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We investigate experimentally and numerically suppression of drill-string torsional vibration

while drilling by using a sliding mode control. The experiments are conducted on the novel

experimental drill-string dynamics rig developed at the University of Aberdeen (Wiercigroch,

M., 2010, Modelling and Analysis of BHA and Drill-string Vibrations) and using commercial

Polycrystalline Diamond Compact (PDC) drill-bits and rock-samples. A mathematical model

of the experimental setup, which takes into account the dynamics of the drill-string and the

driving motor, is constructed. Physical parameters of the experimental rig are identified in

order to calibrate the mathematical model and consequently to ensure robust predictions

and a close agreement between experimental and numerical results for stick–slip vibration

is shown. Then, a sliding mode control method is employed to suppress stick–slip vibration.

A special attention is paid to prove the Lyapunov stability of the controller in presence of

model parameter uncertainties by defining a robust Lyapunov function. Again experimental

and numerical results for the control cases are in a close agreement. Stick–slip vibration is

eliminated and a significant reduction in vibration amplitude has been observed when using

the sliding controller.

Key words: Drill-string dynamics, stick–slip, torsional vibration, nonlinear behaviour, experi-

mental studies, mathematical modelling, sliding mode control

1 Introduction

A drill-string is an important component in the drilling rig used for hydrocarbon explor-

ation and production. It might be a few kilometres long and has much similarity with

one-dimensional continua such as beams, bars, rods and others. Accordingly, the dominant

dynamics of a drill-string should be considered along its length. The dynamics involving

the length-wise direction is manifested as stretch and twisting of the drill-string, referred

to as axial and torsional vibrations, respectively. The dynamics in the transverse directions

in form of various bending modes is commonly referred to as lateral vibration. A very

informative introduction to various modes of drill-string vibration is given in [2].

Torsional vibration and, its extreme case, stick–slip have been observed in about 50%

of drilling time [3], where a bit occasionally comes to a complete standstill while the rest

of the drill-string continues to rotate. This results in twisting of the drill-string, which
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ultimately leads to a large elastic torque build-up and its subsequent release leading to

large torsional acceleration of a drill-bit. The main cause of stick–slip motion is attributed

to the velocity dependent nature of the effective frictional torque acting on the drill-string.

In particular, the negative slope of the effective frictional torque for higher rotational

velocities is the cause of self-excited vibration. Although analysis of stick–slip motion has

been described by such velocity-dependent friction models, there has also been alternative

models explaining stick–slip by modulations in the normal force caused by coupling

between axial and torsional vibration [4–6].

In recent years there have been many attempts to model the drill-string behaviour

with focus on the vibrations and control. Saldivar et al. [7] reviewed the existing drilling

models and classified them into a few categories such as distributed parameter, coupled

Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs) and

lumped parameter ones. The latest category has an advantage of describing the system

dynamics in a simple way, thereby simplifying the analysis for the controller design.

Saldivar et al. [7] also reported several different models that have been developed for

bit–rock interaction, such as dry friction plus Karnopp’s model, forces at the bit–rock

interface considering individual cutters, such as works by Detournay [8,9], and Karnopp’s

model with an exponential decaying friction term.

Drill-string models have been developed for different purposes and some focused on

single mode of vibration such as axial or torsional vibrations, whereas others considered

coupling between different vibration modes. Ghasemloonia et al. [10] categorized these

exiting models in uncoupled and coupled models, as well as reported common boundary

conditions for those models and drill-string-wellbore contact models. Within all existing

models, one class is the most common model for capturing uncoupled torsional vibration,

which has been used by Navarro-López [11, 12]. These models consist of several parallel

disks, rotating around their common axis and connected to each other by torsional spring

and damper. Top disk in all these models represents the rotary table and the bottom disk

represents the drill-bit. The bit–rock interactions are modeled by the velocity dependent

resistive torque acting on the bottom disk. These models have been widely employed in

studies focusing in drill-string torsional vibration. The number of disks varies in those

studies, for example, 2 disks [13], 3 disks [11, 14], 4 disks [15] and even 18 disks [16].

In the current work a 2-disk model has been employed to model the Centre for Applied

Dynamic Research (CADR) experimental drilling rig, following the work presented in [13].

However, in our work, the bit–rock interactions are modeled using the experimentally

obtained results [17]. It is worth mentioning that recently a new hybrid-systems analysis

techniques have been developed to analyse the dynamical systems, such as drill-strings [18].

In last few decades, there have been many attempts to mitigate stick–slip oscillation.

Some of the suggestions can be classified as passive control methods, such as drill-string

reconfiguration, redesigning the drill-bits, optimisation of the drilling parameters and

usage of anti-vibration downhole tools [19]. To avoid stick–slip vibration, traditionally,

it is advisable to decrease weight on bit (WOB) and/or increase bit velocity; however,

this is not necessarily suitable or most efficient in most cases. Wu et al. [20] introduced

the concept of optimum (no-vibration) zone while drilling, which represents the optimal

operating conditions. This region is surrounded by others corresponding to low rate of

penetration (ROP), stick–slip, backward and forward whirls. This optimum zone is likely
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to disappear completely in hard drilling formations. Therefore, under those conditions, any

attempt to control the vibration by adjusting the drilling parameters will most likely fail.

Due to the improvements in the real-time measurement and control systems, the active

anti-vibration control methods have attracted significant interest in academia and industry.

Some of the main methods are reviewed in [19,21] and these methods can be categorized

in four groups based on their control inputs: motor’s velocity, motor’s torque, WOB

or their combinations. For example, Jansen and Van den Steen [22] applied an active

damping technique, which controls the top drive velocity. In their study, the electrical

variables (current and voltage) have been used to realize the required feedback control.

Serrarens et al. [23] also applied H∞ technique to the motor’s velocity to minimize the

torsional vibration. In last two years, Al Sairafi et al. [24] and Pehlivanturk et al. [25] used

a robust pole placement algorithm and a Proportional Integral (PI) velocity controller

with feedback control method to adjust the motor’s velocity to suppress the stick–slip.

However, controlling the motor’s torque seems to be much more attractive to the

researchers. For example, Tucker and Wang [26] explored a method of controlling

torsional relaxation oscillations of an active drilling assembly to reduce torsional

vibration. Navarro-López and Cortés [27], Hernandez et al. [28] and Liu [15] in different

studies used a variation of sliding mode method to control the motor’s torque. Bayliss et

al. [29] applied pole placement method to obtain controller gain value in order to control

the motor’s torque. Vromen et al. [16] presented a design of a nonlinear observer-based

output-feedback control strategy to vary the motor’s torque, and thereby eliminate

torsional vibrations.

A few researchers used WOB as a control parameter to suppress stick–slip vibration.

Gabler and Bakenov [30] tried to improve drilling efficiency by imposing dynamic loading

at the bit–rock interface. Navarro-López and Suarez [13] also proposed a control strategy

to suppress stick–slip vibration by manipulating WOB depending on the bit velocity.

Another control strategy outlined on [31], known as D-OSKIL, utilizes the WOB as an

additional control variable. An experimental implementation of this scheme has been

reported in [32], where the authors used a bit and a wooden block to simulate bit–

rock interactions. Finally, a few researchers used a combination of control parameters to

suppress vibration. For example, Puebla and Alvarez-Ramirez [33] used modelling error

compensation to control the motor’s torque and WOB to suppress the stick–slip vibration.

In addition to all control methods, some attempts have been made toward using

observer/estimator-based controller in order to overcome the limitation of accessing

downhole real-time measurements. For example, Hong et al. [34] presented simulation

results using Kalman estimator to control the stick–slip vibration. Due to the great deal

of uncertainties in the model parameters and changing conditions during drilling, any

theoretical work must be supported by realistic experimental studies, which are rare.

The main aim of the present work is the experimental validation of a method for

suppression of drill-string stick–slip vibration. In addition, we aim at enhancing the current

understanding of the underlying complex phenomena occurring in drill-strings. It should

also be noted, that the scope of the current paper is limited to the torsional vibration only.

The structure of this paper is as follows. In Section 2, the experimental setup used for

the study of drill-string dynamics and control is described. In Section 3, a two degrees-

of-freedom model is introduced to capture stick–slip, and the techniques employed to
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estimate the model parameters are described. Next, the model is verified in Section 4,

where the experimental results and numerical simulation are compared. In Section 5, a

sliding mode control method is applied to suppress the torsional vibration. In Section 6,

the delay observed in the actuator is first estimated and then included in the model.

The control method is experimentally verified showing a successful suppression of the

stick–slip vibration. Finally, a discussion of the main results and suggestions for future

research are given in Section 7.

2 Experimental rig

Uncertainties and difficulties in modelling of drill-string dynamics have motivated re-

searchers to validate their theoretical studies by performing experimental studies. There-

fore, several experimental rigs for drill-string dynamics research have been developed

with a variety of capabilities. A number of scaled drilling experimental rigs in academic

institutions are available to study drill-string dynamics, which have been recently reviewed

by Patil and Teodoriu [21]. Most of these rigs consist of a slender drill-string, usually a

few meters steel string driven at the top, by a motor through a rotary table. The drill-bit

and the bottom hole assembly (BHA) are usually represented in those rigs using discs.

The drill-bit and rock interactions during drilling are usually simulated using shakers and

brakes. Standard axial excitations and torque profiles are applied onto the discs, in order

to study the resulting dynamics of the system. Two example rigs are developed in TU

Eindhoven and University of Maryland, described in detail in [35, 36], respectively. Some

other rigs following the same principle are presented in [37, 38].

In addition to these experimental stands, a few rigs use commercial drill-bits and

perform drilling in rock samples. For example, Lu et al. [32] used masonry bits, whereas

Raymond et al. [39] employed a custom designed drill-bit. Similarly, the rig developed in

the University of Minnesota uses special in-house designed bits to drill in rock samples [40].

However, in that setup a rock sample is rotated, while the bit and the BHA are moving

axially to induce progression. Also, the torsional flexibility of the drill-pipes is simulated

through a special gear-pulley-spring system. Despite drilling real rock samples, this rig

neglects the lateral dynamics. In last few years, commercial drill-bits have been employed

in a few drilling rigs. The experimental rig developed at the CSIRO laboratory uses the

Roller-Cone bits, while neglecting the drill-string dynamics as rigid shaft directly transmits

the motor’s torque to the bit [41]. Therefore, to our knowledge, none of the laboratory

drilling rigs employ real commercial drill-bits and at the same time mimic all modes of

vibration of the drill-string.

To cover this gap and be able to replicate all different modes of vibrations, present in

the drilling process, a new drilling rig has been designed and built in CADR (described in

details in [17, 42]). This experimental stand is capable of reproducing all major types of

drill-string vibration, including stick–slip, whirling and bit-bounce. It allows to investigate

nonlinear behaviour between the drill-bit and the drilled formation, as well as to introduce

and test different control methods to suppress dangerous vibration. The cutting process is

undertaken using real commercial drill-bits and rock samples. The main objective of the

rig is to demonstrate the various drill-string vibration phenomena, to verify predictions

from the mathematical models describing these phenomena and to implement and verify
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Figure 1. (a) A schematic of the Aberdeen drill-string dynamics experimental rig. The main

components of the system are: sensors (top and bottom encoders, eddy current probes, LVDT and

four-component load cell), electric motor, flexible shaft, disks, BHA, drill-bit and rock sample. (b)

A physical model of a two degrees-of-freedom lump mass torsional system. The viscous damping

property of the motor and gearing system and the visco-elasto properties of the pipe are given by

ct, cd and kd, respectively. The reactive torque acting on the system during drilling is represented by

Tb, adopted from [1].

the proposed control methods. It is worth mentioning that one of the main differences

between our rig and commercial rigs is the downhole high-pressure high-temperature

(HPHT) conditions, which are difficult to replicate in the laboratory. Therefore, the rig

has been used to provide a broader understanding of stick–slip and ultimately to devise

means of its suppression.

As shown in Figure 1(a), an three-phase AC motor is connected to the drill-pipe

through gearing system. Rotary force transmits to the bit through a drill-pipe (flexible

or rigid shaft), BHA and a bit-holder. The top angular velocity is adjustable (from 0 to

1,044 rpm) and measured by an encoder placed on top of the drill-pipe. The angular

velocity of the drill-bit is measured by another encoder connected to the BHA. Horizontal

and vertical forces as well as torque coming from the drill-bit to the rock are detected by

a load cell placed under the rock sample. ROP of the bit into the rock is measured by a

linear variable differential transformer (LVDT) linked to the BHA.
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To observe various drill-string vibration phenomena, flexible shafts are used to mimic

the mechanical properties of slender structures like drill-strings. Due to the length of

the drill-string, which can be up to several kilometres, the structure has practically no

transversal stiffness when compared to the axial direction. This physical configuration

can be modelled in a reduced scale by a flexible shaft consisting of many layers of thin

wires. Such shafts are used to transmit power in rotating machines as they have high

torque capacity transmission and high flexibility. Friction between wire layers plays an

important role, which means that an effective damping depends on the tensile load. In the

rig, flexible shafts with a diameter of 5, 7, 10, 15 and 20 mm are tested.

3 Mathematical modelling

As mentioned in Section 1, a most common model used for capturing uncoupled torsional

vibration consist of several parallel disks, rotating around their common axis, which are

connected to each other by torsional spring and damper. In this section, a two degrees-of-

freedom model is introduced in order to model the drilling rig (Figure 1(b)). The top disk

represents the motor and the gearing system (with moment of inertia; Jt), while the bottom

disk represents the BHA and the drill-bit (with moment of inertia; Jb). The only possible

motion of the top disk is a rotation about an axis fixed in space. This disk is subject

to a driving torque Tt and to a viscous drag torque proportional to the angular velocity

through coefficient ct. The visco-elasto properties of the drill-pipe are given by cd and

kd, respectively. The bit–rock interactions are modeled by the velocity dependent resistive

torque acting on the bottom disk. This reactive torque acting on the system during drilling

is denoted by Tb. In this model, the frequency converter is set in the torque control mode

and the motor’s velocity can be calculated from the equations of motion. Note that this

model is just an approximation used to mimic the torsional behaviour of the experimental

rig. If it were to be used for the real vertical drilling rig, several additional factors need

to be considered, such as interaction between the drill-string and the borehole, as well

as coupling between different modes of vibration. Nevertheless, as presented below, this

simplified model seems to be capable of capturing torsional drill-string dynamics.

The state variables of this model can be defined as the real vectors u = (ωt, θt, ωb, θb)
T .

Here, Jt, Jb, ct, cd and kd are moments of inertia of the motor and the BHA, damping

coefficients of the motor and the flexible shaft as well as stiffness of the flexible shaft,

respectively. The equations governing the behaviour of the system presented in Figure 1(b)

are given by

Jtθ̈t + (ct + cd)θ̇t − cdθ̇b + kdθt − kdθb = Tt,

Jbθ̈b − cdθ̇t + cdθ̇b − kdθt + kdθb + Tb = 0, (3.1)

which can be written as a system of first-order ODEs as follows:

u̇ =

⎛
⎜⎜⎝

ω̇t

θ̇t
ω̇b

θ̇b

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

J−1
t (−(cd + ct)ωt + cdωb − kθt + kθb + Tt)

ωt

J−1
b (cdωt − cdωb + kdθt − kdθb − Tb)

ωb

⎞
⎟⎟⎠ , (3.2)
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where an overdot denotes differentiation with respect to time t, the control input Tt is

the torque generated by the motor and the function Tb gives the reaction torque. To

fully describe the system, the reaction torque (Tb) needs to be calibrated. In this regard,

the empirical torque on bit (TOB) model is used, which has been recently developed

in Centre for Applied Dynamics Research [42]. The details are described in [17]. The

reaction torque takes the following explicit form:

Tb =

⎧⎪⎪⎨
⎪⎪⎩
Tb,st, θ̇b = 0 and Tb,st < Tb,cf,

Tb,cf, θ̇b = 0 and Tb,st � Tb,cf,

Tb,dr, θ̇b > 0,

Tb,st = cd(θ̇t − θ̇b) + kd(θt − θb), (3.3)

Tb,cf =
2

3
λsWb,

Tb,dr =
2

3
λkWb +

2Wb(λs − λk)

λ3
d θ̇3

b

(
2 − e−λdθ̇b

(
λ2
d θ̇2

b + 2λdθ̇b + 2
))

+
1

2
Wbλstrθ̇b,

where Wb is WOB, λs = μsR, λk = μkR, λd = dcR, λstr = μstrR
2, R is radius of the

drill-bit, dc is decay rate and μs, μk and μstr are static and kinematic friction coefficients

and Stribeck effect coefficient, respectively. Figure 2 shows the system’s three modes of

operation. In order to find the current mode of the system when the drill-bit is stuck

(mode A), the function Tb,st needs to be monitored. The stick phase (mode A) terminates

when Tb,st becomes equal to Tb,cf(γf). At this point, the reaction torque Tb,st reaches the

break-away torque value Tb,cf(γf) and the system is in the slip phase (mode B). As soon

as the drill-bit begins to rotate the system is in the slip phase (mode C).

4 Numerical results and experimental verification

In order to obtain a good agreement between the experimental observations and the

mathematical models, a careful estimation of the rig’s physical parameters through several

sets of experiments has been carried out (details can be found in [17]). It is worth

mentioning that in this experiment, the control signal is calculated in LabVIEW and sent

through the data acquisition card (DAQ) to a frequency converter, which controls the

motor’s torque. Note that the control parameter (Tc) of this converter and the estimated

torque (T̂t) are expressed as a percentage as required in the experimental system. Therefore,

the first step is to find a way to estimate the absolute value of the torque generated

by the motor Tt in Nm and to estimate the relationship between the requested torque Tc,

the estimated torque T̂t and the generated torque Tt. In this regard, two experiments are

designed and performed, which are explained in [17].

An example of stick–slip vibration occurring for Wb = 1.79 kN and Tt = 39.57 N m

is shown in Figure 3(a) in the form of a time history and a phase portrait. The motor’s

velocity with sinusoidal characteristics and the drill-bit velocity with stick–slip vibration

of almost constant amplitude are shown in blue and red, respectively.

In order to calibrate the model and fit it to the experimental data, parameter values

close to the identified ones are applied: kd = 10.00 Nm/rad, cd = 0.005 N ms/rad,
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θ̇b > 0

θ̇b = 0Tb,st < Tb,cf

Tb,st ≥ Tb,cf

Tb,sl

(Tb,st)

mode A

(Tb,cf)

mode B

(Tb,dr)

mode C

phase

slip phase

stick

Figure 2. The model has two phases: stick phase, which includes one mode of operation (mode

A), and slip phase, which has two modes (modes B and C).

Jt = 13.93 kg m2 and ct = 11.38 Nms/rad. A TOB model (equation (3.3)) is used

for the TOB formulation, with corresponding parameters shown in Table 1 in [42] for

Wb = 1.79 kN. There is an excellent agreement with the experimental observations, as can

be seen when comparing the phase portraits shown in Figures 3(a) and (d). To confirm

the TOB model, Figures 3(b) and (c) show zoomed-in views of 10 s of experimental

and numerical results together with TOB recorded in the experiment and modelled by

equation (3.3). The motor’s velocity in the experiment and the model depicted in black

clearly shows very similar behaviour. It can also be seen that the bit velocity in the

model is perfectly matched to the experimental data, shown in green and red, respectively.

Interestingly, the two phases of the system can be observed in both experimental and

modeled TOB data depicted in blue. There is a significant drop in TOB when the stick

phase starts. The TOB increases in this phase until reaching the break-away value, after

which the system goes to the slip phase.

5 Suppressing torsional vibration

In the previous section, the experimental rig was modelled and calibrated. It is worth

remembering that in this model the torque Tt generated by the motor is the control

input of the system. The next step is to design a suitable control method and then to

apply it to the model in order to decrease the torsional vibration and eliminate stick–slip

vibration while drilling. After considering different methods, described in Section 1, the

most suitable method for the proposed model and the experimental rig is the sliding

mode controller [15]. This controller is an extended version of the one proposed in [11],

which is here re-designed for a two degrees-of-freedom system, taking into account a

delay in the actuator. It is worth mentioning, that the main strength of a well-designed

sliding mode controller lies in its robustness for systems with parameter uncertainties and

possible un-modeled dynamics [43], such as drilling process. In this section, this controller

will be applied to the developed model.
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Figure 3. An example of stick–slip oscillations occurring in the experimental rig for Wb = 1.79 kN

and 1.5 in pre-buckled flexible shaft. The time histories of the angular velocities at the bottom,

θ̇b, and the top, θ̇t, phase portraits from (a) experimental studies, (d) a low-dimensional model

with their 10 s zoomed-in views in (b) and (c) together with TOB recorded in the experiment and

modelled by equation (3.3).

5.1 Sliding mode control

The state variables of the two degrees-of-freedom model can be redefined as the real

vectors X = (ωt, θt − θb, ωb)
T . Note that here the number of states has been reduced to

three as for the proposed control method it is enough to know the differences between

the top and bottom angular positions instead of both of them. The equation of motion
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Table 1. The estimated parameters and their upper bounds for the controller

Parameter Value Unit Parameter Value Unit

ĉd 0.0051 N m s/rad ĉt 10.47 N m s/rad

k̂d 10 N m/rad Ĵt 13.92 kg/m2

εcd 0.00255 N m s/rad εct 3 N m s/rad

εkd 5 N m/rad εJt 2 kg/m2

can be written as a first-order ODEs as follows:

Ẋ =

⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠ =

⎛
⎝ J−1

t (−(cd + ct)x1 + cdx3 − kdx2 + Tt)

x1 − x3

J−1
b (cdx1 − cdx3 + kdx2 − Tb)

⎞
⎠ . (5.1)

Substituting a new state vector X in equation (3.3) gives

Tb =

⎧⎪⎪⎨
⎪⎪⎩
Tb,st, x3 = 0 and Tb,st < Tb,cf,

Tb,cf, x3 = 0 and Tb,st � Tb,cf,

Tb,dr, x3 > 0,

Tb,st = cd(x1 − x3) + kdx2, (5.2)

Tb,cf =
2

3
λsWb,

Tb,dr =
2

3
λkWb +

2Wb(λs − λk)

λ3
dx

3
3

(
2 − e−λdx3

(
λ2
dx

2
3 + 2λdx3 + 2

))
+

1

2
Wbλstrx3,

where all parameters are defined as before. In order to find the fixed points of the system,

the equation Ẋ = 0 is considered. Two fixed points can be found for the two modes of

the system as follows:

θ̇b = 0 ⇒X̄st = (x̄st1, x̄st2, x̄st3)
T = (0, Tt/kd, 0)T ,

θ̇b > 0 ⇒X̄sl = (x̄sl1, x̄sl2, x̄sl3)
T = (ωsl, (Tt − cd ωsl)/kd, ωsl)

T ,

where ωsl is a constant angular velocity, which depends on Wb and Tt. Note if the torque

generated by the motor Tt is not high enough, then Tb,st cannot reach the Tb,cf (break-

away) value, and there will therefore be just one fixed point X̄st. Moreover, in the case of

existence, X̄st is asymptotically stable and X̄sl is locally asymptotically stable [11].

The objective of the controller is to lead the system to Xsl (where ωsl = ωd), by changing

the control input Tt. Therefore, a sliding surface similar to the one described in [15] can

be defined, and its derivative with respect to time can be calculated as follows:

s = (x1 − ωd) + λ

∫ t

t0

(x1 − ωd)dτ + λ

∫ t

t0

(x1 − x3)dτ, (5.3)

ṡ =
1

Jt
(Tt − (cd + ct)x1 + cdx3 − kdx2) + λ(x1 − ωd) + λ(x1 − x3), (5.4)
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where ωd is the desired angular velocity, t0 is the starting time of the controller and λ is

a positive control parameter.

Let us consider what are the states of the system in the sliding surface (s = 0). So the

Tid can be found from the solution of ṡ = 0 as follows:

Tid = (cd + ct)x1 − cdx3 + kdx2 − Jtλ(x1 − ωd) − Jtλ(x1 − x3). (5.5)

Once the system is on the sliding surface and the model is ideal without any uncertainties

and extra un-modelled dynamics, Tid leads the state of the system asymptotically to the

desired fixed point x̄sl(ωd). This can be proved by using a Lyapunov function such as

V = 1
2
(Jt(x1 − x̄sl1) + k(x2 − x̄sl2) + J(x3 − x̄sl3)). By substituting equation (5.5) into V , it

can be seen that V̇ � 0, and V̇ = 0 for X = X̄sl(ωd) [15].

In order to eliminate the uncertainties in the parameters’ estimation, the equivalent

control, the switching control and eventually a sliding mode controller can be defined in

a similar manner as in [15]:

Tt = Teq + Tsw, (5.6)

Teq = (ĉd + ĉt)x1 − ĉdx3 + k̂dx2 − Ĵtλ(x1 − ωd) − Ĵtλ(x1 − x3), (5.7)

Tsw = − εcd|x1 − x3|s
|s| + δ1exp(−δ2

∫ t

t0
|x1 − x3|dτ)

− εct|x1|s
|s| + δ1exp(−δ2

∫ t

t0
|x1|dτ)

− εkd|x2|s
|s| + δ1exp(−δ2

∫ t

t0
|x2|dτ)

− εJtλ|x1 − ωd|s
|s| + δ1exp(−δ2

∫ t

t0
λ|x1 − ωd|dτ)

− εJtλ|x1 − x3|s
|s| + δ1exp(−δ2

∫ t

t0
λ|x1 − x3|dτ)

− κs, (5.8)

where δ1, δ2 and κ are small positive constants chosen by the designer and ˆ denotes the

estimated model parameters. εJt, εct, εct and εkd are upper bounds of estimated moments

of inertia of the motor, estimated damping coefficients of the motor and the flexible shaft

as well as estimated stiffness of the flexible shaft, respectively. Therefore, the following

relations are assumed:

|ĉd − cd| � εcd, |ĉt − ct| � εct, |k̂d − kd| � εkd, |Ĵt − Jt| � εJt. (5.9)

The stability of the sliding mode controller (Tt = Teq + Tsw) can be proved by defining

five extra states Z = [z1 z2 z3 z4 z5]
T and a new Lyapunov function 
 as follows:


 =
1

2
Jts

2 +
1

2

5∑
i=1

z2
i , z1 =

√
2εcd

δ1

δ2
exp

(
−δ2

∫
|ẋ2|dτ

)
,

z2 =

√
2εct

δ1

δ2
exp

(
−δ2

∫
|x1|dτ

)
, z3 =

√
2εkd

δ1

δ2
exp

(
−δ2

∫
|x2|dτ

)
, (5.10)

z4 =

√
2εJt

δ1

δ2
exp

(
−δ2

∫
λ|x1 − ωd|dτ

)
, z5 =

√
2εJt

δ1

δ2
exp

(
−δ2

∫
λ|x1 − x3|dτ

)
.
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As t → ∞, zi is exponentially convergent to zero, leading to 
 → 0 when s = 0. Therefore,


 defined in equation (5.10) is a legitimate Lyapunov function with state variable [s, zT ]T .

The time derivative of 
 is given by


̇ =Jtsṡ− εcdδ1|ẋ2|exp
(
−δ2

∫
|ẋ2|dτ

)
− εctδ1|x1|exp

(
−δ2

∫
|x1|dτ

)
,

− εkdδ1|x2|exp
(
−δ2

∫
|x2|dτ

)
− εJtδ1λ|x1 − ωd|exp

(
−δ2

∫
λ|x1 − ωd|dτ

)
, (5.11)

− εJtδ1λ|x1 − x3|exp
(
−δ2

∫
λ|x1 − x3|dτ

)
.

Substituting equation (5.8) into equation (5.11), it can be seen 
̇ � −κs2 � 0 and


̇ = 0 for s = 0 [15]. Therefore, using the controller, any trajectory of the system will

reach and stay thereafter on the manifold s = 0 asymptotically. Therefore, as explained

before, the state of the system will asymptotically converge to the desired fixed point

X = X̄sl(ωd).

5.2 Numerical results

In order to evaluate the effectiveness of the proposed controller, numerical analysis is

carried out. First, the stick–slip vibration is simulated, and then the controller is activated

to suppress the vibration. Therefore, the identified parameters of the experiment are used,

including TOB parameters for Wb = 1.79 kN. The remaining parameters for both cases

are presented in Table 1. Note that the estimated parameters are chosen close to the

identified parameters of the experimental rig while satisfying equation (5.9).

Time histories of angular velocities of the motor (black) and drill-bit (green), control

signals (blue) and phase portraits of two simulations using sliding mode controller are

shown in Figure 4. It can be seen here, that the controllers are switched on at t = 30 s while

the drill-bit exhibits stick–slip vibration. Figures 4(c) and (d) show the phase portraits of

both examples, where the stick–slip trajectories are shown in green. The blue parts of the

curves in both phase portraits, show how the controller leads the system to the desired

fixed points. In the first example, Figures 4(a) and (c), the desired velocity ωd is 3.1 rad/s

and the control parameter λ is 0.8, whereas for the second example, Figures 4(b) and (d),

ωd is 5 rad/s and λ is 1. The rest of the control parameters for both examples are as

follows: δ1 = 0.01, δ2 = 1.00E − 5 and κ = 1.

6 Experimental verification of the control method

To validate the numerical results, the sliding mode controller is implemented in LabVIEW.

As mentioned earlier, the frequency converter is used to control the motor’s torque, which

means that the input signal produced in LabVIEW goes to the frequency converter and its

output goes to the motor. In previous section, we modelled the experimental rig assuming

the motor follows the input signal accurately and without delay. In order to evaluate the

performance of the frequency converter and investigate the possible delay in the motor,

we focus first at the torque generated by the motor which should ideally follow the input
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Figure 4. Time histories of top angular velocity (blacks), drill-bit angular velocity (green) and

control signal (blue) of the simulations using sliding mode controller with (a) ωd = 3.1 rad/s and

λ = 0.8 and (b) ωd = 5 rad/s and λ = 1. The controllers are switched on at t = 30 s. The stick–slip

trajectories and the trajectories to the desired fixed points are shown in green and blue, respectively,

in phase portraits (c) and (d).

signal. Time histories of control signals are depicted in Figure 5, where the estimated

torque generated by the motor (T̂t, red) shows a delay with respect to the input signal (

Tc, blue). The control parameter (Tc) of this converter and the estimated torque (T̂t) are

expressed as a percentage of the full capacity of the motor, as required in the experimental

system. The delay was determined from several tests and averaged to a value of 0.40 s.

In addition, it can be seen in Figure 5 that the motor produces a minimum torque of

22.62 Nm when the delayed input signal, Tc(t−0.4), is zero. The details of this estimation

can be found in [17]. Considering the time delay and the minimum motor’s torque (dead

zone) observed in the actuator, a new structure is shown for the sliding mode controller

in Figure 6.

After estimating motor’s delay, several experiments have been carried out to validate the

numerical results obtained in the previous section. In Figure 7, time histories of angular
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Figure 5. Time histories of the actuator input value Tc and the estimated torque generated by motor

T̂t in blue and red, respectively. Note that the control parameters are expressed as a percentage of

the full capacity of the motor, as required in the experimental system.

ωd
Tc θb, θt, θ̇b, θ̇t,T̂t

drilling rigDAQ & control

sliding mode
controller

delay and
dead zone

motor and
drilling rig

Figure 6. The structure of the suggested sliding mode controller for the experimental rig with

delay and dead zone. A 0.4 s delay and a minimum 22.62 N m torque are observed in the motor.

velocities of the motor (black) and the drill-bit (red), control signals (blue) and phase

portraits of two experiments using sliding mode controller are shown for two different

cases. As can be seen, the controllers are switched on at t = 30 s, while the drill-bit

is in the stick phase. The controller succeeds in eliminating the stick–slip vibration and

reducing significantly the amplitude of the drill-bit oscillations. These can be seen in

phase portraits where the system trajectories before and after switching on the controller,

are shown in red and blue, respectively. In the first example, Figures 7(a) and (c), the

desired angular velocity ωd is 3.1 rad/s and the control parameter λ is 0.8, whereas for

the second example, Figures 7(b) and (d), ωd is 5 rad/s and λ is 1. The rest of the

control parameters and estimated physical parameters are the same, as for the simulations

presented in Figure 4. However, unlike in the simulation, the controller could not lead the

drill-bit to the constant velocity. Note that the delay in the motor was not considered in

the simulation.

To improve the accuracy of the model, the motor delay and the dead zone are added

to the simulation. Figure 8 shows time histories of angular velocities of the motor (black)

and the drill-bit (green), control signals (blue) and phase portraits of two simulations

using sliding mode controller. The parameters including physical parameters, estimated
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Figure 7. Time histories of top angular velocity, drill-bit angular velocity and control signal of

the drilling experiment using sliding mode controller with (a) ωd = 3.1 rad/s and λ = 0.8 and (b)

ωd = 5 rad/s and λ = 1 shown in black, red and blue, respectively. The stick–slip trajectories and

the limit cycles are shown in red and blue, respectively, in phase portraits (c) and (d).

parameters and control parameters are the same as in the previous cases. These simulation

results show that the system converges to a limit cycle as in the experimental results

presented in Figure 7.

It has been observed that in the presence of the delay in the actuator in some cases,

when the controller is switched off, the system goes back to the stick–slip vibration. An

example of this phenomena and its corresponding simulation results are presented in

Figure 9. The controller is on in two time intervals [30.6, 60.6] s and [110.45, 150.4] s, as

depicted in blue in Figure 9. The red lines in the lower panel of these figures represent the

average control effort, while using the proposed control method in the experiment and

simulation. All parameters used for these studies are the same as the ones in Figures 7

and 8.

In order to evaluate the sensitivity to the parameter estimation in the experimental

results, the vibration reduction factor (VRF) is defined as VRF = Ac/Aun%, where Ac
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Figure 8. Time histories of top angular velocity (black), drill-bit angular velocity (green), and

control signal (blue) of a simulation considering a 0.4 s delay and minimum of 22.62 N m torque in

motor using sliding mode controller with (a) ωd = 3.1 rad/s and λ = 0.8 and (b) ωd = 5 rad/s and

λ = 1. The controllers are switched on at t = 30 s. The stick–slip trajectories and the limit cycles

are shown in green and blue, respectively, in phase portraits (c) and (d). This result is very close to

the experiment presented in Figure 7.

is amplitude of the ‘vibration’ when the sliding mode controller is applied and Aun is

amplitude of ‘stick–slip vibration’ when the controller is off. VFR is calculated based

on the results obtained in several experiments with a variety of estimated parameters.

Table 2 shows the parameters used in the experiments as well as corresponding VFRs.

Figure 10 presents phase portraits of theses experiments, where the uncontrolled stick–

slip trajectories and the controlled limit cycles are shown in red and blue, respectively.

These results show that the controller achieves (a) 47.86%, (b) 59.26%, (c) 51.52%, (d)

57.58%, (e) 66.72% and (f) 64.72% reduction in vibration amplitude. Therefore, in these

range of parameters, the sliding mode controller was successful in reducing the drill-bit

vibration.
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Figure 9. Time histories of top angular velocity (black), drill-bit angular velocity (red) and control

signal (blue) of the drilling experiment (a) and its corresponding simulation results (b) activating

the controller in two time intervals [30.6, 60.6] s and [110.45, 150.4] s. The red line in the lower

panel is the average control effort while using the proposed control method. The controller achieves

elimination of the stick–slip vibration in the drill-bit (red). All parameters used for this experiment

are the same as the ones in Figures 7 and 8.
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Figure 10. Phase portraits of the drilling experiments using sliding mode controller. The uncon-

trolled stick–slip trajectories and the controlled limit cycles are shown in red and blue, respectively.

All estimated parameters, boundaries and controller parameters used in these experiments are

presented in Table 2. The controller achieves (a) 47.86%, (b) 59.26%, (c) 51.52%, (d) 57.58%, (e)

66.72% and (f) 64.72% reduction in vibration.

https://doi.org/10.1017/S0956792518000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000232


822 V. Vaziri et al.

Table 2. The estimated parameters used in experiments (Figure 10) and the corresponding

results

Parameter (a) (b) (c) (d) (e) (f)

ωd [rad/s] 5 3.1 3.1 3.1 5 5

λ 0.4 0.4 0.8 0.4 1 1

δ1 0.01 0.01 0.01 0.01 0.01 0.01

δ2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

κ 1 1 1 1 1 1

ĉt [N m s/rad] 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051

εcd 0.00255 0.00255 0.00255 0.00255 0.00255 0.00255

k̂d [N m/rad] 10 10 10 10 10 10

εkd 5 5 5 5 5 5

ĉt [N m s/rad] 2.91 2.91 10.45 10.45 10.45 10.45

εct 1.45 1.45 3 2 3 2

Ĵt [kg/m2] 6.356 6.356 13.92 13.92 13.92 13.92

εJt 3.2 3.2 2 2 2 2

VRF [%] 47.86 59.26 51.52 57.58 66.72 64.72

7 Conclusions

In this paper, we investigated experimentally and numerically suppression of drill-string

torsional vibration while drilling by using a sliding mode controller. The experiments were

conducted on the novel experimental drill-string dynamics rig developed at the University

of Aberdeen [1], that uses commercial PDC drill-bits and rock-samples. First, we have

presented a two degrees-of-freedom model for the drilling rig, where the top motor and

the gearing system as well as the BHA and the drill-bit have been represented by two

disks. The first disk is subjected to a driving and a viscous drag torque, while the second

one is subjected to the reaction torque coming from interaction of the drill-bit and the

formation, which consists of the cutting torque and the friction torque. We identified the

parameters of the model and calibrated it by conducting several systematic experiments,

achieving a good match between the experiment and the simulation.

The next step of this study was to adapt a sliding mode control method and apply

it to the proposed model, in order to eliminate stick–slip vibration both in the drilling

rig and the simulation. The Lyapunov stability of the controller is proven in presence of

model parameter uncertainties, by defining a robust Lyapunov function. The controller

is successful in suppressing the vibration and bringing the system to the desired fixed

point. The controller implemented in this experiment is successful in eliminating stick–slip

during the experiments as well. However, as a results of a delay and a dead zone observed

in the actuator, a limit cycle is observed around the desired fixed point. Adding these to

the two degrees-of-freedom model achieves an excellent match between the experiment

and the simulation. In order to examine the sensitivity of the controller to the parameters,

several experiments were carried out with a variety of estimated parameters applied to the

controller. A significant reduction in vibration amplitude is observed when the controller

is applied.
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Taking into consideration the positive experimental results reported in this paper, we

can conclude that a robust mathematical model capable of accurately predicting the

responses of the analyzed experimental setup and a sliding mode controller, that succeeds

in eliminating the stick–slip vibration in presence of the delay in the actuator, have been

developed. One of the subsequent steps could be improving the controller to deal with

common delay problems in the motor and the gearing systems or in the data acquisition

procedure. Alternatively, a fast-response motor system can be installed in the experimental

rig in order to avoid a limit cycle in the response of the system. It is worth mentioning

that in the presented control method the downhole measurements have been used which

might not be available in most drilling rigs in the field. One of the possible solution to

overcome this challenge would be use of the observer to estimate the bit-velocity, which

is used in this control method.
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[27] Navarro-López, E. & Cortés, D. (2007) Sliding-mode control of a multi-DOF oilwell drill-

string with stick-slip oscillations. In: Proceedings of the American Control Conference, p. 3837.

[28] Hernandez-Suarez, R., Puebla, H., Aguilar-Lopez, R. & Hernandez-Martinez, E. (2009)

An integral high-order sliding mode control approach for stick-slip suppression in oil

drillstrings. Pet. Sci. Technol. 27(8), 788–800.

[29] Bayliss, M. T., Panchal, N. & Whidborne, J. (2012) Rotary steerable directional drilling

stick/slip mitigation control. IFAC Proc. Vol. 45(8), 66–71.

[30] Gabler, T. & Bakenov, A. (2003) Enhanced drilling performance through controlled drillstring

vibrations. In: AADE Technical Conference, AADE-03-NTCE-21, pp. 1–8.

[31] Carlos-de-Wit, C., Corchero, M. A., Rubio, F. R. & Navarro-López, E. M. (2005) D-
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