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LATTICE TREES AND SUPER-BROWNIAN MOTION

ERIC DERBEZ AND GORDON SLADE

ABSTRACT. Thisarticle discusses our recent proof that above eight dimensions the
scaling limit of sufficiently spread-out lattice trees is the variant of super-Brownian
motion called integrated super-Brownian excursion (ISE), as conjectured by Aldous.
The sameistrue for nearest-neighbour lattice treesin sufficiently high dimensions. The
proof, whose details will appear elsewhere, uses the lace expansion. Here, a related
but smpler analysis is applied to show that the scaling limit of a mean-field theory
isISE, in al dimensions. A connection is drawn between ISE and certain generating
functionsand critical exponents, which may be useful for the study of high-dimensional
percolation models at the critical point.

1. Introduction. Lattice trees arise in polymer physics as a model of branched
polymers and in statistical mechanics as an example exhibiting the general features
of critical phenomena. A lattice tree in the d-dimensional integer lattice 79 is a finite
connected set of lattice bonds containing no cycles. Thus any two sites in a lattice
tree are connected by a unique path in the tree. For the nearest-neighbour model, the
bonds are nearest-neighbour bonds {x,y}, x,y € 79, |x —y| = 1 (Euclidean distance),
but we will also consider “spread-out” lattice trees constructed from bonds {x, y} with
0 < ||x—y]|| < L.HerelL isaparameter which will later be taken large, and the norm is
givenby ||| = max{x®D, ... XD} forx=(xD...., X9) € 79, We associatethe uniform
probability measure to the set of all n-bond lattice trees which contain the origin.

We are interested in the existence of a scaling limit for lattice trees. This involves
taking a continuum limit of lattice trees, in which the size of the trees increases simul-
taneously with a shrinking of the lattice spacing, in such away as to produce a random
fractal. The nature of the scaling limit is believed to depend in an essential way on
the spatial dimension, but the existence of the limit has not been proven in low spatial
dimensions. The corresponding problem for simple random walk has the well-known
solution that when spaceis scaled down by afactor n/2, asthe length n of the walk goes
to infinity, thereis convergenceto Brownian motion in any dimension. For self-avoiding
walks, it has been shown using the lace expansion that the scaling limit is also Brownian
motion in dimensionsd > 5[8, 19, 17]. The sameis believed to be true for d = 4 with a
logarithmic adjustment to the spatial scaling, but in dimensions 2 and 3 adifferent limit,
currently not understood, is expected.

Here we give an overview of recent work on high-dimensional lattice trees which
provesthat under certain assumptionsthe scaling limit is | SE (integrated super-Brownian
excursion) for d > 8. To be precise about the assumptions, the scaling limit has been

Received by the editors May 17, 1996.
AMS subject classification: Primary: 82B41, 60K 35, 60J65.
(©Canadian Mathematical Society 1997.

19

https://doi.org/10.4153/CMB-1997-003-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-003-8

20 E. DERBEZ AND G. SLADE

shown to be | SE for the spread-out model if d > 8 and L is sufficiently large, and for the
nearest-neighbour model if d is sufficiently large. Detailed proofswill appear elsewhere
[10, 11]. The hypothesis of universality impliesthat the scaling limit should be the same
for spread-out and nearest-neighbour lattice trees, and assuming this, our results provide
evidence that the scaling limit of nearest-neighbour lattice treesis ISE for d > 8. That
the scaling limit of lattice trees should be | SE for d > 8 was conjectured by Aldous, who
has emphasized the role of ISE as a model for the random distribution of mass [6]. In
particular, Aldous has shown that | SE arisesin various situations where random trees are
randomly embedded into RY [3, 4, 5]. ISE is super-Brownian motion (Brownian motion
branching on all time scales) conditioned to have total mass 1, and is closely connected
to the super-processesintensively studied in the probability literature. For our purposes,
it will be most convenient to understand | SE as arising via generating functions.

FIGURE 1: A 2-dimensional lattice tree with 5000 vertices, created with the algorithm of [22].

It istypical of statistical mechanical models that there is an upper critical dimension
above which amodel’s scaling properties ceaseto depend on the dimension and become
identical with those of asimpler so-called mean-field model. For the self-avoiding walk,
the mean-field model is simple random walk and the upper critical dimensionis 4. For
lattice trees, the fact that ISE occurs as the scaling limit for d > 8 adds to the already
considerable evidence that the upper critical dimension is 8 [25, 7, 31, 16, 18]. The
proof of convergenceto ISE for d > 8 is based on the lace expansion, and involves the
treatment of high-dimensional lattice trees as a small perturbation of a corresponding
mean-field model.

This paper is organized as follows. In Section 2 we introduce a generating function
approach to I1SE; no previous knowledge of ISE is assumed. A connection is pointed out
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FIGURE 2: The branch points by, . . ., bs and abstract skeleton for arealization of 1SE containing
thesites0,xy, ..., Xs-

between ISE and the critical exponents of statistical mechanics, which may be relevant
for the study of high-dimensional percolation models at the critical point. Section 3
contains precise statements of results showing that the scaling limit of high-dimensional
lattice treesis | SE. Proofs of theseresults, deferred to [10, 11], usethe lace expansion to
perturb around a corresponding argument for a mean-field model. The mean-field model
and its connection with ISE is discussed in Section 4.

2. Integrated super-Brownian excursion (1SE).

2.1. ISE probability densities. |SE can be considered as an abstract continuousrandom
tree embedded in RY, rooted at the origin and having total mass 1 [6]. It is designed
in such away that if 0,x;,...,Xn_1 ae points in RY contained in ISE then there is an
underlying tree structure with branch points by, . . ., bm_» € RY and Brownian motion
paths connecting the branch pointsand the points 0, X, . . . , Xn—1 according to an abstract
skeleton (minimal spanning subtree); see Figure 2. Thereare (2m— 5)!! distinct “ shapes”
for the skeleton. See[14, (5.96)] for a proof of this elementary fact; here N!! is defined
recursively forN=—-1,1,3,5.7.9,... by (=)' =1andN!! = N(N—-2)!!, N > 1. The
shapesfor m= 2, 3,4 areillustrated in Figure 3. The joint probability density function
for the skeleton shape, the durationsty. . . ., tom—3 Of each of the Brownian motion paths

and the positions of points and branch pointsis given by the explicit formula

2m-3

(22) ( > ti)e*(E.zgstl)z/? zﬁg P (V)
i=1 i=1

where the y; are the vector displacements along the skeleton paths and p(y) is the
Brownian transition function

1
2.2 = _——_e¥/2
(2.2) pi(y) @ty 72€
In Figure 2, the vector displacements (in RY) along the skeleton paths are y; = by,
Y2 = by — by, y3 = X3 — by, Y4 = X2 — by, and so on. The ordering of the labelling of
the displacementsis fixed according to some convention, for each skeleton shapeo. The
density (2.1) isdiscussedin [4, 5, 6]; seealso [24].
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FIGURE 3: The unique shapes for m = 2,3 and the three shapes for m = 4, joining points

The joint probability density function for the skeleton shape and the positions of the
points and branch points, with the time variablesintegrated out, is given by

(2.3)

00 00 2m-3 om-3 2m—3
Ay, ..., Yom-3) = /0 dty--- /0 dt2m—3< > ti)ef(zi=1 V2T py(wh)-
: : =] i=1

Theright side is independent of the shape o and depends only on the displacements y;.
Thisisindeed a probability measure, because integrating over the yi's simply removes
the product over Brownian transition functions, and the remaining integral over thet;’s
equals1/(2m—>5)!!, thereciprocal of the number of shapes. If weleavethex;’sfixed and
integrate out the positions of the branch points and sum over all the (2m — 5)!! possible
shapes, the result is a measure PM on RY™ 3. The measures P™, for m= 2,3.4, .. .,
represent the joint probability densities for ISE to contain the sites 0, x;. . . ., Xm-1, and
hence form a consistent family. For example,

[P xe)dbe = [ dt [ dtz [ dp, (BP0 — b)
x /o dtg(ty + tp + tg)e (1+2+)"/2 / d%% pr, (x2 — b)
(2.4) = PA(xy),
as can be seen by performing the integrals from right to left, using the semi-group
property of py(x) for the b-integral.

In the simplest case m = 2, P@(x) represents the probability density function for a
point chosen randomly from the distribution of ISE. Explicitly, for m= 2,

(25) A(Z) (X) — P(2) (X) — (27T)_d/2 /030 tl—d/2e—t2/2e—x2/2t dt
and
(2.6) A@(K) = /0  tet/2g Y2 g,

where our convention for the Fourier transform of afunction f: R — C is

@7  fke.....k) = /R Yy gy, ddy ke RO
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The integral (2.6) can be written in terms of the parabolic cylinder function D_, as
AQ(K) = &°/15D_,(k?/2) [13, 3.462.1]. For general m > 2,

(2.8) AM(g;ky, ... . kom-3)
:/o dt; - - ./0 dtzw3( % ti)e—(ziil 3ti)2/ze_zi2:1 3|ﬂ2ti/2_
i=1

2.2. ISE and generating functions. In this section, we indicate that the family of prob-
ability distributions A™, m =2, 3.4, ..., can be encoded simply in terms of generating
functions. As an analogy, consider the generating function

— 1 d
(2.9 B.(k) = P keR".
Expanding in a power series, we can write B(k) = T2, bn(K)Z', where bp(k) =
(1 + k%)=, The generating function B,(k) thus gives rise to the (unit-time) Brown-
ian transition function via

e . bn(k(2n)~%?)
k22 — ey )
(2.10) e ¥/2 lim b0)

For ISE, beginning with m = 2, we define

1

(2.11) C) =

where the square root is defined to be positivefor real z < 1 and hasbranch cut [1, 00) in
the z-plane. This definition was motivated by the considerations of Section 2.3.1 below.
Define coefficients cy(K) by

(212) CK =D a2, |2 <L,
n=0
so that 1 q
z
(213) e = 5 f Cok) oo
wherel” isasmall circle centred at the origin. Thefollowing lemma providesalink with
ISE.

LEmMMA 1. For anyk € RY,
— 1 oo ern vae 1 22 n3/4
(2.14) cakn~Y4) ~ —/ te /2 V2t g = =A@ (28/%) asn — oo.
y/mn Jo \/m

In particular,

“1ay
(2.15) lim == = AR (23/4).
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PrROOF. For k = 0, ¢,(0) is given by a binomial coefficient and is asymptotic to
(mn)~Y/2, in agreement with (2.14). Suppose henceforth that k # 0. Beginning with
(2.13), we deform the contour of integration to the branch cut and make the change of
variablesw = n(z— 1). Thisgives

1 1 1 dw
—1/4y — _— -
(2.16) k™) = e o fies W (L W/
where the contour I’ runs around the branch cut [0, oo) in the w-plane, oriented from
right to left below the cut and from left to right above the cut. Then we use

ﬁv = ﬁ_/o * dtexp[—v/2t(k2 + /—w)].

Taking into account the correct branches of the square root on either side of the branch
cut, and applying Fubini’s theorem, gives

(2.17)

(2.18) Cn(kn™Y/4) = ﬂ—*/; /0 ” dre v sin(tv/2w).

/00 dw

0 (1 + W/ n)n+1
Since (1 + W)™ > 1+ (UN(W)2 > 1 4+ ¥ for gl n > 1, the dominated convergence
theorem can be applied to give

(2.19) ca(kn™Y/4) ~ % /0 ” dre V2 /0  dwe ™ sin(tv/2w).

The desired result then follows, since [3° dwe ™" sin(ty/2w) = (1 /2)Y/2te /2, .
For any shape o and any m > 3, recalling the definition of C,(k) in (2.11), let

2m-3

(2.20) CM(si k... .. kom-3) = [ Cuk)-
=1
We write the Maclaurin series of (2.20) as
221)  CM(oiky.....kems) =5 cM(oiki.. ... kema)Z. |7 <1
n=0

A calculation similar to that used in the proof of Lemma 1, using (2.17) for each of the
2m— 3 factorsin (2.20) and alimiting argument if any k; = O, then gives

(2.22)

2m—2nm—
Mg kM4, L Kom_an ™ +/4) ~
Since AM(0;0. ..., 0) = 1/(2m— 5)!! is the reciprocal of the number of shapes, this
gives

2.23 lim -
@23 Jim >, ¢M(5;0.....0)
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Thus the distributions A™ arise as the scaling limits of the coefficients of the gen-
erating functions C{™, m > 2. In particular, this essential aspect of ISE follows solely
from (2.11) and (2.20). Moreover, small perturbations of (2.11) and (2.20) will not affect
the scaling limit; see Section 4.2. In Sections 3 and 4 below, we indicate how generating
functions can be related directly to (2.1) itself, rather than to its integral (2.3).

2.3. ISE and critical exponents. This section shows that the generating function ap-
proach to ISE outlined in Section 2.2 provides a link between ISE and the critical
exponents of statistical mechanics. For lattice trees, it is the exponents # and v which
arerelevant, while for percolationit isn and é.

2.3.1. Latticetrees. A lattice tree containing the points 0, xg, . .., *m—1 hasaunique
skeleton (the minimal spanning subtree for 0, X, .. . , Xm—1), With m — 2 branch points
bi..... bm_2 and 2m — 3 paths. Let vy, ..., Vom—3 denote the vector displacements of

the skeleton paths, as in Figure 4, and let t™(o;y1, . . ., Yom-3) denote the number of
n-bond trees having skeleton of shape o and skeleton path displacementsys, . . . , Yom-3-
Equivaently, t™(a;ys, ..., Yom—3) IS the number of n-bond lattice trees containing the

branch points by, ..., bn_» and sites 0, x1. ..., Xm—1 consistent with the displacements

Yi. .- ., Yom—3 and joined together by a skeleton of shape o. Define
(2.24) G5 y1. - .- - Yom-3) = Dt i - . Yom-3) 2.
n=0

It can be shown via a subadditivity argument that summing the above expression over
V1. ..., Yom—3 results in a power series having a radius of convergence z; € (0, 00),
independent of m. The two principal ingredients involved in the proof of convergence
of lattice trees to ISE in high dimensions are to show that the functions G{™ obey, to
leading order, (2.11) and (2.20).

In terms of critical exponents, the Fourier transform of the two-point function is
believed to behave asymptotically as

Co
(1-z/z)

with the mean-field valuespy = 0andy = % for d > 8. Here the Fourier transform is the
discrete one, given for f: 74 — C by

225  GR®K ~ % ask — 0, GA(0) ~ 57— 2.

(2.26) fl= S fe* ke [—m "

xez8
For d > 8, the simplest possible combination of the two asymptotic relationsin (2.25) is

- C
(k) = 1
(2.27) G (K D2+ 2921 — 2) )1 + error term,

where C; and D are positive constants depending on d and L, and the factor 23/2 has
been inserted for later convenience. The error term is meant to be of lower order than
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FIGURE 4: A lattice tree containing the sites 0, X3, X;, X3, X4 With its corresponding skeleton and
branch pointsb;, b,, bs. Thevector displacementsalong the skeleton pathsarey; = by, ¥, = x;—by,
y3 = by — by, y4 = X3 — by, and so on. The ordering of the labelling of the displacementsis fixed
according to some convention, for each skeleton shape o.

the main term, in some suitable sense, ask — 0 and z — z. Thefirst step in the proof of
convergenceto I SE isto show that (2.27) doeshold in high dimensions, with a controlled
error, so that much as (2.11) leads to (2.15),

fr(12) (kDIln—l/4) _

i AP (k).
"R “

(2.28)
This can be interpreted as asserting that in the scaling limit the distribution of a site
xD1n'/4 in an n-bond lattice tree is the distribution of a point from ISE. It was the
anticipation of this conclusion which motivated Section 2.2.

The second step in the proof of convergence to ISE involves showing that in high
dimensions there is an approximate independence of the form

“ 2m-3
(2.29) GM (o kg, ... s kom-3) = V™2 [ Gy(K;) + error term.
=1

where v is afinite positive constant which translates the self-avoidance interactions of
lattice trees into arenormalized vertex factor. Then, with sufficient control on the error
term in (2.29), the finite-dimensional distributions can be shown to have scaling limit
AM (5 ky, ... kom-3), just as (2.20) leads to (2.23).

We believe that the above discussion should apply also to lattice animals for d > 8,
yielding ISE for their scaling limit for d > 8 and consistent with the general belief that

lattice trees and | attice animals have the same scaling propertiesin all dimensions.

2.3.2. Percolation. Reasoningof the abovetypehasled Haraand Sladeto conjecture
that for d > 6 the scaling limit of large percolation clusters at the critical point is ISE.
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The remainder of this section discusses the basis for the conjecture. Further discussion
of the scaling limit can be found in [1].

Consider independent Bernoulli bond percolation on Z¢ with p fixed and equal to its
critical value p. [14]. Let C(0) denote the random set of sites connected to O, let

(2.30) 7(x) = Po,{C(0) > x, |C(0)| = n}

denote the probability at the critical point that the origin is connected to x via a cluster
containing n sites, and let

2.31) TOM) =3 1202, |2 <1
n=1

The generating function (2.31) converges absolutely if |z| < 1. Let 7(p; 0, X) denote the
probability that 0isconnectedto x. Then Tf) (X) = 7(pc; O, X) (assuming noinfinite cluster
at pc). The conventional definitions [14, Section 7.1] of the critical exponents n and 6
lead to

C1

(2
23)  TPW~ 7

C2

0. T90) ~v —=2
ask— 0. TR0 ~

asz— 1.
Using the mean-field values = 0 and 6 = 2 above six dimensions, the simplest
combination of the above asymptotic relationsfor d > 6, analogousto (2.27), is

C

+ .
D2 + 292(1— 92 error term

(2.33) TO®K) =

for some constants C, D».
Proving (2.33) would provide an analogue of (2.11). With sufficient control of the
error in (2.33), contour integration with respect to zmay then lead to

(2.34) jim T (D)

AP ().
i (O v

Theaboveequation can beinterpreted asasserting that in the scaling limit the distribution
of asite xD,n/# in the cluster of the origin, conditional on the cluster being of sizen, is
the distribution of apoint in ISE.

The study of percolation clusters containing m > 3 sites is more difficult than for
lattice trees because for percolation there is not a unique skeleton nor therefore unique
branch pointsand corresponding displacementsfor acluster contai ning mspecified points
(the same is true for lattice animals). Nevertheless, for d > 6 this lack of uniqueness
should be a“local” effect whose role is unimportant in the scaling limit, and we expect
that arelation of the form

R 2m-3 _
(2.35) T (0 ke, ..., kom-3) = V™2 [ T9(k) + error term

i=1

https://doi.org/10.4153/CMB-1997-003-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-003-8

28 E. DERBEZ AND G. SLADE

should hold for a suitably defined generating function T{™(o; k. . .. . kom_3). Such a
statement would provide a relation analogous to (2.29), and could lead to the ISE
correlation A™(g; ky. . . . . kem_3) in the scaling limit. An asymptotic relation in the spirit
of (2.35) wasconjectured for d > 6 already in [2]. Thereit was argued that the sum, over
sites g, ..., Xm—1 in the lattice, of the probability that the cluster of the origin contains
X4, - - - » ¥m—1, Should behaveasymptotically asv™27(p; 0)2™23 in thelimit p — pc, where
Vv is a positive constant.

Haraand Slade are currently investigating whether the method of [ 11] can be combined
with the method of [15] to prove the conjecture. The methods of [29, 30] could possibly

serve as a starting point to study related questions for oriented percolation.

3. Latticetreesin high dimensions. In thissection, we state precise results for the
scaling limit of high-dimensional lattice trees. We begin by introducing some notation
and recalling some previous results.

Let t) denote the number of n-bond lattice trees containing the origin, with tél) =1.
By a subadditivity argument [23], the limit z;* = limy_.,(t{)Y/" exists and is positive
and finite. For m > 2, let t{(o; ¥, S) be the number of n-bond lattice trees with skeleton
shape ¢ and skeleton displacementsyi, . . . , Vom—3 @S in Figure 4, with the skeleton path

corresponding to y; consisting of § steps(i = 1,..., 2m— 3). We also define

(3.1) t(0;y) = 2t (e;.9),
3

(3.2) ) = >t (0, 9).

We will make use of Fourier transforms with respect to the y variables, for example,

(3.3) M (o k) = S (g g)elavittensyena) e [, 7]
i

Note that for m> 2,

(34) tM©) = 3 3 tM(0;¥) = (n+ ™ LY.
oy

To see this, perform the sums over ¢ and y by first fixing the values of Xi.. ... %n-1
and then summing over al shapesand branch points compatible with X3, . . . , X1 asin
Figure 4. This leaves the sum over xy, . .., Xm—1 Of the number of n-bond lattice trees
containing the origin and Xy, . . . , Xm-1. Then (3.4) follows from the fact that an n-bond
[attice tree contains n + 1 sites.

In[16, 18], somecritical exponentsfor latticetreeswere provento exist and to assume
their mean-field values when d > 8. More precisely, the results were obtained for the
nearest-neighbour model when d > dy for some undetermined dimension dy > 8, and
for spread-out treeswhen d > 8 and L is sufficiently large depending on d. We will refer
to either of these restrictions on the dimension and L as the “ high-dimension condition.”
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In particular, it was shown in [18] that under the high-dimension condition thereis a
positive constant A (depending on d and L) such that

(3.5) t ~ AZ"n%/2,  asn— oo.

In terms of the critical exponent # occurring in the conjectured relation t& ~ Az;"n*~?,
this says that 6 = 3 under the high-dimension condition. The bounds ¢;n=%'%9"z;" <
th < can'/9z;", proved respectively in [21] and [26] and believed not to be sharp, arethe
best general boundsknown at present for tiY. Thecritical exponent @ isformally related to
the exponent 7, discussed in Section 2.3.1 and defined by G@(0) ~ const.(1 — z/z)™
asz— Z, by 6 = 3— 1. It had been proved earlier, in [16], that 7 = 5 under the
high-dimension condition. With (3.5), (3.4) gives

(3.6) M (©0) ~ Az;"™5/2,

Another critical exponent involves R, the average radius of gyration of n-bond trees.
The squared average radius of gyration is defined by

(37) Rﬁz% > R
t” T:7]=n.T30

where 1
(38) R(T)2 = |T| +1 Z |X - )TT|2

XeT

is the squared radius of gyration of T. Here we write |T| to denote the number of bonds
inalatticetree T, xr = (|T| + 1)~ Yu1 X to denote the centre of mass of T (considered
as a set of unit masses at the sites of T), and we say that x € T if x is an element of a
bond in T. Equivalently,
1
> )PP (9.

(3.9 RZ = —2f§12)(0) ]

It is believed that there is a critical exponent v such that R, ~ Dn” asn — oo, but very
little has been proved rigorously about this in general dimensions.
Under the high-dimension condition, it is proved in [18] that

(3.10) R, ~ Dn%/4,

so that v = ;11. The amplitude D of (3.10) is a positive constant which depends on d,
and for the spread-out model, also on L. Asymptotically, for fixed d, D behaveslike a
multiple of L asL — oo. For later use, we define

(3.11) Dy = 28/4d~Y/27~ 44D,

Thefact that v = 3 under the high-dimension condition can be interpreted as saying that
the mass n of a tree grows on average like the fourth power of its radius, suggesting a
4-dimensional nature for lattice trees in high dimensions. This compares well with the
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fact that 1SE has Hausdorff dimension 4 [9, Theorem 4.9], and also permits the upper
critical dimension 8 to be interpreted as the dimension above which two 4-dimensional
objects generically do not intersect.
Define -
(312) P (o) = oY),
RO

whichisthe probability that an n-bond lattice tree containing the origin has a skeleton of
shape o mediating displacementsyy, . .., Yom-3. The following theorem [10, 11] shows
that this distribution hasthe corresponding | SE distribution asits scaling limit, under the
high-dimension condition.

THEOREM 1. Letm> 2andk e RY(i=1..... 2m— 3). For nearest-neighbour trees
in sufficiently high dimensionsd > dy, and for sufficiently spread-out trees above eight
dimensions, ~ ~

lim p™(o; kD% = A0 k),

where D; is given by (3.11).

For a more refined statement than Theorem 1, we wish to see the integrand
- 2 3 m—. m—.
(3.13) am(o;k.T) = ( S ) e (002 5K /2
i=1

of the integral representation (2.8) of A(m)(a;i) as corresponding to Brownian motion
paths arising from the scaling limit of the skeleton. For this, we denote by

- tM(0;y.9)

(3.14) P 0}y, 9 = ==

) RO

the probability that an n-bond lattice tree containing the origin has a skeleton of
shape o mediating displacementsys, . . . , Yam—3 With skeleton paths of respective lengths

S, ..., Sm-3. Thefollowing theorem [11] shows that, for m = 2, 3, the skeleton paths
converge to Brownian motions, with the weight factor appearing in (3.13).

THEOREM 2. Letm=2orm =3,k € RYandt € [0,00) (i = 1.....2m— 3).
For nearest-neighbour treesin sufficiently high dimensionsd > dy, and for sufficiently
spread-out trees above eight dimensions, there is a constant T, depending on d and L
such that

(3.15) lim (Tan*/22™=3p(0 KDyt Y4, 1T1n%2) = AM (o k. 1).

(As an argument of (™, ;T1n'/2 isto beinterpreted asitsinteger part [t Tin/2].)

We believe that Theorem 2 is valid for also for m > 4, but we encounter technical
difficultiesin attempting a proof. It would be of interest to extend Theorem 2 to general
m, and also to investigate tightness with the aim of obtaining a stronger statement of
convergenceto ISE.

https://doi.org/10.4153/CMB-1997-003-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-003-8

LATTICE TREES 31

Thefactor (T1n'/2)2™=3 on the left side of (3.15) has a natural interpretation. In fact,
writingt; = § /(T1n%/?) intheright sideof (3.15), and then multiplying by (Tyn'/2)=(Cm=3)
and summing over the s, gives a Riemann sum approximation to (2.8). Theorem 2
indicates that skeleton paths with length of order /n are typical, and that the skeleton
paths converge to Brownian motion pathsin the scaling limit.

The proofs of Theorems 1 and 2 are given in [10, 11]. The proofs use generating
functionsand contour integration, with the generating functions controlled using the lace
expansion. To define the generating functions, we begin with m = 1 and define

(3.16) 9@ =>t02= 3 2.
n=0 T:T=0
Form> 2, let
(3.17) G(0;9) = 3t (0;9)2".
n=0

Theseriesin (3.17) and (3.16) convergeif |z| < z. When the high-dimension condition
is satisfied, it was shown in [16] that g(z.) < oo.

For m = 2, thereis only one shape, and the two-point function G (x) isthe generating
function for lattice trees containing the sites 0 and x. A lattice tree T containing these
two sites contains a unique self-avoiding walk w connecting them (the skeleton), and
removing the bonds of w from T leaves behind trees Ry, Ry, . . ., R, attached along the

skeleton sites, with the restriction that as setsof sitesR MR, = () if i #j. Explicitly,

|l
(3.18) G = > M > ZRMIRNR=0ifj#K],
w:0—X i=0R:Ri3w(i)
wherethe sumisover self-avoiding walks w from O to x (spread-out or nearest-neighbour

as appropriate) and |w| denotesthe number of steps of w. Thereisadifferential equation
relating G (0) and g;, since by (3.4)

(3.19) GPA(0) = 2f9 0)2" =3 (n+ P2 = E(zg(z)).
n=0 n=0 dz
The lace expansion was used in [16] to show, under the high-dimension condition,
that )
(3.20) BO(K) = %e * Ma(k)

1—2QDK)(g, + MK))’

where Q isthe number of bondsemanating from the origin (2d for the nearest-neighbour
model and (2L + 1)¢ — 1 for the spread-out model), and

(3.21) D(k) = % 3 kX

xeQ
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(letting Q denote also the set of sites which together with the origin form a bond).
The function ﬁz(k) is complicated but explicit and is well-understood under the high-
dimension condition, where it can be regarded as a small perturbation of g(2). It can be
shown [10, 11] that under the high dimension condition

A C
(3.22) G@(k) = 1 + error term,

D?k2 +2%/2,/1 — z/z
with appropriate control on the error term. This shows that the critical exponent » takes
on its mean-field value = 0. The bounds on the error term are sufficient that, using
Lemma 1, and [19, Lemma 3.3] or [27, Lemma 6.3.3] for the error term, the result of
Theorem 1 for the two-point function can be concluded. For the m-point function, the
basic step involves showing that

R 2m-3
(3.23) G (o;ky. ... . kom-3) = V"2 [ G (k) + error term,
j=1

with v a positive constant. With sufficient control on the error term in (3.23), this is
enough to prove Theorem 1.

To prove Theorem 2, more refined generating functions are used. For the two-point
function, this involves the insertion of afactor ¢/l on the right side of (3.18), where( is
a complex fugacity (in the unit disk) for the length of the skeleton. This modifies (3.20)
to
(3.24) 62 = G+l

1—(zQBK)(g: + A(K)

where now the interaction term ﬁzg(k) dependsaso on(. It isshownin[11] that

(3.25) GP(k) = < + error term,

D22 +23/2,/1 — 2/ 7. + 2T1(1 — ()
with appropriate control on the error term. This permits usto perform a contour integra-
tion in the (-plane to extract the coefficient of (5, corresponding to trees with an s-step
skeleton, and then perform a contour integration in the z-plane to extract the coefficient
of 2", corresponding to n-bond trees with an s-step skeleton. This aspect is discussed in
moredetail in Section 4.2, in the context of the mean-field model. The situation issimilar
for the three-point function, using also a (-dependent anal ogue of (3.23).

4. Mean-field theory. The proofs of Theorems 1 and 2 can be interpreted as per-
turbations of corresponding calculations for a mean-field theory. This section sketches
the main ideas of an analysis of the mean-field theory, valid in all dimensions, which
serves as a basis for the proofs of Theorems 1 and 2 in [10, 11]. The mean-field model
studied here can be regarded as a model of non-self-interacting lattice trees with no
self-avoidance constraint, and is closely related to the model studied in [7]. Its scaling
limit isISE in al dimensions. For convenience, we will consider throughout this section
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the case where z is a site fugacity rather than a bond fugacity, which has the effect of
replacing factors 27 by ZTI*1, for examplein (3.16). This is not a substantive change.
We also restrict attention to the nearest-neighbour model. At the end of this section, we
make some remarks of a combinatorial nature.

4.1. Definition. Switching to a site fugacity, if we remove the indicator function con-

taining the interaction in the two-point function (3.18), we obtain Zw;o_,x(g(z)) leﬂ. This
prompts us to define the two-point function of the mean-field theory by

(4.1) FA = Y (f)"™

w:0—Xx
where the function f(2), specified below, can be regarded as the generating function for
mean-field trees containing the origin. The sum in (4.1) is taken over simple random
walks, and by analogy with (3.19) (taking into account the switch to site fugacity), f(2)
isrequired to satisfy the differential equation

- df (2

(4.2) FA() = =

We demand, by analogy with (3.16), that f(2) ~ zas z— 0. In the next paragraph, we
show that this uniquely defines f(2) and hence F? (k). For the m-point function of the
mean-field model, we define

~ 2m-3
(4.3 F (o kg, .. .., kom-3) = ]I FA(K).
i=1

an exact analogueof (2.20). Thisdefinition of the m-point function asaproduct of 2-point
functionsis consistent with alack of self-interaction for the mean-field model.
Taking the Fourier transform of (4.1) gives

f@

44 0= gt @D’

where, asin (3.21), D(k) = d~* >, cosk®). Combining (4.2) and (4.4) gives

@ _,d@

(45) 1-2df(z) ~ dz °

Let z5 be defined by 2df (z5) = 1. Solving the separable equation (4.5) gives
z

—2df(2) —
(4.6) f(2e 2dez;’

Comparing the asymptotic behaviour of both sides as z — 0, using f(2) ~ z gives
zp = 1/(2de) and hence
(4.7) f(2e 9@ =z,
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4.2. Analysis. This section sketches proofs of analogues of Theorems 1 and 2 for the
mean-field model.

By (4.7), f canbewritten asf(z) = —(2d)~*W(—2dz), where Wisthe principal branch
of the Lambert W function, defined by W(w)e™") = w. The principal branch of W(w)
is analytic on the w-plane with branch cut (—oo., —e~1], corresponding to a branch cut
[2o, 00) for f(2). Properties of f can be derived from known properties of the Lambert
function, or derived directly from (4.7). In particular, f has a square root singularity at
Z9, and
48 10 =1(20) ~ (1~ 2/292+ 011 - 2/ ).
with the absolute value of the error term bounded by a constant multiple of |1 — z/z|
uniformly in the cut plane. Using also the fact that D(k) = 1 — (2d)~k? + O(k%), this
gives

(4.9) EO(K) = ol

k2+d2%/2,/1—z/zg+Ep
where E; = —v/2(1 — 2/20)%2 + O(|1 — z/7|) and E, = O(k*) + O(K?|1 — z/z|*/?) +

O(|1 — z/z0]). Writing F{™(k) = 522, 4™ (K)2", the asymptotic form of the coefficient
#@ (kn~1/4) can then be obtained using contour integration as in the proof of Lemma 1.

Theresultis . .
4.10 3@ 2kn~1/4) ~ — = = A@(K).
and hence, asin Theorem 1,
1@ (dY 2kn-1/4
(4.11) I % - A@(K).
oo on’(0)

For the general m-point function, the procedureissimilar. By (4.3) and (4.9), F™(c; k)

is approximately equal to
2m—3

(4.12) 1

ilz_{ k2+d23/2,/1—2z/zy
Asin (2.22), thisleads to
nm—5/2 1.

— _ —AM(;k) asn— oo.
(2d)2r~m3\/2—ﬂ28 (k) 0

Since AM(g; 6) = 1/(2m— 5)!! is the reciprocal of the number of shapes, this gives a
mean-field version of Theorem 1:

(4.13) M (g dY/2kn2/%) ~

(M (e J1/2)en—1/4
(4.14) ljm 2n(@ 47Tk

- AM(g: k).
o5, 60(0;0)

https://doi.org/10.4153/CMB-1997-003-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-003-8

LATTICE TREES 35

To study the scaling behaviour of the skeleton, we introduce fugacities ¢ (|G| < 1)
for the bonds in the skeleton paths. For the two-point function, we define

(4.15) FAx) = > X(f @),
so that ¢
(4.16) FAK) = @

1— 24 2D(K)
Define, for |G| < land|Z < z,
-

@ =T R =S DA G
% : n=0 3

i=1

where the last equality defi nesgégm) (; K, 39). To prove amean-field version of Theorem 2,
for al m> 2, we wish to argue that
2M (e 1/ 2ken—1/4 T ol
(4.18) lim pm-3/2¢n°(0:d . kn - ) _ am (0 k. ).
=00 s 04"(c;0)

Since the right side of (4.16) is the sum of a geometric series (in ¢),

(4.19) > Mok 97 = Zﬁg[@dﬁ(m)s (f@)™".
and thus

(kD = (TT B 1 1 S s+ 02
@20 3Pk = (11 600°) sy #(2H@) 7 755

where I' is a small circle centred at the origin. Writing s = tj4/n and replacing k; by
d%/2k;n~1/4, the Gaussian factor emergesin the limit n — oo from

(4.21)

2m-3 2m-3 2 tiy/n

5 (Y 2k -1/ Vi = LN ) L e YRR

L D en5) .Hl(l NG O(n) € :
Lettingt = 3ot and M = 2m — 3, it remains to determine the asymptotic form of the
integral

1 ty/n+M dz

(4.22) 7 }ér (2df(2)""™ 25

This can be done by deforming the contour to the branch cut [z, co), making the change
of variablesw = n(z/z, — 1), using the fact that f(2) has a square root singularity at z
by (4.8), and finally applying the dominated convergence theorem, with the result

11 oo . 11 2
4.23 — = | e vsin(tv2w) dw = — —te /2,
(4.23) nzgm/oe sin( ) dw nZ 27Te
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The fact that (4.22) is asymptotic to (4.23) is a specia case of a more general fact;
see [28, (4.2)], with, in their notation, o = 0 and A = t. Combining (4.20)—(4.23), and
recalling from (4.13) that

anFS/Z 1
(2d)>™3y/27 2’

givesthe desired result (4.18) that for the mean-field model typical skeletons have path

lengths proportional to /n, and haveaBrownian scaling limit with the | SE weight factor
te /2,

(4.24) S 6 (5; 0) ~

4.3. Combinatorics. We close with some considerations of a combinatorial nature,
relating the analysis of the mean-field model to the scaling limit of lattice embeddings
of abstract trees.

The Taylor seriesat the origin of the Lambert function is W(w) = 2, ﬁ‘—’r‘ﬂle\/n and
hence

(4.25) f(z)———W( 2d2) = Z(Zd”)n -

Thefunctionf (Z) isthusessentially the exponent|a| generating function of rooted labelled
trees [20, (1.7.6)], and we would like to argue that the analysis of the mean-field model
captures an essential feature relevant to the scaling limit of embeddings of abstract trees
into the lattice.

Thisclaimisbased onthefact that the coefficient of Z"in (4.25) isgiven asymptotically

by

(4.26) 1

e

(2dn)™* n-1
n! \/_—(Zd )
The power law n~3/2 correspondsto the square root singularity of f(z), whichin turn led
to (4.9) and henceto I SE. Interms of critical exponents, the power law n—3/2 corresponds
to the critical exponent value § = g which in turn correspondsto vy = % This reiterates

the theme of Section 2.3, relating critical exponentsand | SE.

Lattice embeddings of abstract trees typically also give rise to this power law n=3/2.
For example, the number of rooted unlabelled treeswith n verticesisgiven[20, (9.5.29)]
asymptotically by clcgn*3/ 2 where ¢; and ¢, are positive constants. Since each edge
of an abstract tree can be embedded in 2d ways, the number of lattice embeddingsis
therefore asymptotic to

(4.27) c1(2d)"t)— =7

As another example of lattice embeddings of abstract trees that gives rise to the power
law n~3/2, consider the number of embeddings of planted planar trees with 2n vertices,
each of degree 1 or 3 (these trees are discussed in [12, Section 2.7.2]). The number of
such treesis given by the Catalan number (n+ 1)~ ( ) and hence the number of lattice
embeddingsis asymptotic to

1
NG

1

(4.28) o7

22n(2d)2n 1
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The difference in the rates of exponential growth of (4.26), (4.27) and (4.28) serves
only to give different values of the critical point z, and does not play an important role.
However, the common power law n—3/2, which is well-known to combinatorialists [28],
corresponds to the square-root nature of the singularity of f(z) which plays an essential
role in the identification of the limit as | SE.
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