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ON A CERTAIN CONVOLUTION OF POLYLOGARITHMS
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Abstract

In this paper, we consider certain double series analogous to Tornheim’s double series and real analytic
Eisenstein series. By computing double integrals in two ways, we express the double series as a sum
of products of polylogarithms. The technique generalises one given by Kanemitsu, Tanigawa and
Yoshimoto. Evaluating the double series at particular points gives new evaluations for certain double
series in terms of values of the Riemann zeta function and the dilogarithm which are analogues of formulas
of Mordell and Goncharov.
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1. Introduction

Let N be the set of natural numbers, N0 = N ∪ {0}, Z the ring of rational integers, Q
the field of rational numbers, R the field of real numbers, R+ the set of positive real
numbers and C the field of complex numbers. Let i =

√
−1, and ζm = e2πi/m (m ∈ N) be

the primitive mth root of unity.
In the 1950s, Tornheim [17] studied the double series defined by

T (s1, s2, s3) =

∞∑
m=1

∞∑
n=1

1
ms1 ns2 (m + n)s3

(1.1)

for s1, s2, s3 ∈ N, and investigated its interesting properties. Working independently,
Mordell [15] showed that T (2k, 2k, 2k) belongs toQ · π6k for k ∈ N. Since these works,
special values of (1.1) have been actively investigated (for the known results, see [5]).

In [11], Matsumoto considered analytic properties of (1.1) for (s1, s2, s3) ∈ C3.
Actually he showed that (1.1) can be continued meromorphically to C3 and determined
its possible singularities. Based on his result, the author [20] gave some functional
relations between (1.1) and the Riemann zeta-function ζ(s), which contain known
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results given in [15, 17, 18] and so on. As a more general form, Matsumoto and
the author proved the functional relation for double polylogarithms, that is,

∞∑
m,n=1

xn

mknl(m + n)s
+ (−1)k

∞∑
m,n=1

xn

mkns(m + n)l
+ (−1)l

∞∑
m,n=1

xm+n

mlns(m + n)k

= 2
[k/2]∑
j=0

(
k + l − 2 j − 1

k − 2 j

)
ζ(2 j) Li(s + k + l − 2 j; x)

+ 2
[l/2]∑
j=0

(
k + l − 2 j − 1

l − 2 j

)
ζ(2 j) Li(s + k + l − 2 j; x)

for s ∈ C with Re(s) > 0, k, l ∈ N and x ∈ C with |x| ≤ 1, where

Li(s; x) =

∞∑
m=1

xm

ms

is the ordinary polylogarithm (see [13, Equation (3.13)]). In particular, when x = 1,
this gives a simple form of the result in [20], which essentially coincides with
Nakamura’s form (see [16]). Also the above formula gives some of our previous results
for double polylogarithms given in [19].

Also, from another viewpoint, it is known that T (s, s, s) can be regarded as the
Witten zeta-function associated with the Lie algebra sl(3) (see [22]). Furthermore,
(1.1) can be generalised to the multi-variable Witten zeta-function studied by Komori,
Matsumoto and the author (see, for example, [7, 8, 12]).

In the present paper, we consider two types of polylogarithmic analogues of (1.1)
defined by

R(s1, s2, s3; τ; x) =

∞∑
m,n=1

xm+n(Im(τ))s3

ms1 ns2 |m − nτ|2s3
, (1.2)

S(s1, s2, s3, s4; x) =

∞∑
m,n=1

xm+n

ms1 ns2 (ms3 + ns4 )
, (1.3)

for x ∈ C with |x| ≤ 1 and τ ∈ C with Im(τ) > 0. Note that (1.2) can also be regarded as
an analogue of the real analytic Eisenstein series

E(z, s) =
1
2

∑
m,n∈Z2

(m,n)=1

(Im(τ))s

|m − nτ|2s

(see, for example, [9]).
The main aim in this paper is to prove the following two types of functional

relations. First, we prove the following theorem.
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T 1.1. Let q ∈ N, l ∈ N0, s ∈ C with Re(s) > 0, x ∈ C with |x| ≤ 1, and j ∈ N0

with 0 ≤ j < q/2. Then

R(s, s + 2ql + q, 1; ζ2 j+1
2q ; x)

=

∞∑
m,n=1

xm+n Im(ζ2 j+1
2q )

msns+2ql+q|m − nζ2 j+1
2q |

2

=
i
2

(2l+1)q∑
ν=0

ζ
−ν(2 j+1)
2q Li(s + ν + 1; x) Li(s + 2ql + q + 1 − ν; x).

(1.4)

For example, in the case (q, l, j, s, x) = (4, 0, 0, 2, 1),

R(2, 6, 1; ζ8; 1) =

∞∑
m,n=1

Im(ζ8)
m2n6|m − nζ8|

2
=

√
2π10

170 100
+

1
2
ζ(5)2.

Next we consider S(s1, s2, 2d, 2d; x) for any fixed d ∈ N, which is convergent
absolutely, for example, for s1, s2 ∈ C with Re(s1) > 1 − 2d and Re(s2) > 1. Then we
prove the following theorem.

T 1.2. Let d ∈ N, l ∈ N0, s ∈ C with Re(s) > 0 and x ∈ C with |x| ≤ 1. Then

S(s − 2d + 1, s + 4dl + 1, 2d, 2d; x)

=

∞∑
m,n=1

xm+n

ms−2d+1ns+4dl+1(m2d + n2d)

=
1
2

2l∑
j=0

(−1) j Li(s + 2d j + 1; x) Li(s + 4dl + 1 − 2d j; x).

(1.5)

For example, in the cases (d, l, s, x) = (1, 0, 3, 1) and (1, 0, 1, 1/2), we obtain

S(2, 4, 2, 2; 1) =

∞∑
m,n=1

1
m2n4(m2 + n2)

=
1

16 200
π8, (1.6)

S

(
0, 2, 2, 2;

1
2

)
=

∞∑
m,n=1

2−m−n

n2(m2 + n2)
=

1
2

(
π2

12
−

(log 2)2

2

)2

(1.7)

(by (4.6)), which can be regarded as analogues of Mordell’s formula as mentioned
above, for example,

∞∑
m,n=1

1
m2n2(m + n)2

=
1

2835
π6,

and of Goncharov’s result [4] for double polylogarithms,
∞∑

m,n=1

2−m

n(m + n)
=

1
12
π2 (1.8)

(see Remark 4.1).
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We also give a strange formula

S(−2, 4l, 2, 2; 1) = −
π

2

∞∑
n=1

coth(nπ)
n4l−1

(l ∈ N),

where the left-hand side is not convergent (see Proposition 5.1).
It should be noted that (1.2) and (1.3) seem to be associated with the Lie algebra

sl(3) like Tornheim’s double series (1.1). Therefore it is interesting and meaningful
that our present result may be an important step towards showing a certain class of
multiple analogues, similarly to the case of Witten zeta-functions as stated above.

2. Convolution of polylogarithms

In this section, we consider a certain convolution of polylogarithms. The technique
used here is a kind of generalisation of the known one given by Kanemitsu et al. [6].

Let ξ ∈ C with Re(ξ) > 0 and |ξ| = 1, s ∈ R with s > 1 and x ∈ C with |x| ≤ 1. Let

g(u; s, ξ, x) =

∞∑
m=1

xme−mξu

(mξ)s
(u > 0)

and

J(k, s, ξ, x) =

∫ ∞

0

∫ ∞

0
(u + v)k−1g(u; s, ξ, x)g(v; s, ξ, x) du dv (k ∈ N),

where we denote by ξ the complex conjugate of ξ, namely ξ = ξ−1 because |ξ| = 1. We
prove the following two lemmas.

L 2.1. With the above notation,

J(k, s, ξ, x) = (k − 1)!
k−1∑
j=0

ξk−1−2 j Li(s + j + 1; x) Li(s + k − j; x).

P. Let

Γ(z) =

∫ ∞

0
uz−1e−u du (z > 0)

be the gamma function. For ρ ∈ C with Re(ρ) > 0, it is well known that

Γ(z) =

∫ ρ∞

0
uz−1e−u du (z > 0)

(see [21, Section 12.20]). Since Re(ξ) > 0, we see that for t > 0,∫ ∞

0
ut−1g(u; s, ξ, x) du =

∞∑
m=1

xm

(mξ)s

∫ mξ∞

0

( v
mξ

)t−1

e−v dv
mξ

= ξ−s−tΓ(t) Li(s + t; x).
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Hence, using the binomial theorem,

J(k, s, ξ, x) =

∫ ∞

0

∫ ∞

0
(u + v)k−1g(u; s, ξ, x)g(v; s, ξ, x) du dv

=

k−1∑
j=0

(
k − 1

j

) ∫ ∞

0
u jg(u; s, ξ, x) du

∫ ∞

0
vk−1− jg(v; s, ξ, x) dv

=

k−1∑
j=0

(
k − 1

j

)
ξ−s− j−1 j! Li(s + j + 1; x)

× ξ
−s−k+ j

(k − 1 − j)! Li(s + k − j; x).

This completes the proof. �

L 2.2. With the above notation,

J(k, s, ξ, x) = (k − 1)!

ξ1−k
∞∑

m,n=1

xm+n

msns+k(m − nξ2)
+ ξk−1

∞∑
m,n=1

xm+n

msns+k(m − nξ
2
)

 .
(2.1)

P. We see that

J(k, s, ξ, x) =

∫ ∞

0

∫ w

0
wk−1g(w − v; s, ξ, x)g(v; s, ξ, x) dv dw

=

∫ ∞

0
wk−1

∞∑
m,n=1

xm+ne−mξw

(mξ)s(nξ)s

∫ w

0
e(mξ−nξ)vdv dw

=

∫ ∞

0
wk−1

∞∑
m,n=1

xm+n

(mξ)s(nξ)s

 e−nξw

mξ − nξ
−

e−mξw

mξ − nξ

 dw

=

∞∑
m,n=1

xm+nΓ(k)

(mξ)s(nξ)s(mξ − nξ)

{
1

(nξ)k
−

1
(mξ)k

}

= (k − 1)!
∞∑

m,n=1

ξk−1 xm+n

msns+k(m − nξ
2
)
− ξ1−k xm+n

ms+kns(mξ2 − n)

 .
Replacing (m, n) with (n, m) in the latter summand on the right-hand side,
we obtain (2.1). �

3. Proof of Theorem 1.1

In this section, from Lemmas 2.1 and 2.2 in the previous section, we give the proof
of Theorem 1.1. Combining these lemmas, we can immediately obtain the following
proposition.
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P 3.1. Let ξ ∈ C with Re(ξ) > 0 and |ξ| = 1, s ∈ R with s > 1 and x ∈ C with
|x| ≤ 1. For k ∈ N,

ξ1−k
∞∑

m,n=1

xm+n

msns+k(m − nξ2)
+ ξk−1

∞∑
m,n=1

xm+n

msns+k(m − nξ
2
)

=

k−1∑
ν=0

ξk−1−2ν Li(s + ν + 1; x) Li(s + k − ν; x).

(3.1)

Using this fact, we prove Theorem 1.1 as follows.

P  T 1.1. Let q ∈ N, l ∈ N0, s > 1, x ∈ C with |x| ≤ 1, and j ∈ N0 with
0 ≤ j < q/2. Set ξ = ζ

2 j+1
4q and k = q(2l + 1) + 1 in (3.1). Note that

ξ1−k = ζ
−(2 j+1)q(2l+1)
4q =

(−1) j+l

i
.

Hence ξ2k−2 = −1. Therefore the left-hand side of (3.1) is equal to

(−1) j+l

i

∞∑
m,n=1

xm+n

msns+2ql+q+1

( 1

m − nζ2 j+1
2q

−
1

m − nζ−2 j−1
2q

)

=
(−1) j+l

i

∞∑
m,n=1

xm+n2ni Im(ζ2 j+1
2q )

msns+2ql+q+1|m − nζ2 j+1
2q |

2
.

On the other hand, the right-hand side of (3.1) is equal to

(2l+1)q∑
ν=0

ζ
(2 j+1)(q(2l+1)−2ν)
4q Li(s + ν + 1; x) Li(s + 2ql + q + 1 − ν; x)

= (−1) j+li
(2l+1)q∑
ν=0

ζ
−ν(2 j+1)
2q Li(s + ν + 1; x) Li(s + 2ql + q + 1 − ν; x).

Combining these relations, we see that (1.4) holds for s > 1. Furthermore, we can
easily check that both sides of (1.4) are absolutely convergent for s ∈ Cwith Re(s) > 0.
Hence the proof of Theorem 1.1 is complete. �

4. Proof of Theorem 1.2

For d ∈ N, let η = ζ8d = e2πi/8d be the primitive 8dth root of unity. Since η2 = ζ4d is
the primitive 4dth root of unity,

X2d + Y2d =
X4d − Y4d

X2d − Y2d
=

∏4d−1
j=0 (X − η2 jY)∏2d−1
j=0 (X − η4 jY)

=

2d−1∏
j=0

(X − η2(2 j+1)Y).
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Considering the logarithmic derivative of this equation in X,

2dX2d−1

X2d + Y2d
=

2d−1∑
j=0

1
X − η2(2 j+1)Y

=

d−1∑
j=0

( 1
X − η2(2 j+1)Y

+
1

X − η−2(2 j+1)Y

)
,

(4.1)

by replacing 2d − 1 − j ( j ≥ d) with j. Using (4.1), we give the proof of Theorem 1.2
as follows.

P  T 1.2. We can apply Proposition 3.1 with ξ = η2 j+1 = ζ
2 j+1
8d for

0 ≤ j ≤ d − 1 because Re(ξ) > 0 for each ξ. Setting k = 4dl + 1 for l ∈ N0, we have
ξ1−k = ξk−1 = (−1)l. Therefore it follows from (3.1) with ξ = η2 j+1 that

(−1)l
∞∑

m,n=1

xm+n

msns+k

( 1
m − nη2(2 j+1)

+
1

m − nη−2(2 j+1)

)

=

4dl∑
ν=0

η(2 j+1)(4dl−2ν) Li(s + ν + 1; x) Li(s + 4dl + 1 − ν; x)

= (−1)l
4dl∑
ν=0

η−2ν(2 j+1) Li(s + ν + 1; x) Li(s + 4dl + 1 − ν; x).

Summing both sides with j = 0, 1, . . . , d − 1 and using (4.1),

(−1)l
∞∑

m,n=1

xm+n

msns+4dl+1

2dm2d−1

m2d + n2d

= (−1)l
4dl∑
ν=0

(d−1∑
j=0

η−2ν(2 j+1)
)

Li(s + ν + 1; x) Li(s + 4dl + 1 − ν; x).

(4.2)

The left-hand side coincides with 2d (−1)lS(s − 2d + 1, s + 4dl + 1, 2d, 2d; x). On the
other hand, it follows from η4d = −1 that

d−1∑
j=0

η−2ν(2 j+1) =


2η−2ν

1 − η−4ν
=

1
i sin(νπ/2d)

(ν is odd),

0 2d - ν, ν is even,

d(−1)ν/2d (2d | ν).
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Hence the right-hand side of (4.2) can be rewritten as

(−1)l
( 4dl∑
ν=0
ν odd

1
i sin(νπ/2d)

Li(s + ν + 1; x) Li(s + 4dl + 1 − ν; x)

+ d
4dl∑
ν=0

2d | ν

(−1)ν/2d Li(s + ν + 1; x) Li(s + 4dl + 1 − ν; x)
)
.

We can confirm that the first sum vanishes by replacing ν with 4dl − ν, because
sin((4dl − ν)π/2d) = −sin(νπ/2d). Hence this is equal to

d(−1)l
2l∑
j=0

(−1) j Li(s + 2d j + 1; x) Li(s + 4dl + 1 − 2d j; x).

Therefore (1.5) holds for s > 1. Furthermore, we can see that both sides of (1.5) are
absolutely convergent for Re(s) > 0. Thus the proof of Theorem 1.2 is complete. �

R 4.1. In [4, Section 1], Goncharov gave a fascinating formula,
∞∑

m,n=1

xn
1xm+n

2

n(m + n)
= Li

(
2;

1 − x1

1 − x−1
2

)
− Li

(
2;

1

1 − x−1
2

)
− Li(2; x1x2).

In particular, the case (x1, x2) = (1/x, x) for |x| < 1 gives
∞∑

m,n=1

xm

n(m + n)
= −Li

(
2;

x
x − 1

)
. (4.3)

Setting x = 1/2 in (4.3) and using Li(2; −1) = −π2/12, we obtain (1.8).

E 4.2. Setting (d, l) = (1, 0) in (1.5),

S(s − 1, s + 1, 2, 2; x) =

∞∑
m,n=1

xm+n

ms−1ns+1(m2 + n2)
=

1
2

Li(s + 1; x)2. (4.4)

In particular, when s = 1,

S(0, 2, 2, 2; x) =

∞∑
m,n=1

xm+n

n2(m2 + n2)
=

1
2

Li(2; x)2, (4.5)

which can be regarded as an analogue of (4.3). Furthermore, setting x = 1 and s = 2, 3
in (4.4),

∞∑
m,n=1

1
mn3(m2 + n2)

=
1
2
ζ(3)2,

∞∑
m,n=1

1
m2n4(m2 + n2)

=
1

16 200
π8.
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Also, setting (d, l, s, x) = (1, 1, 3, 1), (1, 0, 1, −1) and (2, 0, 5, −1) in (1.5),

∞∑
m,n=1

1
m2n12(m2 + n2)

=
1451

229 864 635 000
π16,

∞∑
m,n=1

(−1)m+n

n2(m2 + n2)
=

1
288

π4,

∞∑
m,n=1

(−1)m+n

m2n6(m4 + n4)
=

961
1 828 915 200

π12,

by noting that Li(s; −1) = (21−s − 1)ζ(s). Furthermore, setting x = i in (1.5) and
considering its imaginary part,

∞∑
m,n=1

χ4(m + n)
mn3(m2 + n2)

= −
3
32
ζ(3)L(3, χ4) = −

3π3

1024
ζ(3),

where χ4 is the primitive Dirichlet character of conductor 4 and

L(s, χ4) =

∞∑
n=1

χ4(n)
ns

=

∞∑
m=0

(−1)m

(2m + 1)s

is the Dirichlet L-function associated with χ4.

E 4.3. As for the dilogarithm and the trilogarithm, we know that, for example,

Li
(
2,

1
2

)
=
π2

12
−

1
2

(log 2)2, (4.6)

Li
(
2,

3 −
√

5
2

)
=
π2

15
−

1
4

(
log

(3 −
√

5
2

))2

,

Li
(
3,

1
2

)
=

7
8
ζ(3) −

1
2
ζ(2) log 2 +

1
6

(log 2)3

(see [10]). Combining (4.5) and (4.6), we obtain (1.7). Furthermore, setting (s, x) =

(1, (3 −
√

5)/2) and (2, 1/2) in (4.4), we obtain

∞∑
m,n=1

((3 −
√

5)/2)m+n

n2(m2 + n2)
=

1
450

π4 −
(log((3 −

√
5)/2))2

60
π2 +

(log((3 −
√

5)/2))4

32
,

∞∑
m,n=1

2−m−n

mn3(m2 + n2)
=

(log 2)2

288
π4 −

( (log 2)4

72
+

7 log 2
96

ζ(3)
)
π2

+
(log 2)6

72
+

7(log 2)3

48
ζ(3) +

49
128

ζ(3)2.
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5. Series involving hyperbolic functions

Setting x = 1 in (1.5), we see that

S(s − 2d + 1, s + 4dl + 1, 2d, 2d; 1)

=
1
2

2l∑
j=0

(−1) jζ(s + 2d j + 1)ζ(s + 4dl + 1 − 2d j)
(5.1)

holds for s ∈ C with Re(s) > 0, d ∈ N and l ∈ N0.
It is well known that ζ(s) can be continued meromorphically to C and its singularity

is s = 1 (see [21, Ch. 13]). Hence, by (5.1), S(s − 2d + 1, s + 4dl + 1, 2d, 2d; 1)
can be continued meromorphically to C and its singularities are s = −2d j (0 ≤ j ≤ 2l).
In particular, S(s − 2d + 1, s + 4dl + 1, 2d, 2d; 1) is holomorphic for s = −1, though
s = −1 does not belong to its convergent region. Setting s = −1 and d = 1 in (5.1),

S(−2, 4l, 2, 2; 1) =
(2π)4l

8

2l∑
j=0

(−1) j B2 j

(2 j)!

B4l−2 j

(4l − 2 j)!
, (5.2)

because

ζ(2k) = −
(2πi)2k

2(2k)!
B2k (k ∈ N0).

Note that {Bn} are the Bernoulli numbers defined by Bn = Bn(0), where

teXt

et − 1
=

∞∑
n=0

Bn(X)
tn

n!

(see [21, Ch. 13]). On the other hand, it is known that

∞∑
n=1

coth(nπ)
n4l−1

= −
(2π)4l−1

2

2l∑
j=0

(−1) j B2 j

(2 j)!

B4l−2 j

(4l − 2 j)!
, (5.3)

as given by Lerch and recovered by Ramanujan (see Berndt [1, p. 293,
Equation (25.3)]). Combining (5.2) and (5.3), we obtain a strange formula as follows.

P 5.1. For l ∈ N,

S(−2, 4l, 2, 2; 1) = −
π

2

∞∑
n=1

coth(nπ)
n4l−1

, (5.4)

where the left-hand side of (5.4) is defined by analytic continuation using (5.1), while
it is not convergent.

R 5.2. Similarly, setting (d, s, x) = (1, −1, −1) in (1.5), and noting that

Li(2k; −1) = (21−2k − 1)ζ(2k) = −
(2πi)2k

2(2k)!
B2k

(1
2

)
(k ∈ N0)
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(see [3, Ch. 1]), we obtain

S(−2, 4l, 2, 2; −1) =
(2π)4l

8

2l∑
j=0

(−1) j B2 j(1/2)

(2 j)!

B4l−2 j(1/2)

(4l − 2 j)!
.

On the other hand, it is known that

∞∑
n=1

(−1)n

sinh(nπ)n4l−1
= −

(2π)4l−1

2

2l∑
j=0

(−1) j B2 j(1/2)

(2 j)!

B4l−2 j(1/2)

(4l − 2 j)!
,

as given by Cauchy [2] and recovered by Mellin [14] and also by Ramanujan (see
Berndt [1, p. 294, (25.5)]). Therefore

S(−2, 4l, 2, 2; −1) = −
π

2

∞∑
n=1

(−1)n

sinh(nπ)n4l−1
(l ∈ N). (5.5)

It would be interesting to give certain functional relations including (5.4) and (5.5).
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