
Diagnostics of the Solar Dynamo 
Using the Observed Pattern of 

Surface Magnetic Fields 

J.O. Stenflo 

Institute of Astronomy, ETH-Zentrum, CH-8092 Zurich, Switzerland 

Abstract: The solar surface represents for the solar dynamo an outer boundary that 
is directly accessible to observations. The evolutionary and rotational properties of the 
magnetic fields at this boundary can be empirically determined using existing synoptic 
magnetograph data. The derived properties provide detailed constraints on the under­
lying theory, such that an inversion approach to the dynamo problem becomes feasible. 
Ambiguities in the interpretation may be removed using the independent constraints 
from helioseismology. 

1. Introduction 

Most solar dynamo work of the past has aimed at qualitatively reproducing the 
butterfly diagram of sunspots. The sunspots are however only secondary manifes­
tations of the primary dynamo parameter, the magnetic field, they reflect only a 
certain aspect of the magnetic field (intense concentrations of toroidal flux), and 
they occur only at certain discrete locations on the sun. The magnetic fields, on 
the other hand, have been observed over the whole solar disk for three decades 
now, since 1959, and provide us with rich empirical constraints that may be used 
for dynamo inversions. The detailed magnetograph data however need to be con­
verted into forms more suitable for direct diagnostic purposes, as will be described 
in Sects. 2-4. 

Besides revealing the evolutionary properties and global wave modes of the 
solar dynamo, the surface magnetic flux can also be used as a tracer for determi­
nations of the solar rotation. The rotational phase velocity of the magnetic field 
pattern depends however not only on processes in the surface layers, but also on 
the processes in the deep layers of the solar interior, from which the surface fields 
are being replenished. In Sect. 5 we will indicate how these various effects may be 
untangled. 
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2. Data base 

Magnetograms (maps of the line-of-sight component of the magnetic field) have 
been recorded daily at the Mount Wilson Observatory since August 1959 and at 
the Kitt Peak Observatory since 1976. We do not have information on the vector 
magnetic field, but for investigations of the evolution of the field pattern it is 
a good approximation to assume that the true orientation of the field is on the 
average in the radial direction in the layers, where the field is being measured (the 
photosphere). The justification for this approximation is that the photospheric 
magnetic flux is extremely fragmented in individual fluxtubes, and the buoyancy 
forces acting on these fluxtubes in the radial direction are very strong due to the 
rapid exponential density decrease in the photosphere. The magnetograms may 
then be converted into maps of the radial component of the magnetic flux. When 
we in the following talk about the surface magnetic field B, we mean the radial 
magnetic flux, although we omit index r for brevity of notation. 

For a global mode analysis we like to expand the surface magnetic field pattern 
in the spherical harmonics l^m(j?,<^), where $ is the colatitude, <p the longitude: 

oo I 

B(*,<p,t) = Y, £ c?(t)Yr(#,<p). a) 
1=0 m=-l 

The dependence of B on time t is then accounted for by the time dependence 
of the complex harmonic coefficients C™. Using the orthonormal properties of the 
spherical harmonics, we can solve for the coefficients: 

c?(t) = J B(d, 9, WW, <f) dn. (2) 

The harmonic decomposition cannot however be carried out entirely as de­
scribed by Eqs. (1) and (2), since the sun is not observed from all sides at the 
same time. Observational sampling of the magnetic field over all longitudes can 
only be accomplished over the course of one solar rotation, i.e., about 27 days. 
Since the magnetic field pattern evolves significantly over this period, the longi­
tude ip and time t coordinates are no longer independent of each other. Moreover, 
as the sun rotates differentially, there is no unique way to define a longitude system 
on the sun (since any longitude system rotates rigidly). We will return to these 
questions later. 

A condensed synoptic data set that is easier to work with can be extracted from 
the full-disk daily magnetograms by sampling the magnetic field in one longitude 
band around the central meridian in each magnetogram. As the sun rotates, differ­
ent longitudes (decreasing from 360° to 0°) pass the central meridian, so during one 
month all longitudes get sampled, and a synoptic map can be constructed, giving 
the radial magnetic field over all latitudes and longitudes of the sun. The longi­
tude system normally adopted for such maps is based on the Carrington rotation 
period Pc = 27.2753 days. Let us denote the corresponding rotation frequency by 
vc = 1/JRC?. Then we have the following relation between the Carrington longitude 
ip and time t: 

https://doi.org/10.1017/S025292110007963X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110007963X


Diagnostics of the Solar Dynamo 195 

<p = -2n(uct-n). (3) 

n is an integer that ensures that <f> always stays in the interval —n < <p < ir. For 
convenience we have chosen the zero point of the time scale such that y> = 0 when 
t = 0. 

The choice of the longitude system is arbitrary and does not affect the analysis 
that will be described in the rest of the present review. If we want we can always 
replace the longitude coordinate tp by time t, using Eq. (3), and consider the 
magnetic field B a s a function of latitude and time only. It is also useful to replace 
the colatitude i? by x = cost?, since x represents the projected distance on the sun 
(when the axis of rotation is perpendicular to the line of sight), and the synoptic 
maps are digitized at points equidistant in x. The magnetic field is thus basically 
a function of x and t, and may be written B(x,t). 

The Kitt Peak data have been recorded with much higher spatial resolution 
than the Mount Wilson data. To obtain a homogeneous data base extending all 
the way back to 1959 we have therefore spatially averaged the Kitt Peak data 
and used them from 1976 onwards. The selected common format for the whole 
synoptic data set is defined by a grid of 30 zones equidistant in a; (the sine of the 
latitude), and 36 sectors equidistant in longitude. In the following we will describe 
the results based on such a synoptic data base extending over a period of 26 yr. 

3. Evolution of the axisymmetric field component 
3.1 "Butterfly diagram" of the radial magnetic flux 

The axisymmetric component of the magnetic field pattern may be obtained by 
averaging over all longitudes: 

B{xtt) = ± J B(x,v,i)4<p. (4) 

This longitude averaging may also be regarded as a smoothing of the data using a 
rectangular time window with a width of one Carrington rotation. The results of 
this smoothing process are not sensitive to the exact choice of width for the time 
window, except that a wider window is useful to suppress noise and short-term 
fluctuations. For the harmonic analysis we will use a window of lPc as in Eq. (4), 
but for a smoother representation of "butterfly diagrams" we will apply a time 
window of 16Pc (corresponding to 1.2 yr). 

The time smoothed B can be graphically represented as isocontours in latitude 
- time space, analogous to the representation of sunspots in the form of "butterfly 
diagrams". Figure 1 gives B, smoothed with a running 16Pc window, vs. x (sine 
of the latitude) and time t. The pattern is clearly predominantly of odd parity, 
i.e., anti-symmetric with respect to reflections in the equatorial plane. It exhibits 
the well-known features of polarity reversals every 11 yr, equatorward migration of 
the low-latitude zones, and steep poleward migration of the higher-latitude zones. 
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Observed magnetic field evolution 

1960 1970 1980 
Time 

Figure 1. Isocontours of the axially symmetric component of the radial magnetic field, 
vs. time and sine of the latitude. The solid (dashed) contours represent fields of positive 
(negative) polarity. From Stenflo (1988). 

3.2 Power spectrum analysis of the axisymmetric modes 

We can explore whether the pattern of Fig. 1 can be explained in terms of globally 
resonant waves by making a harmonic decomposition of the pattern and a power 
spectrum analysis of the harmonic coefficients. The power spectrum Pc^iy) is 
given by 

Pc?>) = -r|c~?>)|2, (5) 

where Te is the effective length of the time series (taking apodization and data 
gaps into account), and 

/

oo 
c^(r) e- ' 2 ' "" At (6) 

-oo 
is the Fourier transform of the harmonic coefficients. The axisymmetric harmonic 
coefficients (with m = 0) are obtained from the Legendre transform of B, as follows 
from Eqs. (2) and (4): 

c°t(t) = yJ-K(2l + 1) / B(x,t)Pt(x)dx. (7) 
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Odd parity Even parity 

Figure 2. Power spectra of the axisymmetric harmonic coefficients of the radial magnetic 
field, as functions of frequency and £. The white areas correspond to zero power, the 
darkest areas to the maximum spectral density for the given £ value. The resolution is 
indicated by the small box to the right of the diagram. From Stenflo (1988). 

Power spectra Pc°t(u) for the axisymmetric modes were first obtained by Stenflo 
and Vogel (1986). Figure 2 shows Pc° for the present 26 year data set. Odd and 
even parity refer to odd and even values of £, and correspond to patterns that 
are anti-symmetric and symmetric, respectively, with respect to reflections in the 
equatorial plane. 

We see that the power is not distributed continuously over the diagram, but 
is strongly concentrated around one frequency for each value of £. The power 
amplitudes of the even modes are 5-10 times smaller as compared with the odd 
modes, but they have been made visible by normalizing the gray scale in Fig. 2 
independently for each £ value to the maximum power in the respective I band. 
The low amplitudes of the even modes explain why the background noise is more 
prominent in the even-parity diagram as compared with the odd-parity one. 

The most striking feature of Fig. 2 is the entirely different behaviour of the 
odd and even modes, giving evidence for the operation of a strict parity selection 
rule on the sun. For the odd modes the power is concentrated around the 22 yr 
resonance, with hardly any sign of a second harmonic at 11 yr. In contrast the even 
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modes do not show any trace of the 22 yr resonance (the peak of the quadrupole 
1 = 2 mode occurs at a period of 14 yr and is of very small amplitude — it appears 
prominent as a result of the gray-scale normalization). Instead, the frequency at 
which maximum even-mode power occurs increases with increasing £ value, in a 
way reminiscent of the helioseismology p-mode ridges, which are due to standing 
global waves in the sun's interior. The underlying physics responsible for this 
dispersion relation has not yet been definitely identified, although Hoyng (1987, 
1988, 1990) has shown that stochastic excitation of dynamo modes would lead to 
a dispersion relation of the type u> ~ or v ~ \/£, in qualitative agreement 
with Fig. 2. w ~ vk is the dispersion relation for free dynamo waves in the a — u> 
dynamo if one omits the diffusion terms. Note also that Alfven waves along kG 
toroidal fluxropes in the lower part of the convection zone will have periods in the 
observed range (Stenflo and Vogel, 1986). 

Gokhale and Javaraiah (1989) and Gokhale et al. (1990) have performed the 
same type of power spectrum analysis of the axisymmetric harmonic modes for 
the distribution of sunspots over the solar surface. Their results, which are based 
on the more than one hundred years long Greenwich sunspot data set, confirm 
and extend our results for the magnetic field pattern. The length of the Greenwich 
data set has also allowed them to explore the stability of the relative amplitudes 
and phases of the modes of different £ values when moving in time from cycle to 
cycle. 

3.3 "Modal cleaning" of the butterfly diagram 

The circumstance that the power spectrum diagram of Fig. 2 has the character of 
an emission-line spectrum with a weak and noisy continuous background suggests 
that the sun's magnetic field can to a good approximation be described as a super­
position of discrete global modes, which may be the eigenmodes of an underlying 
linear wave equation. 

Assuming that the observed pattern can be represented by one discrete global 
mode per £ value, the axisymmetric part of Eq. (1) can be written as 

N 

B(x, t) = Re Y^ ae e ' " " ' ' Pt(x), (8) 

where N is the maximum £ value that we have spatially resolved (N = 14 in our 
case), and at are the complex mode amplitudes. Eq. (8) implies that we approxi­
mate the power spectrum of Fig. 2 as a superposition of ^-function peaks, one for 
each £ value. 

If we factorize each complex amplitude in an absolute value and a phase factor, 
Eq. (8) can be written as 

N 

B(x, t) = Yl \a*\ cos[2irvt(t - tt)) Pt(x), (9) 
t=i 

where we have introduced a time lag t( related to the phase <j>t by 
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<f>t = - 2 T T U ( te. (10) 

Equation (9) contains three unknowns for each I value: the absolute amplitude 
|a/1, the time lag te, and the frequency vt- The frequency can be fixed by choosing 
the value at which the power spectrum maximum occurs for each l value in Fig. 2. 
The two remaining free parameters for each of the 14 modes can be determined by 
an iterative least squares fit to the "butterfly diagram" of Fig. 1 (Stenflo, 1988). 
This gives us the amplitudes and phases of the modes, and allows us to reconstruct 
"cleaned-up" butterfly diagrams through superposition of selected discrete modes, 
using Eq. (9). 

Superposition of the 7 odd modes 
1= 1 ,3 , . . . ,13 

1960 1970 1980 
Time 

Figure 3. The axisymmetric component of the radial magnetic field described as a 
superposition of 7 discrete harmonic modes of odd parity, each varying sinusoidally with 
a 22 yr period. From Stenflo (1988). 

As the odd modes are the dominating ones and are all represented by one and 
the same frequency, (22 y r ) - 1 , it is particularly useful to reconstruct the "modally 
cleaned" butterfly diagram as a superposition of the 7 odd modes alone. This 
has been done in Fig. 3, which nicely brings out the equatorward and poleward 
migrations of the anti-symmetric pattern, as well as the 11 yr polarity reversals. 
This is the pattern that dynamo models of the sun need to reproduce. 
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Note that each linearly superposed mode is strictly sinusoidal and therefore 
time symmetric, whereas the composite diagram of Fig. 3 exhibits a clear arrow of 
time as a consequence of the definite sense of latitude migration of the pattern. As 
all the superposed sinusoidal modes have the same frequency, the time direction 
is exclusively determined by the systematic, relative phase relations between the 
modes of different £ values, as will be seen below. 

3.4 Amplitudes and phases, and their use for dynamo inversions 

The amplitudes and phases determined by the iterative least squares fit to the 
pattern of Fig. 1 are given in Fig. 4. The phases in the diagram to the lower right 
have been obtained from the time lags via Eq. (10), adding multiples of 2ir to some 
of the <f>t values to bring out the systematic shift of the phases with increasing £. 
It is this systematic shift that establishes the arrow of time in Fig. 3. 

fa 

S 

2 4 6 8 10 12 14 

Spherical harmonic degree £ 
2 4 6 8 10 12 14 

Spherical harmonic degree I 

Figure 4. Frequencies, amplitudes, and phases of the odd (stars and solid lines) and 
even (pluses and dashed lines) modes. Adapted from Stenflo (1988). 

We notice in Fig. 4 that the maximum mode amplitude does not occur for 
the dipole (£ = 1) mode, as is often assumed, but for the mode with £ = 5. The 
even-mode amplitudes are smaller than the odd-mode ones by typically a factor 
of five, and the amplitude declines monotonically with £. 
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The amplitudes and phases of the odd modes represent 14 observables that may 
be used as observed boundary constraints for inversions of the dynamo problem. 
Let us give an example of how such an inversion can be done. The main parameters 
governing the operation of the solar dynamo are the helicity, the turbulent diffu-
sivity, and the angular velocity gradient. As the angular velocity of rotation can 
be obtained from helioseismology, it need not be regarded as an unknown param­
eter for the dynamo problem. What remains is therefore the depth and latitude 
variation of the helicity and diffusivity. If this variation is parameterized in terms 
of a sufficiently small number of free parameters, then an inversion using iterative 
least squares fitting of the observables will give us the values of the free model 
parameters with error bars. 

This type of inversion approach has proven very useful even for highly non­
linear problems, e.g. the inversion of Stokes line profiles to derive the temperature 
stratification in the interior of small-scale magnetic fluxtubes (Keller et al., 1990). 
It is important to choose the free parameters of the model carefully to make the 
problem numerically well conditioned, and test for the uniqueness of the solution 
by trying iterations with widely different starting values. The goodness of the fit 
is given by the resulting value of x2 , which tells us how well the observables can 
be reproduced within the general framework of the chosen theoretical model. 

4. The non-axisymmetric modes 

4.1 Effect of differential ro ta t ion 

As we cannot observe the sun simultaneously from all sides and thus not sample all 
longitudes simultaneously, the longitude and time coordinates are not independent 
of each other, but are related according to Eq. (3). This relation is somewhat 
arbitrary, since it depends on the choice of a rigidly rotating coordinate system, and 
we know that the sun in fact rotates differentially (and there is even a coexistence 
of different rotation laws, as we will see in Sect. 5). In contrast to the axisymmetric 
modes, for which the longitude information is simply averaged away, differential 
rotation has a profound effect on the non-axisymmetric modes (with m ^ 0). 

To obtain information on possible periodicities and resonant behaviour of the 
non-axisymmetric modes we need to derive the Fourier transform c™(i/) of the 
time series of the harmonic coefficients. These coefficients are formally determined 
by Eq. (2), which can be expressed more explicitly, using the associated Legendre 
polynomials P/"(x), as 

c?(t) = fT J dx Pt
m(x) f &p B(x,<p,t)e-im*, (11) 

where 

/ 2 l + l ( l - m ) ! 
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The second integral in Eq. (11) constitutes a Fourier transform over a circular 
longitude interval, while the first integral makes a Legendre transform of the second 
integral. 

Due to the coupling between time and longitude, the longitude interval of 2w 
used in Eq. (12) can be regarded as a time interval of length Pc, the Carrington 
period. We can thus replace the Fourier transform in longitude by a Fourier trans­
form over an infinite time interval, if we also introduce a time window function wc 
of width Pc, with a value of unity inside the window, zero outside. Accordingly 

c?(t) = 2*vc I D?(t')wc(t' -t)ei2*m,,ct' At', (13) 
J — OO 

where t 

D?(t) = f? J_ B(x, t)Pr(x) dx (14) 

is the Legendre transform of the radial magnetic field for a given longitude and 
time t. 

The needed Fourier transform, defined by Eq. (6), of the time series described 
by Eq. (13), then becomes 

c?(v) = 2nD?(v - mvc) smc(u/uc), (15) 

where the sine function, defined by 

smc(u/uc) = , , (16) 
irv/vc 

arises from Fourier transforming the window function. 
We can now see how differential rotation affects the frequency spectrum of the 

non-axisymmetric modes. The Fourier transform D™(v) of the Legendre transform 
time series D™(t) is dominated by the effect of the pattern recurrence after an 
integer number of rotation periods. This recurrence causes "rotation peaks" in 
the frequency spectrum to occur at frequencies v = TUVR, where VR is the rotation 
frequency, VR lies in the neighbourhood of uc, but it varies with latitude, due to the 
sun's differential rotation. The Legendre transform superposes the contributions 
from different latitudes with different weights. Therefore, instead of ideally having 
^-function peaks at mvR, we get a distribution or "forest" of subpeaks around 
mvc-

When forming the Fourier transform c™(u) of the harmonic coefficients, the 
"rotational forest" of the given m value is translated down to the region around 
zero frequency, as seen by Eq. (15). The sine function in Eq. (15) serves as a fixed 
low-pass filter, which transmits the low frequencies while suppressing the rotational 
peaks of the other, not wanted m values. The problem is that the rotational distri­
bution around zero frequency covers the whole frequency range where evolutionary 
effects of the non-axisymmetric modes are expected. We need to somehow dig out 
the subtle evolutionary information from the "rotational jungle". This is not pos­
sible by direct inspection of the power spectra as was done for the axisymmetric 
modes, but requires the procedure that will be described next. 
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4.2 Extraction of the "evolutionary splitting" 

Evolutionary periodicities or resonances will cause "evolutionary splitting" of the 
rotational peaks. The systematic splitting pattern of each peak can be extracted 
by making an autocorrelation analysis of the Fourier transform of the harmonic 
coefficients. The complex autocorrelation function is defined by 

A?{r) = ( ~c?{v) c 7 > + r ) ) / ( | c ? > ) | 2 ) , (17) 

where r is the frequency lag. 
An evolutionary resonance, like the Hale frequency vu =(22 y r ) - 1 , gives rise to 

doublets with a total peak separation of 2UH, which results in an autocorrelation 
peak at r = 2UJJ. Due to this frequency doubling we will in the following diagrams 
give the autocorrelation results vs. T / 2 instead of vs. r , to allow us to read off the 
relevant frequencies directly. 

The spatial resolution of our data set allows us to compute the harmonic co­
efficients for m values from zero through 17 without aliasing. In Fig. 5 we have 
averaged the complex autocorrelation functions for all the 17 m values 1 < m < 17 
for each given, fixed value of I — m. The moduli of these averaged autocorrelation 
functions have then been plotted in a grey-scale representation (with darker re­
gions representing higher autocorrelation) as functions of T/2. AS odd and even 
values of £ — m correspond to patterns anti-symmetric and symmetric with re­
spect to reflections in the equatorial plane, respectively, Fig. 5 allows us to look 
for any possible breaking of parity symmetry, which was such a prominent feature 
in the case of the axisymmetric modes. We also recall that I — m + 1 represents 
the number of zones of the associated Legendre polynomial P™, so I — m can also 
be regarded as representative of a zonal number. The global (£ — m-independent) 
grey scale cuts used in Fig. 5 will be defined in Fig. 6 below. 

In contrast to the axisymmetric modes, the non-axisymmetric modes in Fig. 5 
do not show any sign of parity dependence, and seem to have no I — m-dependent 
dispersion relation. Allowing for the noise fluctuations, the diagrams of Fig. 5 
are instead characterized by horizontal bands, indicating a resonant but t — m-
independent evolution of the non-axisymmetric modes. The 22 yr resonance dom­
inates, but the grey-scale cuts have been set low in Fig. 5 to bring out the other 
low-amplitude resonances. We see for instance one band with a period of 4-5 yr, 
with the next band occurring around the second harmonic of this frequency. 

As there seems to be no I and m dependence of the resonant pattern, we may 
average the complex autocorrelation functions for all the spatially resolved £ and 
m modes to better bring out the low-amplitude resonances from the background 
noise. This has been done separately for odd and even parity (£ — m) in Fig. 6. 
Thus 119 (= 7 x 17) autocorrelation functions contribute to the odd mode curve, 
136 (= 8 x 17) functions to the even mode curve. The right diagram of Fig. 6 gives 
a close-up look at the lower-frequency region of the left diagram. 
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Autocorrelation of c™{u) 

Odd parity Even parity 
J i i 1 i i „ i ' ' i i 

Figure 5. Autocorrelation amplitudes of the non-axisymmetric modes, as functions of 
frequency (r/2) and zonal number. The results are given in separate diagrams for odd 
and even I — m, and contain the averaged contributions from all the m values from 1 
through 17. Global grey-scale cuts, independent of the value of I — m, have been used 
(as defined in Fig. 6). From Stenflo and Giidel (1988). 

4.3 Interpretation of the non-axisymmetric modes 

The most striking feature of Fig. 6 is the almost perfect agreement between the 
independently derived curves representing odd and even parity. The amplitudes 
of the dominating 22 yr peak are for instance equal to within 2 %. Even the high-
frequency, low-amplitude wiggles are extremely well matched between the two 
parities. This strongly suggests that practically all of these wiggles are real and of 
solar origin, and may therefore be subject to a serious analysis. 

The horizontal band with its second harmonic seen in Fig. 5 appears in Fig. 
6 with an apparent triplet structure, with a central frequency of 4.6 or 2.3 yr, 
surrounded by side peaks shifted by ±(22 y r ) - 1 . At higher frequencies the diagram 
gets very crowded with apparently overlapping peak patterns. This part of the 
diagram cannot be interpreted without a much more elaborate analysis, which has 
not yet been carried out. 
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F igu re 6. Autocorrelation amplitude as a function of frequency r / 2 , for odd (solid curve) 
and even (dashed curve) values of £—m. The curves represent averages of the contributions 
from all the £ and m values with the given parity. A possible triplet structure with its 
second harmonic is indicated in the right diagram. The cuts used for the grey scale of 
Fig. 5 are marked by the two longest tick-marks on the vertical axis. From the lower to 
the upper tick-mark the grey scale varies from white to black. Before applying the cuts, 
however, the lower, straight-line envelop marked by the dashed-dotted line in the lower 
left-hand corner has been subtracted, to bring the minima surrounding the 22 yr peak 
down to the range of the cuts. From Stenflo and Giidel (1988). 

The following scenario may provide a general, quali tat ive framework for under­
s tanding the results for the non-axisymmetric modes. T h e dominant 22 yr mode 
represents the periodicity in the dynamo product ion of new toroidal flux inside 
the sun. This flux is made visible when par t of it emerges to the surface from the 
product ion region. Flux emergence is triggered by non-axisymmetric deformations 
of the toroidal flux ropes. As these deformations may propagate along the closed 
toroidal flux as waves, they may develop a resonant s t ructure through constructive 
and destructive interference. These interferences will then appear as periodicities 
in the emergence of new bipolar flux and get revealed by our analysis. The fre­
quencies tha t we find then represent the eigenmodes of the underlying waves. Wave 
periods of the order of a few years are expected if the waves travel with the Alfven 
velocity along kG fields at the b o t t o m of the convection zone. 

When a localized bipolar magnet ic region is described by an expansion in terms 
of spherical harmonics, it will contr ibute to the harmonic modes of all £ and m 
values u p to a spatial frequency corresponding to the inverse size of the bipolar 
region. Therefore the periodicities in the flux emergence will appear with the same 
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frequencies for all £ and m values, which explains the horizontal band structure 
in Fig. 5. The available amount of flux is modulated by dynamo action with a 
22 yr period, and this modulation combines with the various frequencies of flux 
emergence to produce the triplet splitting patterns seen in Fig. 6 (Stenflo and 
Giidel, 1988). 

If this general scenario is adopted, then the various low-amplitude resonant 
frequencies may be used to provide diagnostic constraints on the distribution of 
magnetic flux and on the field strengths in the solar interior. 

5. Pa t te rn phase velocity and the 
internal angular velocity 

5.1 Coexistence of two magnetic field rotation laws 

The observed pattern of surface magnetic flux may be used as a tracer for determi­
nations of the sun's differential rotation. Two different methods have been used: 
(1) The "longitude displacement method" (Snodgrass, 1983), and (2) the "pat­
tern recurrence method" (Stenflo, 1989). Although the two methods have been 
applied to the same magnetograph data, and both measure the phase velocity of 
the magnetic pattern, they produce entirely different rotation laws. 

The first method determines the proper motion in the longitude direction of 
the pattern by comparing consecutive full-disk magnetograms, separated in time 
by 1-4 days. The longitude displacement of the pattern is determined by cross-
correlation of the flux pattern in the different magnetograms, without any identi­
fication of individual flux features. The second method uses only the flux sampled 
at the central meridian. For each latitude zone we get the field as a function of 
time, and the time series that has been used is 26 yr long (1959-1985), as described 
above in Sect. 2. Autocorrelation or power spectrum analysis can be directly ap­
plied to the 26 yr time series for each of the 30 latitude zones. The recurrence of 
the pattern at the central meridian after an integer number of solar rotations gives 
rise to equidistant peaks in the autocorrelation function as well as in the power 
spectrum. The peak locations determine the pattern phase velocity. 

Figure 7 compares the resulting rotation laws. The four different types of sym­
bols plotted refer to rotation rates determined from the center of gravity of each 
of the four first autocorrelation peaks (with lags from one to four months). They 
show that the four peaks give consistently very similar rotation rates. The synodic 
rotation period reaches a maximum of about 29.5 days around a latitude of about 
55°, with a tendency for a small polar spin-up. In the case of the Snodgrass law 
(solid curve), however, the rotation period increases steeply with latitude, reaching 
a value of about 38 days at the poles. The Snodgrass law on the other hand closely 
agrees with the rotation law determined from Doppler measurements (Howard et 
al., 1983), represented by the dashed-dott ed curve. 
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Figure 7. Synodic period of rotation of the magnetic field pattern. The four different 
symbols represent the rotation rate determined with the recurrence method, using lags 
of one (open circles), two (stars), three (pluses), and four (crosses) rotation periods. The 
solid curve represents the rotation law of Snodgrass (1983), while the dashed-dotted curve 
has been obtained from Doppler line shifts (Howard et al., 1983). From Stenflo (1989). 

5.2 "Active longitudes" and pattern regeneration 

We note that the longitude displacement and recurrence methods both refer to 
the phase velocity of the magnetic pattern. Both use a rather coarse spatial grid 
(Snodgrass averages over about one arcmin square). The only essential difference 
between them is the time lag used in the correlation analysis, 1-4 days for the 
longitude displacement method, 27 days or more for the recurrence method. 

The close agreement between the longitude displacement and the Doppler re­
sults shows that the pattern phase velocity determined from small correlation lags 
agrees with the plasma velocity in the photosphere. It has in the past been pop­
ular to invoke surface flux redistribution processes (like turbulent diffusion and 
meridional circulation) to explain how the phase velocity will deviate with time 
more and more from the plasma velocity, such that a quasi-rigid pattern rotation 
is approached (Sheeley et al., 1987). Such processes can however be ruled out as 
an explanation of the two coexisting rotation laws, even if the time scale for such 
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a redistribution would be arbitrarily short, e.g. less than a month (Stenflo, 1989). 
The reason is the following: 

In the redistribution models (e.g. Sheeley et al., 1987) a quasi-rigid pattern 
phase velocity develops due to reshuffling of existing, old surface flux. To clarify the 
consequences of such models, let us assume that the flux pattern initially rotates 
with the plasma velocity but within some short time, say a month, develops a 
quasi-rigid phase velocity. If then the longitude displacement method of Snodgrass 
is applied, this quasi-rigid pattern phase velocity will be picked up, in strong 
contradiction with what is being observed for the real sun. Once a quasi-rigid 
pattern phase velocity has been established by reshuffling of the old flux, assuming 
no significant contributions from new emerging flux, then correlation analysis in 
the limit of small lags, like the longitude displacement method, will find the quasi-
rigid phase velocity, not the plasma velocity. In contrast Snodgrass (1983) finds 
a steep differential rotation law that agrees with the plasma rotation. This law is 
moreover found to be time invariant, applying to the whole 15yr period that he 
studied. 

The only process that has been found to account for the coexistence of the 
two pattern phase velocities is pattern renewal by flux emergence from the solar 
interior over a time scale of less than 27 days, but more than a few days. In 
this scenario the surface magnetic pattern observed at any given time represents 
new flux that has emerged within the past month, and does not consist of old 
fluxes that have their origin in redistribution of active-region fluxes. New flux that 
arrives at the surface will initially drift with the "local winds", and thus have 
a phase velocity that agrees with the plasma velocity, as found by the longitude 
displacement method. As the flux turnover time is less than a month, however, the 
recurrence method will not measure something related to the photospheric plasma 
velocity, but will correlate the regions of flux emergence, the "active longitudes", 
with each other. They rotate quasi-rigidly, not because of some redistribution 
processes, but because of the rotation properties of the source in the solar interior, 
from which the surface pattern is constantly being replenished. 

This explanation revives and generalizes the old concept of "active longitudes" 
(cf. Sawyer, 1968; Bogart, 1982). The concept is generalized because it is used here 
not so much for active-region flux, but primarily for flux emerging far from the 
active-region belts, at high latitudes (where the discrepancy between the two ro­
tation laws is the most pronounced). It may appear surprising that flux emergence 
would be so pervasive and occur at such an enormous rate. Video magnetograph 
observations of flux emergence and cancellation rates (Martin, 1990) however in­
dicate that the turnover time scale for the flux pattern is really this extremely 
short. No other viable explanation of the two coexisting rotation laws has been 
proposed. 
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5.3 Location of the magnetic source region inside the sun 

The recurrence method has also been used to explore if the quasi-rigid rotation law 
varies with the phase of the 11 yr cycle. Such variations could occur if for instance 
the depth distribution of the sources of magnetic flux varies with the cycle (and the 
angular velocity of rotation varies with depth), or if there are torsional oscillations 
in the source region. For this purpose the 26 yr time series have been divided into 
21 time windows of length 16 Carrington rotations ( « 1.2 yr), and the rotation rate 
has been determined by power spectrum analysis for each of the 21 x 30 = 630 
time series. 

The quasi-rigid rotation law determined by the recurrence method is thereby 
found to be time invariant within tight limits (Stenflo, 1990). Thus the random 
rms fluctuations are ^ 0.3 % at low latitudes, increasing to 2-3 % at high latitudes 
(where the signal-to-noise ratio is smaller due to the smaller amplitudes of the line-
of-sight magnetic flux there). Translated to linear velocities for a source region at 
the bottom of the convection zone these limits correspond to ^ 4 m s - 1 at low 
latitudes, & 10-20 m s " 1 at high latitudes. In contrast the Snodgrass rotation law 
deviates from the recurrence rotation law by as much as about 20 % near the poles. 

These results speak in favour of flux storage at the bottom of the convection 
zone throughout the course of the solar cycle. If the storage depth would vary 
with the cycle, then any radial gradient of the angular velocity of rotation would 
show up as an apparent cycle-dependent variation of the phase velocity of the 
surface pattern, which is not observed. Now results from helioseismology (Morrow, 
1988; Ubbrecht, 1988; Brown ei al, 1989; Dziembowski et al, 1989) suggest that 
the radia 1 gradient of the angular velocity is small throughout the bulk of the 
convection zone, but that there is a transition to a rigidly rotating core near 
the bottom of the convection zone. As however the bulk of the convection zone 
rotates nearly with the surface rate according to this picture, the flux storage 
region with its quasi-rigid rotation can hardly be located there. Thus the results 
from helioseismology when combined with the magnetic-field data support the 
conclusion that the magnetic flux is stored near the bottom of the convection zone. 
Flux storage at this location, which has been advocated in the past on theoretical 
grounds (e.g. Spiegel and Weiss, 1980; Spruit and van Ballegooijen, 1982; DeLuca, 
1987; Schiissler, 1987), has thus been given empirical support. 

5.4 Angular velocity structure of the solar interior 

The apparent absence of time variations in the observed phase velocity of the 
source pattern is easier to understand if the phase velocity approximately agrees 
with the plasma velocity in the source region. Any deviation between the phase 
and plasma velocities would be expected to vary with the solar cycle, since the 
dynamo evolves with time, and the sources of flux migrate in latitude. The absence 
of observed variations suggests that the phase velocity closely follows the plasma 
velocity, which should be time invariant (as long as the kinetic energy densities 
at the bottom of the convection zone are much larger than the magnetic energy 
densities, which is the case if the field strengths are much less than megagauss). 
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It thus appears that the longitude displacement method of Snodgrass gives 
the rotation law for the surface layers (the photosphere), whereas the recurrence 
method gives the law for the source region, which has a likely location at the bot­
tom of the convection zone. Our analysis of the magnetic-field data however has 
not provided us with any information on the angular velocity of the intervening 
layers of the convection zone. If we use the mathematically simplest procedure 
(without any physical justification) of linear interpolation between these two re­
gions (top and bottom of the convection zone), then we obtain the isocontour 
plot of the angular-velocity structure of the sun given to the right in Fig. 8. It is 
compared with the rotational structure obtained from helioseismology (Libbrecht, 
1988), given to the left in Fig. 8. Such a comparison has also been provided by 
Brandenburg (1990). 

Figure 8. Isocontours of the sun's angular velocity of rotation, derived from helioseis­
mology (left diagram, from Libbrecht (1988)) and from the observed pattern of surface 
magnetic fields (right diagram, from Stenflo (1989)). The two rotation laws for the pat­
tern phase velocity have been taken to represent the top and bottom of the convection 
zone, with linear interpolation in between. 

In spite of the simplistic use of linear interpolation between the top and bot­
tom of the convection zone there are considerable similarities between the two 
diagrams of Fig. 8. Thus while the contours are predominantly radial at low lati­
tudes, they become increasingly perpendicular to the sun's rotational axis at higher 
latitudes. This qualitative result is in direct contradiction with predictions from 
numerical simulations that the contours should be largely parallel to the rotational 
axis (Glatzmaier, 1987), but it agrees with other theories of the sun's differential 
rotation (e.g. Riidiger and Tuominen, 1990). 

Closer agreement with the helioseismology diagram would be obtained if we 
instead of linear interpolation between the top and bottom of the convection zone 
would let the surface rotation law prevail throughout most of the convection zone, 
and do our interpolation within a transition zone near the bottom of the convection 
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zone. This implies that the isocontours in the right diagram of Fig. 8 would be 
strictly radial from the surface down to the top of the transition zone, and that 
the isocontour 

structure within the transition zone would look like a compressed version of 
the present right-hand diagram. 

The only significant disagreement with helioseismology occurs at low latitudes, 
in the active-region belts, where helioseismology finds an angular velocity at the 
bottom of the convection zone that is slower as compared with the surface rate, 
whereas our low-latitude rates instead are very similar to the surface rates, with 
a tendency of being slightly faster (although by less than one percent). The cause 
for this discrepancy has not been identified yet, but it may be that the scenario of 
rapid regeneration of the flux pattern over a time scale of less than a month 

is less applicable at active region-latitudes, since many of the individual flux 
elements (e.g. sunspots) there are much larger than at high latitudes and have 
much longer lifetimes, which means that their old fluxes will dominate the pattern 
for much longer periods than the flux elements at high latitudes. 

The regeneration scenario was introduced as the necessary and apparently only 
possibility for explaining the coexistence of highly different pattern phase veloc­
ities. The two rotation laws rapidly diverge from each other at high latitudes, 
but at low latitudes the difference is below one percent and not very significant. 
Therefore, if the low latitudes were considered in isolation, there would be prac­
tically only one single magnetic rotation law, and thus no problem requiring an 
explanation. 

These questions may be clarified, on the one hand by direct observations of the 
flux regeneration rate as a function of latitude, on the other hand by more definite 
observations of the p-mode rotational splittings. The regeneration problem is par­
ticularly difficult, since most of the "background" magnetic flux far from active 
regions is expected to emerge and disappear over very small spatial scales, possi­
bly beyond the resolution capabilities of currently used magnetographs. It is the 
accumulated effect of many such small-scale emergence and disappearance events 
that produces the large-scale flux pattern that we use for our correlation analyses. 
The key to an understanding of the large scales thus lies in the observation of 
the smallest scales, which requires powerful telescopes. The planned, international 
LEST (Large Earth-based Solar Telescope) has a design (Engvold and Andersen, 
1990) that is optimized for solving this problem. 

Acknowledgements. The Mount Wilson data used throughout this review has been 
recorded under the direction of Robert Howard and been subsequently organized in the 
30 X 36 array synoptic format at the High Altitude Observatory. The Kitt Peak synoptic 
data set has been compiled and made available by J.W. Harvey. 

https://doi.org/10.1017/S025292110007963X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110007963X


212 J.O. Stenflo: Diagnostics of the Solar Dynamo 

References 

Bogart, R.S.: 1982, Solar Phys. 76, 155 
Brandenburg, A.: 1990, Ph.D. Thesis, Observatory and Astrophysics Laboratory Rep. 

2/1990, Univ. of Helsinki 
Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., 

Morrow, C.A.: 1989, Astrophys. J. 343, 526 
DeLuca, E.E.: 1987, Ph.D. Thesis, Univ. of Colorado (available as NCAR Cooperative 

Thesis No. 104) 
Dziembowski, W.A., Goode, P.R., Libbrecht, K.G.: 1989, Astrophys. J. 337, L53 
Engvold, 0 . , Andersen, T. (eds.): 1990, LEST Design, LEST Foundation 
Glatzmaier, G.A.: 1987, in The Internal Solar Angular Velocity, eds. B.R. Durney, S.Sofia, 

Astrophys. Space Sci. Library 137, 263 
Gokhale, M.H., Javaraiah, J.: 1989, Monthly Not. Royal Astron. Soc, in press 
Gokhale, M.H., Javaraiah, J., Hiremath, K.M.: 1990, in Solar Photosphere: Structure, 

Convection, and Magnetic Fields, ed. J.O. Stenflo, IAU Symp. 138, 375 
Howard, R., Adkins, J.M., Boyden, J.E., Cragg, T.A., Gregory, T.S., LaBonte, B.J., 

Padilla, S.P., Webster, L.: 1983, Solar Phys. 83, 321 
Hoyng, P.: 1987, Astron. Astrophys. 171, 357 
Hoyng, P.: 1988, Astrophys. J. 332, 857 
Hoyng, P.: 1990, in Solar Photosphere: Structure, Convection, and Magnetic Fields, ed. 

J.O. Stenflo, IAU Symp. 138, 359 
Keller, C.U., Solanki, S.K., Steiner, 0 . , Stenflo, J.O.: 1990, Astron. Astrophys. 233, 583 
Libbrecht, K.G.: 1988, in Seismology of the Sun and Sun-Like Stars, eds. V. Domingo, 

E.J. Rolfe, ESA SP-286, p. 131 
Martin, S.F.: 1990, in Solar Photosphere: Structure, Convection, and Magnetic Fields, 

ed. J.O. Stenflo, IAU Symp. 138, 129 
Morrow, C.A.: 1988, Ph.D. Thesis, Univ. of Colorado (available as NCAR Cooperative 

Thesis No. 116) 
Riidiger, G., Tuominen, I.: 1990, in Solar Photosphere: Structure, Convection, and Mag­

netic Fields, ed. J.O. Stenflo, IAU Symp. 138, 315 
Sawyer, C : 1968, Ann. Rev. Astron. Astrophys. 6, 115 
Schiissler, M.: 1987, in The Internal Solar Angular Velocity, eds. B.R. Durney, S. Sofia, 

Astrophys. Space Sci. Library 137, 303 
Sheeley, N.R., Jr., Nash, A.G., Wang, Y.-M.: 1987, Astrophys. J. 319, 481 
Snodgrass, H.: 1983, Astrophys. J. 270, 288 
Spiegel, E.A., Weiss, N.O.: 1980, Nature 287, 616 
Spruit, H.C., van Ballegooijen, A.A.: 1982, Astron. Astrophys. 106, 58 
Stenflo, J.O.: 1988, Astrophys. Space Sci. 144, 321 
Stenflo, J.O.: 1989, Astron. Astrophys. 210, 403 
Stenflo, J.O.: 1990, Astron. Astrophys. 233, 220 
Stenflo, J.O., Gudel, M.: 1988, Astron. Astrophys. 191, 137 
Stenflo, J.O., Vogel, M.: 1986, Nature 319, 285 

https://doi.org/10.1017/S025292110007963X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110007963X



