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Abstract. The jacobian variety of the Catalan curve y
q
= x

p � 1 is shown to be nondegenerate.
As an application, a 0-1-matrix whose determinant computes the relative class number of the pq-th
cyclotomic field is constructed.
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1. Introduction

In [4], Kubota showed that the jacobian variety of the hyperelliptic curve defined
by y2 = xp � 1 with p an odd prime is nondegenerate,’ namely the dimension
of its Hodge group is as large as possible. The purpose of the present paper is to
generalize this result and to show that the jacobian variety of ‘the Catalan curve’
yq = xp � 1 with p; q distinct odd primes is nondegenerate. Nondegeneracy of an
abelian variety with abelian CM-field is known to be equivalent to non-vanishing
of certain character sums attached to it. And Kubota’s proof is based on a certain
elementary but ingenious manipulation of those character sums arising from the
CM-type of the hyperelliptic curve. For the Catalan curve, however, a similar
argument does not seem to work well. Generally the problem to determine whether
such character sums vanish or not is highly nontrivial, as is seen in [6], where
certain examples of degenerate abelian varieties of CM-type having the cyclotomic
field as their endomorphism algebra, are given. Therefore, even if we restrict our
attention to such abelian varieties, we become aware that the nondegeneracy is
a delicate property depending on the arithmetic of the underlying fields and their
CM-types. In the present paper, we proceed to express the character sums directly as
linear combinations of the values at s = 1 of certain L-series. For our computation
we owe much to the article [1]. From the standpoint that the Catalan curve is a
quotient of the Fermat curve of degree pq, one can identify the character sums
in question as certain factors of the Hasse zeta function of the Fermat curve (see
[11]). Therefore our method can be considered as giving a direct computation of
these factors. Moreover, in view of the fact that the nondegeneracy of the jacobian
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variety of the hyperelliptic curve y2 = xp � 1 is one of the starting points of the
‘inductive structure’ of the Fermat varieties [8], our result may give another initial
step which extends the scope of the method employed in [loc. cit.].

As an application of our computation, we obtain a class number formula for
the pq-th cyclotomic field. It is expressed essentially as the determinant of a 0-1-
matrix which is easily computed once we are given the prime numbers p; q. This
result is considered as a natural generalization of the class number formula for the
p-th cyclotomic field, given in our previous article [3]. In view of the fact that our
previous formula plays a certain role in the study of this field (see [7], [9], [10]),
we believe the present formula would give some insight in the investigation of the
arithmetic of the pq-th cyclotomic field.

The plan of this paper is as follows. In Section 2, we compute the CM-type of
the jacobian variety of the Catalan curve. In Section 3, we recall the definition of
the Hodge group of an abelian variety, when it is of CM-type, and we state the
main theorem of this paper. Section 4 is devoted to the proof of the theorem. And
in Section 5, we give the class number formula mentioned above.

The author would like to thank the referee for his/her valuable suggestions and
corrections.

2. CM-type of the Catalan curve

Let p; q be distinct odd prime numbers. LetC denote the nonsingular curve defined
by yq = xp � 1. The genus g = g(C) of C is given by the formula g = (p �
1)(q � 1)=2. For any positive integer n, let � = exp(2�

p�1=n). Let � denote the
automorphism of C defined by �(x; y) = (�px; �qy). It defines an action of the
group �pq of the pq-th roots of unity onC . By functoriality, it also defines an action
of �pq on the jacobian variety J(C) of C . Thus J(C) is an abelian variety of CM-
type with endomorphism algebra Q(�pq). (Note that the degree of the extension is
Q(�pq) : Q] = (p � 1)(q � 1) = 2g). In order to describe the CM-type of J(C),
we introduce some notation. Let G = Gal(Q(�pq)=Q) denote the Galois group of
the extension Q(�pq)=Q, which we identify with the product (Z=pZ)� � (Z=qZ)�.
With this identification, the CM-type of J(C) is given as follows

PROPOSITION 2.1. Notation being as above, the CM-type of J(C) is given by the
subset

S = f(qcmod p;�pdmod q) 2 G; 1 6 d 6 q � 1; 1 6 c < pd=qg

of G.
Proof. In order to determine the CM-type of J(C), it suffices to consider the

induced action of the automorphism �, on the vector space 
1(C) of differential
forms of the first kind on C . One can check that a basis of 
1(C) is given by

xadx=yb with 0 6 a < p; 1 6 b 6 q � 1; pb� qa� q � 1 > 0:
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Note that the condition for a; b is equivalent to the condition

1 6 b 6 q � 1; 1 6 a+ 1 < pb=q:

The effect of the automorphism �� of 
1(C) on the above basis, is computed as
follows

��(xadx=yb) = �q(a+1)�pb
pq xadx=yb:

Considering the natural isomorphism (Z=pqZ)� �= (Z=pZ)� � (Z=qZ)�, and
putting c = a+ 1; d = b, we obtain the assertion of the proposition.

3. The Hodge group of J(C): main theorem

Let Hg(J(C)) denote the Hodge group of J(C) (see [2] for the definition and
its basic properties). Since our J(C) is an abelian variety of CM-type, its Hodge
group is a Q-torus and its dimension is equal to dimQQ[G]:S, where Q[G] denote
the group ring of G over Q and the CM-type S is identified with the element
�s2Ss of Q[G] (see [6]). It is known that, for any abelian variety A we have
dim Hg(A) 6 A, and that, if the equality holds, then the ring of Hodge classes on
any powerAn is generated by its divisor classes (see [2]). We say an abelian variety
A is nondegenerate if dim Hg(A) = dimA. Our purpose is to show the following

MAIN THEOREM. The jacobian variety J(C) of the Catalan curve C : yq =

xp � 1 is nondegenerate. Hence, the ring of Hodge classes on any power J(C)n

is generated by its divisor classes. In particular, the Hodge Conjecture holds for
J(C)n for any n > 1.

4. Proof of main theorem

For the computation of the dimension of the Hodge group, we use the following

PROPOSITION 4.1. ([6]). Let A be an abelian variety of CM-type (K;T ) with K
an abelian number field and T a CM-type. Then dim Hg(A) = #f' : ' an odd
character of Gal(K=Q) such that �t2T'(t) 6= 0g.

Let rp (resp. rq) denote a primitive root of (Z=pZ)� (resp. (Z=qZ)�). For each
i with o 6 i 6 p� 2 (resp. each j with 0 6 j 6 q� 2), let �i (resp.  j) denote the
character of (Z=pZ)� (resp. (Z=qZ)�) defined by

�i(rp) = �ip�1;  j(rq) = �
j
q�1:
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Then the set of odd characters of G = Gal(Q(�pq)=Q) is equal to the set � =

f�i j ; i+j = oddg. Therefore our task is to compute the character sum�s2S'(s)
for any ' 2 �. To compute this, we fix some notation. For a character ' 2 �, we
denote by f' the conductor of ', and by 'f the associated primitive character. Let
G(') denote the Gauss sum

G(') =

f'�1X
i=1

'f (i)�
i
f' :

For ' 2 �, we denote by L(1; ') the value at s = 1 of the L-function

L(s; ') =
X

(n;pq)=1

'(n)=ns;

and we let

L0(s; ') =
X

(n;f')=1

'(n)=ns:

When ' is nonprimitive, comparing Euler products we have

L(1; ') = (1� '(q)=q)L0(1; '): (1)

PROPOSITION 4.2. Let ' = � be an element of �. For any d with 1 6 d 6
(q � 1)=2, let Tq;d(�) =

P
16`<pd=q �(`). If � is nontrivial, then

X
s2S

'(s) = 2�(q) (�p)
X

16d6(q�1)=2

 (d)Tq;d(�): (2)

Proof. It follows from Proposition 2.1 thatX
s2S

(� )(s) =
X

16d6q�1;16c<pd=q

�(qc) (�pd)

= �(q) (�p)
X

16d6q�1;16c<pd=q

�(c) (d)

= �(q) (�p)
X

16d6(q�1)=20
@ X

16c<pd=q

�(c) (d) +
X

16c<p(q�d)=q

�(c) (q � d)

1
A
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= �(q) (�p)
X

16d6(q�1)=20
@ X

16c<pd=q

�(c) (d) �
X

16c<p(q�d)=q

�(�c) (d)
1
A

(since� is odd)

= �(q) (�p)
X

16d6(q�1)=20
@ X

16c<pd=q

�(c) (d) �
X

pd=q<c06p�1

�(c0) (d)

1
A

(we put c0 = p� c)

= �(q) (�p)
X

16d6(q�1)=20
@ X

16c<pd=q

�(c) (d) +
X

16c0<pd=q

�(c0) (d)

1
A

(since�16c06p�1�(c
0) = 0 for� nontrivial)

= �(q) (�p)
X

16d6(q�1)=2

 (d)Tq;d(�):

This completes the proof of Proposition 4.2.

Now we proceed to the proof of the Main Theorem. We divide it into two cases

(Case 1). � is odd and  is even.
(Case 2). � is even and  is odd.

(We will see below that (Case 2) is reduced to (Case 1) by a symmetry argument).

(Case 1). � is odd and  is even.
The situations for  nontrivial and that for  trivial are somewhat different. We
begin with the former case.

(Case 1.1).  is nontrivial.
We prove the following

PROPOSITION 4.3. Notation being as aboveX
a2S

(� )(s) = (
p
�1= )G(� )L(1; � ):
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In particular, the character sum �s2S(� )(s) does not vanish.
Proof. For convenience, we put q0 = (q�1)=2. In this case we can put  =  2k

for some k with 1 6 k 6 q0 � 1. In order to compute Tq;d(�) for 1 6 d 6 q0, we
introduce the following odd function Fq;d(x), which is periodic with period 2�

Fq;d(x) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

0 �� 6 x < �2�d=q;

�1=2 x = �2�d=q;

�1 �2�d=q < x < 0;

0 x = 0;

1 0 < x < 2�d=q;

1=2 x = 2�d=q;

0 2�d=q < x 6 �:

One can compute its Fourier expansion as follows

Fq;d(x) = (�2=�)
X

16m6q0

(cos(2�md=q)� 1)
X

n=m;�m(mod q)

(sin nx)=n: (3)

We recall the following lemma which is nothing other than the orthogonality
relation of characters

LEMMA 4.3.1. For any m:n 2 (Z=qZ)�,

X
06`6q0�1

 2`(m) 2`(n) =

(
q0 n = m;�m;
0 otherwise:

Using this lemma and (3), we can express Fq;d(x) as follows

Fq;d(x) = (�2=(q0�))
X

16m6q0

(cos(2�md=q)� 1)

�
0
@ 1X
n=1

0
@ X

06`6q0�1

 2`(m) 2`(n)(sin nx)=n

1
A
1
A : (4)

For any positive integer n, let G(n; �) =
P

16j6p�1 �(j)�
nj
p , so that G(�) =

G(1; �). Since � is odd, we have

G(n; �) =
X

16j6p0

�(j)�njp �
X

16j6p0

�(j)��njp

=
X

16j6p0

�(j) � 2
p
�1 sin(2�nj=p)

=
p
�1

X
16j6p�1

�(j) sin(2�nj=p): (5)
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Using (4) and (5), we compute as follows

(�2=(q0�))
X

16m6q0

(cos(2�md=q)� 1)
X

06`6q0�1

 2`(m) 2`(n)G(n; �)=n

= (�2
p
�1=(q0�))

�
X

16m6q0

(cos(2�md=q) � 1)
1X
n=1

X
06`6q0�1

 2`(m) 2`(n)

�
0
@ X

16j6p�1

�(j) sin n(2�j=p)

1
A =n (by (5))

=
p
�1

X
16j6p�1

�(j)Fq;d(2�j=p) (by (4))

=
p
�1

0
@ X

16j<pd=q

�(j)�
X

p�(pd=q)<j6p�1

�(j)

1
A

(by the definition of the functionFq;d(x))

= 2
p
�1Tq;d(�): (6)

(The last equality follows from the definition of Tq;d(�)). Substituting the equality
G(n; �) = ��(n)G(�) in the most left side of (6), we obtain

2
p
�1Tq;d(�)

= [6pt] = (�2=(q0�))
X

16m6q0

(cos(2�md=q)� 1)

�
1X
n=1

X
06`6q0�1

 2`(m) 2`(n)��(n)G(�)=n

= (�2G(�)=(q0�))
X

16`6q0�18<
:
X

16m6q0

 2`(m)(cos(2�md=q)� 1)L(1; �� 2`)

9=
; : (7)

To compute the sum �16d6q0 2k(d)Tq;d(�), which appears in (2), we need the
following
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LEMMA 4.3.2. Fix an integer k with 1 6 k 6 q0 � 1. Then for any ` with
0 6 ` 6 qo � 1,

X
16d6q0

 2k(d)
X

16m6q0

 2`(m)(cos(2�md=q)� 1)

=

(
q0G( 2`)=2 if ` = q0 � k;

0 otherwise:
(8)

Proof of Lemma 4.3.2. The left-hand side of (8) is computed as follows
X

16d6q0

 2k(d)
X

16m6q0

 2`(m)(cos(2�md=q)� 1)

=
X

16d6q0

 2k(d)
X

16m6q0

 2`(m)(�mdq + ��mdq )=2

�
X

16d6q0

 2k(d)
X

16m6q0

 2`(m)

= 1=2
X

16d6q0

 2k(d)
X

16m6q�1

 2`(m)�mdq

(since 2` is even and
X

16d6q0

 2`(d) = 0)

= 1=2
X

16d6q0

 2k(d)G(d;  2`)

= G( 2`)=2
X

16d6q0

 2k(d) 2`(d)

=

(
q0G( 2k)=2 if ` = q0 � k;

0 otherwise;

(by Lemma 4:3:1 and by the fact 2(q0�`) =  2`):

It follows from this lemma and (7) that
p
�1

X
16d6q0

 2k(d)Tq;d(�)

= (�G(�)=(q0�))
X

06`6q0�1
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@ X

16d6q0

 2k(d)
X

16m6q0

 2`(m)(cos(2�md=q)� 1)

1
AL(1; �� 2`)

= (�G(�)=(a0�))(q0G( 2k)=2)L(1; � 2k)

= (�1=(2�))G(�)G( 2k)L(1; � 2k): (9)

Hence, by Proposition 4.2, we have

X
s2S

� (s) = 2�(q) (�p)
X

16d6q0

 (d)Tq;d(�)

= 2�(q) (�p) � (
p
�1=(2�))

�G(�)G( )L(1; � ) (by (9));

= (
p
�1=�)�(q) (�p)G(�)G( )L(1; � ):

Since G(� ) = �(q) (p)G(�)G( ) as is easily checked, we have

X
s2S

� (s) = (
p
�1=�)G(� )L(1; � );

which is nonzero. This completes the proof of Proposition 4.3.

(Case 1.2).  =  0, the trivial character of conductor q.
We prove the following

PROPOSITION 4.4. Notation being as above,

X
s2S

(� 0)(s) = (
p
�1=�)�(q)(�(q) � q)G(�)l0(1; �� 0):

Proof. In this case, we need the following lemma instead of Lemma 4.3.2

LEMMA 4.4.1. For any ` with 0 6 ` 6 q0 � 1,X
16d6q0

X
16m6q0

 2`(m)(cos(2�md=q)� 1)

=

(�q0(q0 +
1
2) if ` = 0;

0 otherwise:

Proof of Lemma 4.4.1. Note that
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X
16d6q0

X
16m6q0

 2`(m) = q0

X
16m6q0

 2`(m)

=

(
q2

0 if ` = 0;

0 otherwise:

Since G( 0) = �1, the assertion follows from this and a similar computation to
that in the proof of Lemma 4.3.2.

Therefore, by (7), we have
p
�1

X
16d6q0

Tq;d(�)

= (�G(�)=(q0�))
X

06`6q0�18<
:
X

16d6q0

X
16m6q0

 2`(m)(cos(2�md=q)� 1)

9=
;L(1; �� 2`)

= (�G(�)=(q0�))(�q0(q0 +
1
2))L(1; �� 0)

(by Lemma 4:4:1)

= (qG(�)=(2�))L(1; �� 0): (10)

Hence we can compute the character sum as follows:X
s2S

(� 0)(s) = 2�(q)
X

16d6q0

Tq;d(�) (by Proposition 4:2)

= (�
p
�1=�)q�(q)G(�)L(1; �� 0) (by (10))

= (
p
�1=�)�(q)(�(q) � q)G(�)L0(1; �� 0):

(The last equality follows from (1)). This completes the proof of Proposition 4.4.

(Case 2). � is even and  is odd
This case is reduced to (Case 1) because of the symmetry. More precisely, the
Catalan curve yq = xp � 1 is isomorphic to the curve Cp;q : xp + yq = 1 over Q.
Further, the transposition (x; y)! (y; x) of the coordinates gives an isomorphism
of Cp;q to Cq;p, and it transforms (Case 2) for Cp;q to (Case 1) for Cq;p. Therefore
we obtain the following
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PROPOSITION 4.5. Notation being as above, if � is nontrivial, thenX
s2S

(� )(s) = (
p
�1=�)G(� )L(1; � ):

If � = �0, the trivial character of conductor p, thenX
s2S

(�0 )(s) = (
p
�1=�) (p)( (p) � p)G( )L0(1; �0

� ):

Therefore in both cases the character sums are nonzero.

Thus we complete the proof of Main Theorem.

REMARK. Without appealing to the symmetry, we can give another proof for
(Case 2), by using an even step function instead of Fq;d(x).

5. Class number of Q(�pq)

As an application of the results in the previous Section, we construct a (0,1) square
matrix, whose determinant gives the relative class number of Q(�pq). Throughout
this Section we assume that p > q. Let us put

T = f(c; d); 1 6 d 6 q � 1; 1 6 c < pd=qg;

which is regarded as a subset of G = (Z=pZ)� � (Z=qZ)�. Then the CM-type S
of J(C) is equal to (q;�p) � T , hence T is also a CM-type of a certain abelian
variety isomorphic to J(C). Let G0 = (Z=pqZ)� and let T 0 = ��1(T ) � G0 be
the inverse image of T , under the natural isomorphism � : G0 ! G.

DEFINITION 5.1. We denote byH = (Ha;b)a;b2T 0 the g� g matrix defined by the
following

Ha;b =

(
1 if ab 2 T 0;
0 if ab 62 T 0:

Our purpose is to prove the following

THEOREM 5.2. For arbitrary distinct odd prime numbers p; q, let f(p; q) denote
the order of p in F�q and let e(p; q) = (q � 1)=f(p; q). Let us put

A(p; q) =

8<
:
(pf(p;q)=2 + 1)e(p;q) if f(p; q) is even;

(pf(p;q) � 1)e(p;q)=2 if f(p; q) is odd:

Let h� denote the relative class number of Q(�pq). Then

h� = 2pqj detHj=(A(p; q)A(q; p)):
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Proof. First we need some elementary lemmas.

LEMMA 5.2.1. Let M = (Ma;b)a;b2T 0 denote the g � g matrix defined by

Ma;b =

(
1 if ab 2 T 0;
�1 if ab 62 T 0:

Then detM = 2g�1 detH .
Proof of Lemma 5.2.1. First note that 1 2 T 0 under our assumption that p > q.

Therefore the ‘1’-th column of M is equal to t(1; : : : ; 1). For each b 2 T 0 � f1g,
adding the ‘1’-th column ofM to its ‘b’-th column, we see that detM = 2g�1 detH .

LEMMA 5.2.2. Let S0 denote the subset ��1(S) of G0 corresponding to S. Let
N = (Na;b)a;b2S0 denote the g � g matrix defined by

Na;b =

(
1 if ab 2 S0;
�1 if ab 62 S0:

Then jdetN j = jdetM j.
Proof of Lemma 5.2.2. Let �M = ( �Ma;b)a2T 0;b2G0 denote the g � 2g matrix

defined by

�Ma;b =

(
1 if ab 2 T 0;
�1 if ab 62 T 0:

For any b 2 G0, let �Mb denote the b-th column of the matrix �M . Then we have

�M�b = (�1) � �Mb: (11)

Let r = ��1(q;�p). Then it follows from the equality S = (q;�p) � T that
S0 = r � T 0. Let c; d 2 S. Then there exist a; b 2 T 0 such that c = ra; d = rb, and
we have

Nc;d = �Ma;rb; (12)

for, by the definition of the matrix N ,

Nc;d =

(
1 if rab 2 T 0;
�1 if rab 62 T 0:

Since both T 0 and r � T 0 are CM-types, if we put T 0 = ft1; : : : ; tgg, then we have
r � T 0 = f"1t1; : : : ; "gtgg, for some "i 2 f�1g(1 6 i 6 g). Hence it follows from
(11) that

det( �Ma;rb)a;b2T 0 = �det( �Ma;b)a;b2T 0 : (13)
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By (12) and (13), we obtain the assertion of Lemma 5.2.2.

LEMMA 5.2.3. Let ~H = ( ~Ha;b)a;b2S0 denote the g � g matrix defined by

~Ha;b =

(
1 ab�1 2 S0;
�1 ab�1 62 S0:

Then jdet ~Hj = jdetN j.
Proof of Lemma 5.2.3. A proof similar to that for Lemma 5.2.2 can be con-

structed, because (S0)�1(= fa�1; a 2 S0g) is also a CM-type.

LEMMA 5.2.4. jdet ~Hj = 2g�1jdetHj.
Proof of Lemma 5.2.4. Combine (5.2.1), (5.2.2), and (5.2.3).

LEMMA 5.2.5. For any character', let '(S) denote the character sum�s2S'(s).
Then det ~H = �':odd'(S), where ' moves through the set of odd characters of the
group G.

Proof of Lemma 5.2.5. We prove this by generalizing the proof of [5, Chap. 3,
Theorem 6.1]. Let F be the space of odd functions on G. Namely, we put

F = ff ; f is a C-valued function on G; and f(�x) = �f(x) for anyx 2 Gg:

It is a g-dimensional vector space, and has two natural bases

f';' is an odd character onGg; and f�s; s 2 Sg;

where we put, for any b 2 G,

�b(x) =

8>><
>>:

1 if x = b;

�1 if x = �b;
0 otherwise:

For each a 2 G let Taf be the function such that Taf(x) = f(ax). Then every odd
character ' is an eigenvector of Ta with eigenvalue '(a). Let T = �s2STs. Then
T is a linear map on F , and we have

T' = '(S)':

Therefore ' is an eigenvector of T , and the determinant of T is the product of the
character sums occurring on the right hand side of the equality in our lemma. On
the other hand, we have

T�b =
X
a2S

Ta�b =
X
a2S

�a�1b =
X

c2bS�1

�c;
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hence, if we letH 0 = (H 0

a;b)a;b2S denote the matrix ofT w.r.t. the basis f�s; s 2 Sg,
then

H 0

a;b =

(
1 if a 2 bS�1;

�1 if a 62 bS�1:

Noting that the condition a 2 bS�1 is equivalent to the condition a�1b 2 S, we
see that H 0 is the transpose of ~H . This completes the proof of Lemma 5.2.5.

For any character ' of G0, let denote B' denote the sum �16d6f'�1'f (d)d=f'.

LEMMA 5.2.6 ([5, Chap. 3]). For any odd character of G0,

L0(1; ') = (
p
�1 �G('f )=f')B �':

By this and the well-known fact that

jG('f )j =
q
f'; (14)

we have

jL0(1; ')j = (�=
q
f')jB'j: (15)

It follows from (4.3), (4.4), and (4.5), thatY
s2S

'(S) =
Y

� 2�;nontrivial

(
p
�1=�)G(� )L(1; � )

�
Y
�:odd

(
p
�1=�)�(q)(�(q) � q)G(�)L0(1; �� 0)

�
Y
 :odd

(
p
�1=�) (p)( (p) � p)G( )L0(1; �0

� ):

Therefore, by (14) and (15), we have
������
Y
':odd

'(S)

������ =
������
Y
':odd

B'

������ �
������
Y
�:odd

(�(q)� q)

������ �
������
Y
 :odd

( (p) � p)

������ : (16)

As for the products ��:odd(�(q)� q) and � :odd( (p)� p), we have the following

LEMMA 5.2.7. Notation being as in Theorem 5.2,
Y
�:odd

(�(q)� q) = A(q; p); and
Y
 :odd

( (p)� p) = A(p; q):
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Proof of Lemma 5.2.7. A proof similar to that in [3] can be constructed.

Further, as for the product �':oddB', we have the following

PROPOSITION 5.2.8 ([5, Chap. 3, Theorem 3.2]). Let K denote an arbitrary
abelian number field with [K : Q] = 2g. LetQ denote the unit index,w the number
of roots of unity in K;h� the relative class number of K . Then

Y
':odd

B' = (�2)gh�=(Qw):

When K = Q(�pq), we have Q = 2 (see [loc. cit., Chap. 3, Theorem 4.1]) and
w = 2pq. Hence we have

Y
':odd

B' = (�2)gh�=(4pq): (17)

Combining (16); (17), and (5:2:6), we have

������
Y
':odd

'(S)

������ = (2gh�=(4pq))A(p; q)A(q; p):

By (5:2:4) and (5:2:5), this implies that

h� = 2pqjdetHj=(A(p; q)A(q; p)):

This completes the proof of Theorem 5.2.
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