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Abstract. It is shown how the theory of scintillation may be applied to 
treat gravitational lensing. The theory is applied to microlensing by a sys-
tem of Ν point masses. It is shown that scintillation theory reproduces 
a known result for the angular broadening due to multiple microlensing. 
Some unresolved differences between scintillation and microlensing theo-
ries for intensity fluctuations are pointed out. 
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1. Introduction 

Gravitational microlensing at large optical depth presents a time consuming 
numerical problem because of the large number of stars that need to be 
taken into account (e.g., Paczynski 1986). An analytic treatment is desirable 
and Katz et al.(1986) developed a multiple-scattering theory to describe 
the associated angular broadening. A similar theory was used by Deguchi 
& Watson (1988) to treat intensity fluctuations due to a gaussian source. 
An alternative analytic approach is developed and explored here: the well-
established theory of scintillations is used to treat gravitational lensing. 
In applying the theory to microlensing by a system of stars, the questions 
addressed are whether scintillation theory reproduces known results for the 
angular broadening (Katz et al.1986), and whether it provides any new 
insight into the intensity fluctuations due to microlensing. 

2. Review of Scintillation Theory 

In the theory of scintillations, the spectrum of fluctuations in the refractive 

index of the radiation passing through the turbulent medium is assumed 
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to be given. The theory determines various statistical properties of the 
emerging radiation, such as the angular broadening of a narrow beam and 
the spectrum of intensity fluctuations, in terms of the given spectrum of 
fluctuations in refractive index. Let £μ(χ) denote the fluctuating part of 
the refractive index, and let </>(x) denote the phase of the wave. Denot-
ing the statistical average by angular brackets, the following two (related) 
correlation functions are assumed to be given: 

5 n ( x ) = (ίμ(χ)ίμ(χ' + x)>, 2?(x) = <[#x) - φ{χ! + χ)] 2 ) , (1) 

where Z?(x) is the phase structure function. The power spectrum of the 
refractive index fluctuations, Φ η ( Κ ) , is the Fourier transform of i ? n ( x ) . 

The mean ray direction is assumed to be along the 2-axis, and the 
fluctuations are projected onto a screen, where they are described in terms 
of two-dimensional vectors, introduced by writing χ = (τ,ζ) and Κ = 
(q,Kz). For isotropic turbulence one introduces 

A(r) =^JO°° àqq Φ Η ( Β , Kz = 0) J0(qr), (2) 

with r = (x2 + j / 2 ) 1 / 2 , q = (ql + g 2 ) 1 / 2 . The angular broadening and the 

intensity fluctuations are then given by the theory in terms of A(r) or 

D(r) = ( 8 τ τ 2 Ζ/λ 2 ) [Α(0 ) - A(r)], (3) 

where λ is the wavelength of the radiation and L is the distance from 

the image plane to the screen. For a power law Φη(<ΐ) <x q~&, one has 

D{v) oc r^- 2 . 

3· Scintillations due to Gravitational Lensing 

Application of the foregoing theory to gravitational lensing proceeds as 

follows. 

3.1. REFRACTIVE INDEX FLUCTUATIONS 

The refractive index variation due to a weak gravitational field is given by 

<5μ(χ) = —2Φ(χ)/ο 2 , where Φ(χ) is the Newtonian gravitational potential. 

The potential is related to the mass density, r?(x), by ν 2 Φ ( χ ) = —4ποη(χ), 

whose Fourier transform gives Φ(ς) = 4^Gr /(q)/ |q| 2 . Thus A(r) in (2) is 

given by 

MR) = — r - J J^Y2 ex P (*q · r) (4) 

where Cv(q) is the Fourier transform of the correlation function for the 
density fluctuations. 
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3.2. A SYSTEM OF POINT MASSES 

For a system of N point masses, with the it h mass, Afj, at position χ = χ,·, 
one finds 

A ^ = S / (W 7 ( Σ « « ι « r f * · <*+« - *>l) - (5) 

where TR2L is the volume of the system and R is its radius. 

3.3. CUTOFF 

The integral ( 5 ) diverges, and needs to be cut off to obtain a finite result. 
Here the integral is cut off at q < qo, with qo = 1 /Ä. With rt-j = |r + rt- —rj| 
the integral gives (Katz et al.1986) 

R 7 URN) = 5% 2 V q0rij I 

Then ( 5 ) gives 

A(r) = 
SG2 

Lé 

3 . 0 5 R 

*>3 
R2 

(6) 

(7) 

The first term in the square brackets arises from the i = j term in the sum in 
( 5 ) ; this term does not contribute to the scintillations. The remaining term 
is associated with the N(N — l ) / 2 pairwise combinations of point masses. 
Thus the scintillations may be attributed to the net effect of lensing by 
~ N2 two-point-mass systems. 

3.4. STATISTICAL AVERAGING 

The average of ( 5 ) or ( 7 ) over a collection of Ν identical stars, each of 

mass Μ, may be performed by retaining one term, say the ij term, writing 

Δ Γ = T{ — rj , and then averaging over Δ Γ . A conventional phase-averaging 

procedure in scintillation theory is over a random phase φ that satisfies 

e * ^ = exp(— \ (φ 2 ) ) . The average over the ij term in ( 5 ) , with Δ Γ = rt-—rj, 

is then achieved by identifying the phase as q · Δ Γ . One has ((q · Δ Γ ) 2 ) = 
| ( 7 2 ( ( Δ Γ ) 2 ) . Thus ( 5 ) is replaced by 27V times the statistical average of of 
the ij term, giving 

(8) 
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with RQ = ^ ( ( Δ Γ ) 2 ) rsj R2/N of order the mean square separation between 
the stars. Then using (6 ) , (8) gives 

A(r)c.-^^r*\*{3MNV% ( 9 ) 

where the numerical factor in the argument of the logarithm is chosen to 

facilitate comparison with Katz et al.(1986). 

4. Angular Broadening 

In scintillation theory angular broadening is described by the mean square 
fluctuations in the angular deviation of a ray, ((6Θ)2) = — LV2A(r), which 
with (9) for A(r) gives 

< W

2 > ( r ) = 2ΘΙ ln(3.05 N^), θκ = ff = N ^ , (10) 

where 0R corresponds to a ray passing a mass M with an impact parameter 
AO- The result (10) was derived by Katz et al.(1986) using a model for 
multiple scattering by point masses. This confirms that scintillation theory 
reproduces a known result in microlensing. Note that (9) includes only the 
effect of impact parameters between Ro and R. Scintillation theory does 
not apply for impact parameters <C Ro, which corresponds to large-angle 
scattering by single stars. 

where W ( q ) is the power spectrum of the intensity fluctuations and rp = 
{L/k)1!2 is the Fresnel scale. The phase structure function (3) correspond-
ing to (7) or (8) contains terms ex r2 and oc r 2 l n r. The former cancels and 
only the latter contributes to (12) . This corresponds to scintillations due to 
a power-law spectrum with β = 4 (Goodman & Narayan 1985). This case 
is not amenable to a simple analytic treatment, but several relevant results 
can be inferred from the existing literature. 

5. Fluctuations in intensity 

The intensity fluctuations are described by (e.g., Prokhorov et al. 1975) 

(11) 

(12) 
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5.1. SMOOTH POWER SPECTRUM 

For β φ 4 a natural scale, r = r<iiff, is defined by D(r^f[) = 1, and then 
(12) implies peaks in the the power spectrum W(q) at the refractive, qTe{ ~ 
^diff/^F? a n d diffractive, çaiff ~ scales. As /? = 4 is approached the 

refractive and diffractive peaks recede to q = 0 and g = oo , leaving a 
smooth spectrum of intensity fluctuations with no natural scale. Only the 
end points, < q < Ä Q 1 * c a n ^ e a ( ^ *° significant features in the power 
spectrum. 

5.2. THE MARGINAL DIFFRACTAL OF BERRY (1979) 

The level of the intensity fluctuations for a point source has been estimated 
by a careful consideration of how the limit β —» 4 is approached. Berry 
(1979), who referred to the case β = 4 as the "marginal diffractal", showed 
that the asymptotic form (for L —> oo) of the intensity fluctuations gives 
(cf. also Jakeman & Jefferson 1984) 

h = 5 / ( 0 ) + 1 = 2, (13) 

where I2 is the second moment of the intensity, with mean intensity Ji = 1. 

5.3. INTERPRETATION OF THE MARGINAL CASE 

To understand the significance of (13) to gravitational microlensing, one 

needs to interpret it in terms of a physical model for microlensing. The 

following remarks describe an unsuccessful attempt to do this. 

The intensity fluctuations may be attributed to caustics, and described 

in terms of the probability distribution p{A) of a magnification A (e.g., 

Vietri & Ostriker 1983; Rauch et al.1992). The mean intensity (for a source 

of unity intensity, Jo = 1) is (J) = (A) = 1/(1 - τ ) 2 for τ = 7rnrj| < 1, 

where η is the number density of stars and ΓΕ = (4GML/C2)1/2 is the 

Einstein radius. A weakness (in the present context) of scintillation theory 

is that no distinction is made between (I) and Jo, and the theory needs 

to be modified to take account of (Α) φ 0. The mean square intensity 

is dominated by individual microlensing events with large amplifications. 

The probability distribution p(A) oc 1/A3 for large A applies to both a 

point-mass lens and (approximately) to the two-point-mass lens systems 

(Schneider & Weiß 1986) relevant to (5) . The integral ( J 2 ) = / dA A2p(A) 

needs to be cut off at some A m a x , and then ( J 2 ) depends logarithmically on 

the cutoff value A m a x . It is not obvious how this model can reproduce (13), 

that is, ( J 2 ) = 2. Further thought needs to be given to the interpretation 

of (13) in the context of gravitational microlensing. 
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5.4. INTENSITY FLUCTUATIONS FOR A GAUSSIAN SOURCE 

A model for the intensity fluctuations in a gaussian source was presented by 

Deguchi & Watson (1988). Their averaging procedure produces an equation, 

their (16), of the form (12), but with only the 2}(r )-term in the exponent 

(the terms involving rp do not appear). Deguchi & Watson set jD(r) oc r 2 , as 

in (9) , but D(r) oc r2 cancels in (12) (e.g., Goodman & Narayan 1985), and 

only the term D(r) oc r 2 l n r from (7) contributes to the intensity fluctua-

tions (Berry 1979). Thus there is an inconsistency between the statistical 

averaging procedure adopted by Deguchi & Watson (1988), in which the 

Fresnel scale does not appear, and that used in scintillation theory, which 

depends explicitly on rp. 

6· Conc lu s ions 

1) Scintillation theory may be used to treat gravitational lensing by identify-

ing the refractive index fluctuations in terms of the gravitational potential. 

2) Application to multiple microlensing by a system of point masses repro-

duces a known result (Katz et al. 1986) for the angular broadening. 

3) Scintillation theory suggests a smooth power spectrum of intensity fluc-

tuations (the refractive and diffractive scales disappear). 

4) There are unresolved difficulties in the treatment of intensity fluctua-

tions, (a) Scintillation theory implies an asymptotic variance of unity (Berry 

1979), but a simple model for caustic-induced magnifications does not re-

produce this result, (b) The averaging procedure of Deguchi & Watson 

(1988) is not compatible with the result (12) of scintillation theory. 

In summary, scintillation theory can be used to treat statistical mi-

crolensing. However, there are some specific difficulties and inconsistencies 

related to intensity fluctuations. The resolution of these difficulties is likely 

to provide deeper insight into statistical microlensing theory. 
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