = a circle with radius 0:

r«(A) = lim nW) = (2|t;| Γ b s ί ^ ^ ) ! 2 ^ ) " 1 = 0 (*** K»t« ίoίwί case).
6 Jθ

We see from (2.12), that in the limit circle case (for λQ, Q(λ0) # 0), all the

solutions of Lxy = λoy belong to £2(0,00). And this implies, as will be seen

easily,7) that all the solution of Lxy = λy belong to £2(0, 00) for every (real or

complex) λ. Conversely, if all the solutions of Lxy = Λo3> (for Q(λ0) # 0) are

Let K(x,s) =yi(χ,λo)y 2(s,λ) -yi(s,λo)y2(χ,λ)t then u(x) «= (Kv)(x) =

satisf ies Lxu — λou = v, w(0) = u!(0) = 0 . H e n c e the so lut ion of

Lxy =λy, y(0,l) = y, y'(0,λ) = δ, when expanded as

y(x,λ) = uo(x) + (λ — λo)«j(«) + (λ - λo)2«2(Λ;) -f- . . .,

gives us

Un(x) =(KUn-l)(x) , W = 1, 2, . . . .

For, we must have

(La-λo)«o = O, «o(0)=y, «o'(0)=cJ, (LΛ-λ:,)«>, = ««-i, «n(0) =

by comparing the coefficients of (λ — λo)n on both sides of Lxy = /$.

Thus we obtain, by induction with respect to n,

\un(x)\* έ ^rj j j l*\u»(x)fdx X ~(\X

QWs)ds)», k{x) =

Hence, by ^(Λ;) e Lj(0, oo), we obtain ^(Λ:. ?„) e L2(0, oo) easily. This proof is due to

Kodaira.

https://doi.org/10.1017/S0027763000022820 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022820


ON TITCHMARSH-KODAIRA'S FORMULA

0?oo), then we are in the limit circle case, This we see from

Therefore the limit point case is characterised, independently of the para-

meter λ, by the fact that, for at least one λ (real or complex), Lxy = λy admits

solution e Z,2(0, oo). That, in this case, the equation Lxy = λy for Q(λ) # 0 ad-

mits solution e L2(0, oo) will be seen from (2.12) :

(2.15) ΓbiOU) + C«{λ)M*,*)\*dx έ v-*3{C«{λ)) .

Jo

Since the centre and the radius of the circle Cb(λ) depend continuously on

b, λ we see, from (2.13), that in the limit circle case there exists a sequence

{bn} with bn t oo such that hbu(λ) converges to a function m»(λ) regular for

$(λ) # 0, uniformly in any bounded closed Λ-domain not containing the real

numbers. In the limit point case we may replace lim hbn(λ) by lim hb(λ)

{=m,{λ) =C*(λ)).

Similarly we may define, for — oo < a 1= 0,

(9 Ifî  h (λ) - y^a' λ) C 0 S a + y''(a' λ) S i n a (a -

and the finite circle Ca(λ). We have, if υ = 3(λ) =¥ 0,

(2.17) [β\yi(x,λ) + hy*(x,λ)\'dx < - »"'3(A) or = -

according as h G the interior of Ca(λ) or e the perimeter of Ce(^). There exists,

as above, a sequence {««} with ow ^ - co such that hau(λ) converges to a func-

tion tπi(λ) regular for $(λ) # 0, uniformly in any bounded closed ^-domain not

containing real numbers. In the limit point case we may replace lim han(λ) by

lim ha{λ) (= w,(A) = C_oc(;) = Π
<0

3. We3rl-Stone's expansion for the finite closed interval [a, b] Let a real-

valued function f{x) in (— oo, oo) be such that /"(#) is continuous and /(x) = 0

for - cx5 < ΛΓ ^ af, U ^ ΛΓ < oo , where a' > a , b! < 6. By Hubert-Schmidt's ex-

pansion theorem we have absolutely and uniformly convergent expansion:

(3. 1) / ( * ) = Yιfn,a,byn,a,b{x) , a ^ X ^ b ,

n

f(x)yn,a,b{x)dx = \ f(x)yn.a,b)x)dx,

where {^,«,ό(^)} is a complete system of normed orthogonal eigen-functions of
(3. 2) Lxyn,a,b = λn,a,by?ι,a,b ,

yn,a.b(ά) cos α + y«,c,6(«) sin or = 0,

yn.a.b{b) cos /3 + y»,e.6(ft) sinβ = 0.
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Also, by Hilbert-Schmidt's theorem, the unique solution y(x,λ) of

(3.3) Lxy-λy=f(x), $(λ)*0,

y(a, λ) cos a +y'(a, λ) sin or = 0, y(b, λ) CO3 β + y'(b, λ) sin β = 0

may be expanded in absolutely and uniformly convergent series

(3.4) y(x, λ) = Σ - W - Λ»,<α) -ιfn,a,byn.a.b{x), a^x^b.
n

It is well-known (and it may be verified easily), that we have another expres-

sion for y(x,λ):

(3.5) y { x , λ ) = [ b G a , b ( x , s , λ ) f ( s ) d s , a £ x £ b ,

J a

where the Green's function Gatb(x,s,λ) is given by

(3.6) Ga.b{x,s,λ) = - Wχ{ya.yb)'ιyb{x9λ)ya{s,λ), xi^s,
- Wχ{ya,yb)~ιya(x,λ)yb(s,λ), x < s ,

We have, by (1.2),

(3.7) Wx(ya,yb) = Wo(ya,yb) = - *«W) +

Hence we have, by (3.4) and (3.5),

(3.8) Σ ( J - Λ W ) -'Λ,Λ,*.yΛ,fl,a(*)
n

- h.(Λ))-ιyt{x,λ) Γya(s,λ)As)ds

J a

Jx

Thus we have, from (3.1),
<3.9) /(ΛΓ) = '"ΣJntatbyniatb{x) = residue SUm Of

where

<3.10) ha(λ») = *»(;„) = /*„ # 0, A.W) - ht(X) - (/I -

ha(λ) ~ Mi* ~ 4')-J, £{ ;

That the zeros and poles of ha(λ), hb{λ) are all simple may be proved as follows.

Let, for example, hb(λ) have multiple zero «o. Then we obtain a contradiction
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from (2.12), by putting h = hb(λ), λ = u0 + & and letting p J, 0.

Hence (3.9) may be written as

(3.11) /(*) = Γ du( Σ (w(x,

where

(3.12) p[Tb)(zh) - A(f f&)(«j) = (

|- f (Aβ(A)
^ JC(«1,«2)

i) = (2τrί)- if ha(λ)hb(λ)(hb(λ) - ftβ
JciWj8«2)

Here the path of integration C(wJ? w2) is a polygonal line connecting u\ - /V,

«2 — iv, ti'i -f «V, Wi + /^, Wi — iv in this order, ^ being any positive number. Since

(3.13) ha(T) = I 4 Γ ) , hb(λ) = Λ6'(T)

by (2.10), we see that

(3.14) p%h) {it,) - p%h) {m) = lim π~> Cf%'b\u + tv)du,

4. Titchmarsli-Kodaira's formula.

LEMMA 1. Let a harmonic function h(z) in \z\ < 1 be such that

(4.1) (2π)"1 Γ \h(reio)\d0 = ^ r(0) ^ C < o o f o r - 7 r ^ ^ ^ τ r ,

Then we have Poisson's representation:

(4.2) *(*•) = ̂ - ^ R j L t ^ ; * ^ ) , ̂ - j ^ |*(#)| < C

. See, for exmple, Stone's book, loc, cit, p. 570.

LEMMA 2. Let v = $(λ) > 0. Then we have

(4.3)

=v\b\G'aιb(0,s,λ)\"-ds.
v α
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In particular we have, for 3(Λ) > 0,

(4.4) f\ϊb){λ) §* o, /% b)(λ) §* o, \f\fb)(λ)\ * (Aΐb)Wf(<£'b)WV/2.

Proof is easy from (1.2), (2.12), (2.17), (3.6) and (3.7).

Therefore, by Lemma 1 and the transformation

(4.5) λ = n+ft> = ί ( l - z ) ( l + 2)-\ z = rei0, ( 0 ^ r < l )

we obtain

(4.6) /}* W -y>Λ [t j -q^J - 2 ^ J -Λ

 J f «ίt - re* * > * W ) '

where

(4.7) Q{jjb)(Ψ) is monotone increasing and qf/b) (- π) = 0, (2τr)-J

Qjj Kπ) - /;> vf)»

Q{£b){φ)= Qn'b)(Φ) is of bounded variation and ^ ? > δ ) ( - TΓ) = 0,

(2*)-' Γ !^'δ)(τr)! ^ (f°'b\i)Λϊb\i)yt*.

Putting

(4.5)' s = ι(l - e^)(l + e^)'1 = tan (0/2) ,λ = u+iv = ι(l - β)(l + 2

we obtain

* { ^ (i - s)(> + s)-' + (> - λ) (i+λ)-1 _

"" J ί \λ- S\* "" ( » - 5 ) 2 + ί>2

and thus

(4.9) ///> (w + f») = J ^ »((« - s)2 + &)-*{* + l)dq%'b) (2 tan" 1 s).

Now /^'δ ) (A) converges, when a = an \ - c o , b^bn\ ^ , to f/k(λ) uni-

formly in any bounded closed Λ-doamin not containing the real numbers. Here

(4.10) Mλ)

For the proof we must show that mι(λ) # w2(A) if 3f(^) # 0. This may be

proved as follows. Firstly m\(λ) * m*(λ). If, otherwise, we would obtain a con-

tradiction

Γ bi(*»*) + »»ιW)Λ(*^)lsέfc ^ v-'Sim^λ) -Ό-WntiW) = 0
%/ - β e

from (2.12) and (2.17). Secondly let ιw,(;0) - ^2(^0) = 0 for Q(λ0) # 0 . Then,
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by Hurwitz's theorem on the sequence of uniformly convergent regular func-

tions, han{λ) — hbn{λ) has zero in any vicinity of λ0, it n is taken sufficiently large.

Such (non-real) zero is an eigenvalue of the boundary value problem correspond-

ing to the finite closed interval (an,bn)* This is a contradiction.

Hence, by applying Helly's theorem, we see that, when a = an< \ — °° ,

b -bn> \ oo ,

(4.11) finite limit q%'b) (2tan~]s) existe for all s, and

(4.12) fjk(u + iv) = Γ v((u ~ s)2 + v2)'^ + l)rf(gfyΛ(2tan-1s) .
J -so

By, (4.9),

P%'b)(*h) -P%'b)(*ι) = lim π-'Γ dg%'b) (2 tan"' s)Γυ{(u - s)" + v*)'>

(s2

p
jkb)

if Qjkb) (2tan"15) is continuous at s = U\,th.

Hence, by (4.11) and (4.12), we see that, when α = αn> \ — °° and b = 6rt» f co

(4.13) lim U>{jkb) («i) - Pfhb)M) = Γ V + l)*y*(2 tan"1 s)

- lim τr-J Γ dqjk(2tacrι s) f%((« - s)2 +v s)- J(s s + l)d«

= lim τr-J Γ >>*(« + %υ)du = A Λ(«2) - A'*(«J)

if ^yjfe(2tan"l5) is continuous at s = MI,«2. Here we again make use of Helly's

theorem, and assume that s = «i, u* are not discontinuous points of the functions

^ ) ( 2 t a n " 1 5 ) , (/,* = 1,2; β = βΛ», i - *„», * - 1,2.. . . ) .

From (3.11) we obtain

(4.14) (g,f) = J^^Σj/£(*),J/(^

if the real-valued function g(x) is, like /(^), such that g"(#) is continuous and

= 0 for AreCa',^]. By the positive definiteness of the density matrix

we easily obtain

Σ Σ P (

ΣJΓΣΓ"

Γ Γ "
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Thus, letting a = an> \ - °o and b = bn t °o in (4.14) we obtain

(4,15) (*,/) = Γ rf«f Σ Γ(^W,Λ(*,«))rfΛ*(iί)αω,^(s,»

This is W-S-T-K's theorem for real-valued functions f(χ)9 g{x) if /"(#), ^"(Λ;)

are continuous and f(x) = #(#) = 0 for sufficiently large \x\. The general case :

f(x)9 g(%) G ^ ( - °°? °o), may be obtained from this special case by the custo-

mary limiting process.

Remark. As was shown in 2, the condition that the boundary point x = co

(# = — oo) is in the limit point case is independent of λ and m-2(λ) is independent

of β (λ and nti(λ) is independent of a). Thus, we may obtain Titchmarsh-Ko-

daira's formula

(4.17) nh(λ) = lim - ^ , ( M ) W M ) , (w,(^) = lim - ^j(β,A)/^£{a, λ)).
6

In the limit point case the follwing formula may also be of use:

(4.18) m2(λ) =/(0)/>(0) for any solution of

y + {λ - <?(*)}>' - 0, 0 < Γ\y(x) \*dx < oo ,
Jo

and similarly for mi(λ). The proof is easy, since, in the limit point case of

x = co? the above solution y must be a constant multiple of

(4.19) y«(x,λ) =y>{x,λ) +

Mathematical Institute, Nagoya University
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