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Periods of abelian varieties
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Abstract

We prove various characterizations of the period torsor of abelian varieties.
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Introduction

For an abelian variety A over Q, H1(A(C),C) has two Q-structures, that provided by singular
cohomology H1(A(C),Q) and that provided by de Rham cohomology H1(AZar,Ω•

A/k). The periods
of A are the coefficients of the transition matrix from a Q-basis for one structure to a Q-basis for
the other. It is known [Del82a] that Hodge classes on A impose algebraic relations on the periods,
and it is conjectured that these are the only such relations. Thus, there appears to be no hope of
obtaining an explicit description of the periods themselves, but one may still hope to characterize
some of the objects attached to them. The singular and de Rham cohomologies define fibre functors
on the category of motives based on the abelian varieties over Q, and the difference of these functors
is measured by the period torsor PAV. In this paper, we obtain various characterizations of PAV.
Beyond its intrinsic interest, the period torsor controls the rationality of automorphic vector bundles,
and therefore of holomorphic automorphic forms (see [Mil88] and [Mil90, § III 4]).

The first problem one runs into is that PAV is a torsor for an affine group scheme G over Q for
the flat (more specifically, the FPQC) topology. Such torsors are classified by the flat cohomology
group H1(Q, G) rather than a more familiar Galois cohomology group. For an algebraic quotient
Gn of G, the two cohomology groups coincide. In § 1 we prove that the canonical map

H1(Q, G)→ lim←−H
1(Q, Gn)

is surjective, and that the fibre of the map containing the class of a G-torsor P is

lim←−
1(P ∧G Gn)(Q)

(nonabelian higher inverse limit). The limits are over the set of algebraic quotients Gn of G. We
show, moreover, that the full group H1(Q, G) can be interpreted as a Galois cohomology group,
but it is Galois cohomology defined using cochains that are continuous relative to the inverse limit
topology on lim←−Gn(Qal) (discrete topology on each Gn(Qal)). It is important to note that these
results depend crucially on the fact that the algebraic quotients of G form a countable set; I do not
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even know how to define a nonabelian higher inverse limit except for countable coefficient sets. The
remainder of § 1 reviews results, more or less known, concerning nonabelian higher inverse limits
and the classification of morphisms of torsors.

In § 2, we take up the problem of characterizing PCM, the period torsor for the category of motives
based on abelian varieties of (potential) CM-type over Q. Since, as Deligne has pointed out, the
period torsor PArt attached to the subcategory of Artin motives can be explicitly described, it is
natural rather to consider the ‘relative’ problem of characterizing the morphism PCM → PArt of
torsors. Objects of this type are classified by the flat cohomology group H1(Q, fS) where fS is a
certain twist of the Serre group. As the Serre group is commutative, the main result of § 1 simplifies
to an exact sequence

0→ lim←−
1

fSn(Q)→ H1(Q, fS)→ lim←−H
1(Q, fSn)→ 0.

Blasius (unpublished) showed that lim←−H
1(Q, fSn) satisfies a Hasse principle, and [Win90] showed

that lim←−H
1(Q, fSn) = 0. If lim←−

1
fSn(Q) were also zero, then PCM → PArt would be unique up to an

isomorphism inducing the identity on PArt. Alas, it is not zero; in fact, we show that lim←−
1

fSn(Q)
is uncountable. Our proof of this uses an old theorem of Scholz and Reichardt on the embedding
problem for Galois groups of number fields. It would be interesting to have more information on
lim←−

1
fSn(Q).

In § 3, we take up the problem of characterizing PAV. Again, it is more natural to consider the
relative problem of characterizing PAV → PCM. Among other results, we prove that the isomorphism
class of PAV → PCM is uniquely determined by its classes over Ql (l = 2, 3, 5, . . . ,∞), about which
a great deal is known.

Blasius and Borovoi [BB99] have studied the problem of characterizing PH where H � AV is the
category of motives based on a certain class of abelian varieties over Q whose Mumford–Tate groups
have simply connected derived group. Their main theorem [BB99, 1.5] states that the isomorphism
class of PH → PCM is determined by the Galois cohomology class of PH over R. Unfortunately,
their proof of this is inadequate for two reasons. First, they make the (false!) assumption that the
flat cohomology groups coincide with the inverse limit Galois cohomology groups; this amounts to
setting all the lim←−

1 equal to zero. Second, they misidentify the cohomology class that must be proved
trivial for their theorem to hold.1 It seems unlikely that the statement of their theorem is correct
(see Remark 3.26 below), but by combining Corollary 1.14 of this paper with their arguments,
one obtains Theorem 3.25: the isomorphism class of PH → PCM is uniquely determined by its
isomorphism class over R. This observation began my work on this paper.

Notations and conventions
‘Variety’ means geometrically reduced scheme of finite type over a field. Semisimple algebraic groups
are connected and ‘simple’ for an algebraic group means ‘noncommutative and having no proper
closed connected normal subgroup �= 1’. The identity component of a group scheme G over a field is
denoted by G◦. For a connected (pro)reductive group G over a field, ZG is the centre of G, Gad

is the adjoint group G/ZG of G, Gder is the derived group of G, and Gab is the largest commutative
quotient G/Gder of G. The universal covering of a semisimple group G is denoted G̃→ G.

The algebraic closure of Q in C is denoted by Qal, and (except in § 1) Γ = Gal(Qal/Q). We set
Gal(C/R) = {1, ι}. A CM-field is any field E algebraic over Q admitting a nontrivial involution ιE
such that ι ◦ ρ = ρ ◦ ιE for all ρ : E → C.

1With their notations, in order to prove their theorem, they would have to show in § 5.1 of their paper that the class
of P → PCM in H1(Q, (G◦DR)der) is trivial (see Proposition 1.10 below). Instead, they prove only the weaker statement
that the image of the class in H1(Q,G◦DR) is trivial, which, in fact, is all their hypotheses imply, even when one ignores
the lim←−

1 terms.
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Periods of abelian varieties

All categories of motives will be defined using absolute Hodge classes as the correspondences
(see [Del82a] and [DM82, § 6]).

We sometimes use [x] to denote an equivalence or isomorphism class containing x. The notation
X ≈ Y means that X and Y are isomorphic, and X ∼= Y means that X and Y are canonically
isomorphic (or that a particular isomorphism is given).

1. Preliminaries

Inverse limits
For an inverse system of groups indexed by (N,�),

(An, un)n∈N = (A0 ← · · · ← An−1
un← An ← · · · ),

define lim←−
1An to be the set of orbits for the left action of the group

∏
nAn on the set

∏
nAn,∏

n

An ×
∏
n

An →
∏
n

An

(. . . , an, . . . ) (. . . , xn, . . . ) 	→ (. . . , an · xn · un+1(an+1)−1, . . . ).

This is a set, pointed by the orbit of 1 = (1, 1, . . . ). Note that

lim←−An =
{
a ∈

∏
An

∣∣∣ a · 1 = 1
}
.

Let (An)n∈N → (Bn)n∈N be an inverse system of injective homomorphisms. From

0→ (An)n∈N → (Bn)n∈N → (Bn/An)n∈N → 0

we obtain an exact sequence

1→ lim←−An → lim←−Bn → lim←−(Bn/An)→ lim←−
1An → lim←−

1Bn (1)

of groups and pointed sets. Exactness at lim←−(Bn/An) means that the fibres of lim←−(Bn/An)→ lim←−
1An

are the orbits for the natural action of lim←−Bn on lim←−(Bn/An). When each An is normal in Bn, so
that Cn =df Bn/An is a group, (1) can be extended to an exact sequence

1→ lim←−An → lim←−Bn → lim←−Cn → lim←−
1An → lim←−

1Bn → lim←−
1 Cn → 1. (2)

Exactness at lim←−
1An means that the fibres of lim←−

1An → lim←−
1Bn are the orbits for the natural

action of lim←−Cn on lim←−
1An.

Recall that an inverse system (Xn)n∈N of sets (or groups) is said to satisfy the condition (ML)
if, for each m, the decreasing chain in Xm of the images of the Xn for n � m is eventually constant.

Proposition 1.1. Let (An, un)n∈N be an inverse system of groups.

a) If (An, un) satisfies (ML), then lim←−
1An = 0.

b) If the An are countable and (An, un)n∈N fails (ML), then lim←−
1An is uncountable.

Proof. a) The action2

(. . . , an, . . . ) · (. . . , xn, . . . ) = (. . . , an · xn · (uan+1)−1 , . . . )

of the groupGN+1 =df
∏

0�n�N+1An on the set SN =df
∏

0�n�N An is transitive, and the projection
(an)n 	→ aN+1 gives an isomorphism from the stabilizer of any x ∈ SN onto AN+1. Let x, y ∈∏

n∈NAn, and let

PN = {g ∈ GN+1 | gxN = yN},
2We usually omit the subscript on transition maps.
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where xN and yN are the images of x and y in SN . We have to show that lim←−PN is nonempty. The
observations in the first sentence show that PN is nonempty and that AN+1 acts simply transitively
on it. It follows that the inverse system (PN ) satisfies (ML). Let QN =

⋂
i Im(PN+i → PN ). Then

each QN is nonempty, and (QN )N∈N is an inverse system with surjective transition maps. Hence,
lim←−QN is (obviously) nonempty, and any element of it is an element of lim←−PN .

b) If (An) fails (ML), then there exists an m such that infinitely many of the groups

Bi
df= Im(Am+i → Am)

are distinct. As
lim←−

i

1Am+i → lim←−
i

1Bi

is surjective (see (2)), it suffices to show that lim←−
1Bi is uncountable. This is accomplished by the

next lemma (applied with A = Am).

Lemma 1.2. Let · · · ⊃ An ⊃ An+1 ⊃ · · · be a sequence of subgroups of a countable group A. If
infinitely many of the An are distinct, then lim←−

1An is uncountable.

Proof. From (1) applied to the inverse system (An ↪→ A)n∈N, we obtain a bijection

A\(lim←−A/An)→ lim←−
1An.

As a map of sets, A/An+1 → A/An is isomorphic to the projection map

A/An ×An/An+1 → A/An,

and so lim←−A/An ≈
∏
An/An+1 (as sets), which is uncountable.

Remark 1.3. The above statements apply to inverse systems indexed by any directed set I containing
an infinite countable cofinal set, because such an I will also contain a cofinal set isomorphic to (N,�).

Notes. The definition of lim←−
1 for nonabelian groups and the sequence (2) can be found in [BK72, IX,

§ 2]. In the commutative case, statement a of Proposition 1.1 is proved in [Ati61] and statement b
in [Gra66].

Torsors
Let E be a category with finite fibred products (in particular, a final object S) endowed with a
topology in the sense of Grothendieck (see [BD68, ch. 2]). Thus, E is a site. By ‘torsor’ we mean
‘right torsor’.

1.4 For a sheaf of groups A on E, a right A-sheaf X, and a left A-sheaf Y , X ∧A Y denotes
the contracted product of X and Y , i.e. the quotient sheaf of X × Y by the diagonal action of A,
(x, y)a = (xa, a−1y). When A→ B is a homomorphism of sheaves of groups, X ∧AB is the B-sheaf
obtained from X by extension of the structure group. In this last case, if X is an A-torsor, then
X ∧A B is a B-torsor.

1.5 For an A-torsor P and a left A-sheaf X, define
PX = P ∧A X.

When X is a sheaf of groups and A acts by group homomorphisms, PX is a sheaf of groups.
For example, when we let A act on itself by inner automorphisms, PA is the inner form of A defined
by P . There is a natural left action of PA on P , which makes P into a left PA-torsor and induces an
isomorphism

PA→ AutA(P ). (3)
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Let P(A) denote the category of A-torsors and H1(S,A) the set of isomorphism classes of objects
in P(A) (pointed by the class of the trivial torsor AA).

1.6 Let v : B → C be a homomorphism of sheaves of groups on E, and let Q be a C-torsor. Define
P(B → C;Q) to be the category whose objects are the v-morphisms of torsors P → Q and whose
morphisms Hom(P → Q,P ′ → Q) are the B-morphisms P → P ′ giving a commutative triangle.
Let H1(S,B → C;Q) denote the set of isomorphism classes in P(B → C;Q). When Q = CC , we
drop it from the notation; then H1(S,B → C) is pointed by the class of BB → CC . The category
P(B → 0) is canonically equivalent with the category of B-torsors, and so

H1(S,B → 0) ∼= H1(S,B).

Let A = Ker(B → C). Then A is stable under the action of B on itself by inner automorphisms,
and for any object P → Q of P(B → C;Q),

Aut(P → Q) ∼= P ∧B A.

1.7 Let v : B → C be a surjective homomorphism with kernel A. To give a B-torsor P with vP
trivialized by e ∈ (vP )(S) amounts to giving the A-torsor f−1(e) where f is the map P → vP : the
natural functor

P(A→ 0)→ P(B → C)
is an equivalence.

1.8 Let v : B → C be a homomorphism of sheaves of groups on E. A B-torsor P allows us to
twist v:

Pv : PB → PC, PC
df= P ∧B C.

Here a local section b of B acts on C by c 	→ (vb)c(vb)−1. Let Q = vP . Then PC ∼= QC.

1.9 Let v : B → C be a homomorphism of sheaves of groups on E. A B-torsor P can be regarded
as a (PB,B)-bitorsor (see (3)). There is a functor

P(PB → QC)→ P(B → C;Q) (4)

sending P ′ → Q′ to P ′ ∧PB P → Q′ ∧QB Q. In particular, the neutral object of P(PB → QC) is
sent to the object P → Q of P(B → C;Q). Let P opp denote the (B, PB)-bitorsor with the same
underlying sheaf as P but with local sections b and b′ of B and PB acting as (b, b′) · p = b′−1 · p · b−1.
The functor

P(B → C;Q)→ P(PB → QC) (5)
sending P ′ → Q to (P ′ → Q) ∧B P opp is a quasi-inverse to the functor in (4). Therefore, both
functors are equivalences of categories.

Proposition 1.10. Let

1→ A→ B
v→ C → 0 (6)

be an exact sequence of sheaves of groups on E, and let P → Q be a v-morphism of torsors. There is
a natural bijection

H1(S, PA)→ H1(S,B → C;Q)
sending the neutral element of H1(S, PA) to the element [P → Q] of H1(S,B → C;Q).

Proof. We can use P to twist the sequence (6):

1→ PA→ PB → QC → 1, PA = P ∧B A.
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Now combine

H1(S, PA) 1.7→ H1(S, PB → QC)
(4)→ H1(S,B → C;Q).

Remark 1.11. If in the proposition A is commutative, then the action of B on A factors through an
action of C on A, and so

PA
df= P ∧B A ∼= P ∧B C ∧C A ∼= Q ∧C A

df= QA.

Notes. The basic definitions in §§ 1.4 and 1.5 are from [Gir71]. The remaining statements can
be found, or are hinted at, in [Del79a, 2.4.3–2.4.4]. See also [Bre90]. (The main ideas go back to
Dedecker and Grothendieck in the 1950s.)

Cohomology and inverse limits
We now fix an affine scheme S and let E be the category of affine schemes over S endowed with
the FPQC topology (that for which the covering families are the finite surjective families of flat
morphisms).

Throughout this subsection, (Gn, un)n is an inverse system, indexed by (N,�), of flat affine
group schemes of finite type over S with faithfully flat transition maps, and G = lim←−Gn. Thus, G
is a flat affine group scheme over S.

Proposition 1.12. The map [P ] 	→ ([P ∧G Gn])n�0

H1(S,G)→ lim←−
n

H1(S,Gn) (7)

is surjective. For a G-torsor P , the fibre of the map containing [P ] is lim←−
1G′

n(S) where G′
n is the

inner form P ∧G Gn of Gn.

Proof. A class c in lim←−H
1(S,Gn) is represented by an inverse system

P0 ← P1 ← · · · ← Pn ← · · ·
with Pn a Gn-torsor. The inverse limit of this system is a G-torsor mapping to c.

Let P ′ and P be G-torsors such that P ′
n ≈ Pn for all n, and choose isomorphisms an : P ′

n → Pn.
Consider the following diagram.

P ′
n+1

an+1 ��

v′
��

Pn+1

v

��
P ′

n
an �� Pn

There is a unique isomorphism bn : P ′
n → Pn for which the diagram commutes, i.e. such that

bn ◦ v′ = v ◦ an+1.

Let en be the element of Aut(Pn) such that en ◦ bn = an; then

en ◦ v ◦ an+1 = an ◦ v′.
Replacing (an)n�0 with (cn ◦ an)n�0 replaces (en)n�0 with (cn · en · u′c−1

n+1)n�0 where u′ is the
transition map Aut(Pn+1)→ Aut(Pn). Thus, the class of (en)n�0 in lim←−

1 Aut(Pn) is independent of
the choice of the an. Similarly, it depends only on the isomorphism class of P ′. Therefore, we have
a well-defined map from the fibre containing [P ] to lim←−

1 Aut(Pn), and it is straightforward to check
that it is a bijection. Finally, (3) allows us to replace Aut(Pn) with G′

n(S).

Corollary 1.13. When the Gn are commutative, there is an exact sequence

0→ lim←−
1Gn(S)→ H1(S,G)→ lim←−H

1(S,Gn)→ 0.
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Proof. In this case, G′
n = Gn.

Corollary 1.14. For any countable family (Gi)i∈I of flat affine group schemes,

H1(S,
∏
Gi) =

∏
H1(S,Gi).

Proof. This is certainly true for finite families. Thus, we may assume that I is infinite, and equals N.
Let An =

∏
0�i�nGi. For any

∏
i�0Gi-torsor P , the projection maps PAn(S) → PAn−1(S) admit

sections, and so are surjective. Therefore lim←−
1 PAn(S) = 0 (from statement a of Proposition 1.1),

and it follows that

H1(S,G)
1.12∼= lim←−

n

H1(S,An) ∼= lim←−
n

∏
0�i�n

H1(S,Gi) ∼=
∏
i�0

H1(S,Gi).

Remark 1.15. Let S = Spec(Q). Although the maps un : Gn → Gn−1 are surjective, typically the
maps Gn(Q)→ Gn−1(Q) will not be. In fact, typically, the inverse system (Gn(Q))n will not satisfy
(ML) and so lim←−

1Gn(Q) will be uncountable (from statement b of Proposition 1.1). For example,
consider a tower of distinct subfields of Qal,

Q ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn ⊂ · · · , [Fn : Q] <∞.
There is an inverse system (Gn, un) with surjective transition maps for which Gn is the Q-torus
obtained from Gm/Fn

by restriction of scalars and un is the norm map. Then

(Gn(Q), un(Q))n∈N = (F×
n ,NmFn/Fn−1

)n∈N,

which fails (ML),3 and so lim←−
1Gn(Q) is uncountable.

Comparison with Galois cohomology
We now let S be the spectrum of a field k, and we let H1(k,−) denote H1(S,−). Choose a separable
closure ksep of k, and let Γ = Gal(ksep/k).

Proposition 1.16. For any smooth algebraic group N over k, there is a canonical isomorphism

H1(k,N)→ H1(Γ, N(ksep)).

Proof. An N -torsor P is represented by an algebraic variety over k, and hence acquires a point p
over some subfield of ksep of finite degree over k. The formula

τp = p · aτ (8)

defines a continuous crossed homomorphism aτ : Γ → N(ksep) whose cohomology class is indepen-
dent of the choice of p and depends only on the isomorphism class of P . Thus, we have a well-defined
mapH1(k,N)→ H1(Γ, N(ksep)), and it follows from descent theory that this is an isomorphism.

1.17 Let N be a smooth algebraic group over k, and let f : Γ→ Aut(N)(ksep) be a continuous
crossed homomorphism (discrete topology on Aut(N)(ksep)). The ‘twist’ of N by f is a smooth
algebraic group fN over k such that fN(ksep) = N(ksep) but with τ ∈ Γ acting according to the
rule

τ ∗ x = f(τ) · τx.
When we let N act on itself by inner automorphisms, a crossed homomorphism f : Γ → N(ksep)
defines a twist fN of N with τ ∈ Γ acting on fN(ksep) by

τ ∗ x = f(τ) · τx · f(τ)−1.

3To see this, use that, for a finite extension E/F of number fields and a finite prime v of F , ordv(NmE×) is the ideal
in Z generated by the residue class degrees of the primes of E lying over v.
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1.18 Let G = lim←−(Gn, un) be as in the preceding subsection but with Gn now a smooth algebraic
group over k, and define H1

cts(Γ, G) be the cohomology set computed using crossed homomorphisms
Γ→ G(ksep) that are continuous for the profinite topology on Γ and the inverse limit topology on
G(ksep) = lim←−Gn(ksep) (discrete topology on Gn(ksep)). Thus, giving a continuous crossed homomor-
phism f : Γ→ G(ksep) amounts to giving a compatible family of continuous crossed homomorphisms
fn : Γ→ Gn(ksep).

Proposition 1.19. The map

H1
cts(Γ, G)→ lim←−H

1(Γ, Gn)

sending [f ] to ([fn])n�0 is surjective. The fibre of the map containing [f ] equals lim←−
1G′

n(k) where
G′

n = fGn.

Proof. Each class c in lim←−H
1(S,Gn) is represented by a family (fn)n�0 of crossed homomorphisms,

which can be chosen so that fn−1 = un ◦ fn. The fn define a continuous crossed homomorphism
f : Γ→ G(ksep) mapping to c.

Let f ′ and f be continuous crossed homomorphisms such that f ′n ∼ fn for all n, and choose
an ∈ Gn(ksep) in such a way that

f ′n(τ) = a−1
n · fn(τ) · τan. (9)

Define en ∈ Gn(ksep) by the equation

en · uan+1 = an.

On applying u to Equation (9)n+1, we obtain the equation

f ′n(τ) = (uan+1)−1 · fn(τ) · τ(uan+1)

or
f ′n(τ) = a−1

n · en · fn(τ) · τe−1
n · τan.

On comparing this with (9), we find that

en = fn(τ) · τen · fn(τ)−1,

i.e. that
en ∈ (fGn)(ksep)Γ = (fGn)(k).

The element an can be replaced by cn ·an, where cn is any element of (fGn)(k). When this is done
for each n, (en)n�0 is replaced by (cn · en · (ucn+1)−1)n�0. Thus, the class of (en) in lim←−

1(fGn)(k)
is independent of the choice of the an. Similarly, it depends only on the cohomology class of f ′.
Therefore, we have a well-defined map from the fibre containing [f ] to lim←−

1(fGn)(k), and it is
straightforward to check that this is a bijection.

Proposition 1.20. There is a canonical isomorphism of pointed sets

H1(k,G)→ H1
cts(Γ, G).

Proof. Let P be a G-torsor, and let Pn = unP . Then P (ksep) = lim←−Pn(ksep), which, because the
maps Pn+1(ksep)→ Pn(ksep) are surjective, is nonempty. Choose a p ∈ P (ksep). Then the formula

τp = p · f(τ)

defines a continuous crossed homomorphism f : Γ→ G(ksep) whose cohomology class is independent
of the choice of p and of the choice of P in its isomorphism class. Therefore, we have a well-defined
map H1(k,G) → H1

cts(Γ, G). Since this map is compatible with the maps in Propositions 1.12 and
1.19, they, together with Proposition 1.16, show that it is a bijection.
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Remark 1.21. Let S be the spectrum of a field. The following conditions on an affine group scheme
G over S are equivalent:

a) the set of closed normal subgroup schemes H ⊂ G such that G/H is of finite type over S is
infinite and countable;

b) G = lim←−n
(Gn, un) where (Gn, un)n is an inverse system, indexed by (N,�), of affine algebraic

groups over S with surjective transition maps.

An affine group scheme G satisfying these conditions will be said to be separable. When G is
separable, any inverse system satisfying condition b is cofinal in the inverse system of all algebraic
quotients of G. Therefore, the former can be replaced by the latter, which makes Proposition 1.19
more canonical.

Notes. Proposition 1.16 is a standard result. In the commutative case, Proposition 1.19 is proved
in [Tat76].

Application to periods
Let Mot(Q) denote the category of motives based on all smooth projective varieties over Q. Let
CM(Q) be the Tannakian subcategory of Mot(Q) generated by the zero-dimensional varieties over
Q and the abelian varieties of CM-type (see § 2). LetGMot = Aut⊗(ωB) and PMot = Isom⊗(ωB, ωdR),
and define GCM and PCM similarly. From the inclusion CM(Q) ⊂ Mot(Q), we obtain a faithfully flat
homomorphism GMot → GCM.

Theorem 1.22. If the kernel of GMot → GCM is an inverse limit of simply connected semisimple
groups, then the isomorphism class of PMot → PCM in P(GMot → GCM;PCM) is uniquely determined
by its class over R.

Proof. Let G = Ker(GMot → GCM). The condition on G implies that it is, in fact, a product of
semisimple groups each of which is simply connected. Moreover, the product is countable because
Mot(Q) is generated as a Tannakian category by a countable set of varieties. According to Propo-
sition 1.10, the isomorphism classes in P(GMot → GCM;PCM) are classified by H1(Q, G′) where
G′ = PMot ∧GMot

G. As G′ is a form of G, it also is a countable product of simply connected
semisimple groups, and so the proposition follows from Corollary 1.14 and the theorem of Kneser,
Harder, and Chernousov (see Lemma 3.6 below).

Remark 1.23. a) The group GMot is proreductive because Mot(Q) is semisimple. If Deligne’s hope
[Del79b] that every Hodge class is an absolute Hodge class is true, then (GMot)◦ is the group attached
to the category of motives over Qal (see [DM82, 6.22, 6.23], where the hypothesis was inadvertently
omitted); moreover, the group G in the above proof is the kernel of the canonical homomorphism
from (GMot)◦ to the Serre group [DM82, p. 220] and it is the derived group of (GMot)◦; it is therefore
an inverse limit of semisimple groups.

b) It is generally hoped that the derived group of (GMot)◦ is simply connected; see the question
in [Ser94, 8.1].

c) Blasius and Borovoi [BB99, 1.6] assert that the analogue of their Theorem 1.5 holds for all
motives if the derived group of (GMot)◦ is simply connected. Theorem 1.22 replaces this assertion,
which is unproven (and seems unlikely to be true).

Remark 1.24. Let G = Ker(GMot → GCM), and let H ⊂ G be the intersection of the kernels of the
homomorphisms from G onto simply connected semisimple algebraic groups over Q. Let MotH(Q)
be the subcategory of Mot(Q) of objects on which H acts trivially. Then, with the obvious notations,
the isomorphism class of PMotH → PCM in P(GMotH → GCM;PCM) is uniquely determined by its
class over R. Remark 1.23 indicates that it is reasonable to hope that H = 0.
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2. Periods of abelian varieties with complex multiplication

Periods of zero-dimensional varieties
The category of motives based on the zero-dimensional varieties over Q is denoted Art(Q) and is
called the category of Artin motives over Q. The Betti fibre functor ωB defines an equivalence of
Art(Q) with the category of continuous representations of Γ on finite-dimensional Q-vector spaces
[DM82, 6.17] from which it follows that Aut⊗(ωB) is the constant profinite group scheme Γ with
Γ (Q) = Γ (Qal) = Γ. The de Rham fibre functor is hX 	→ Γ(X,OX), from which the next statement
follows easily.

Theorem 2.1. Let PArt be the period torsor for Art(Q). Then PArt ∼= Spec Qal with its natural action
of Γ , and pArt is the obvious Qal-point of Spec Qal. Thus, the period point pArt has coordinates in Qal,
and the cocycle corresponding to the pair (PArt, pArt) is the crossed homomorphism Γ → Γ (Qal),
τ 	→ τ .

Note that the theorem determines the pair (PArt, pArt) uniquely up to a unique isomorphism.
Throughout this section, we use f to denote the (crossed) homomorphism in the theorem.

Notations for tori
For a finite étale Q-algebra A, let

ΣA/Q = HomQ-alg(A,Qal),

ΓA/Q = AutQ-alg(A),

and let (Gm)A/Q be the torus over Q obtained from Gm/A by restriction of scalars. Thus

(Gm)A/Q(R) = (A⊗R)×

for all Q-algebras R. For an infinite field extension K/k,

(Gm)K/k = lim←−(Gm)K ′/Q, K ′ ⊂ K, [K ′ : Q] <∞.

2.2 There is an equivalence T 	→ X∗(T ) =df Hom(T/Qal ,Gm) from the category of tori over Q
to the category of finitely generated free Z-modules endowed with a continuous left action of Γ.

2.3 There is an equivalence A 	→ ΣA/Q from the category of finite étale Q-algebras to the
category of finite sets endowed with a continuous left action of Γ. A quasi-inverse is provided by

Σ 	→ A(Σ) df= HomΓ(Σ,Qal).

If Σ ↔ A, then the decomposition Σ = �Σi of Σ into orbits corresponds to the decomposition
A =

∏
A(Σi) of A into a product of fields. If Γ acts transitively on Σ, then the choice of an e ∈ Σ

determines isomorphisms Γ/Γe → Σ and A(Σ)→ (Qal)Γe . Here Γe = {τ ∈ Γ | τe = e}.

2.4 On combining these equivalences, we see that there is a fully faithful functor Σ 	→ TΣ from
the category of finite sets endowed with a continuous left Γ-action to the category of tori, for which
TΣ = (Gm)A(Σ)/Q, X∗(TΣ) = Z[Σ] (free Z-module on Σ with the natural left action of Γ), and
TΣ1�Σ2 = TΣ1 × TΣ2.

Abelian varieties with complex multiplication
For an abelian variety A defined over a subfield k of C, the Mumford–Tate group of A is

MT(A) = Aut⊗(ωB | 〈A/C〉⊗),
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where 〈A/C〉⊗ is the category of motives based on A/C and the projective spaces. There is a canonical
cocharacter µA of MT(A) that splits the Hodge filtration on H1

B(A). When MT(A) is commutative
(hence a torus), we say that A is of CM-type,4 and we define the reflex field of A to be the field of
definition of µA. It is a CM-subfield of C.

For subfields k, K of C with K a CM-field, we define CMK(k) to be the category of motives
based on:

– the abelian varieties of CM-type over k with reflex field contained in K;

– the projective spaces; and

– the zero-dimensional varieties.

When K = Qcm, the composite of all CM-subfields of Qal, we omit it from the notation.

The category CM(C)
2.5 Let K be a CM-subfield of C. With the notation of § 2.4, (Gm)K/Q = TΣK/Q and

X∗((Gm)K/Q) = Z[ΣK/Q]. The group SK = Aut⊗(ωB | CMK(C)) is called the Serre group for K.
When K has finite degree over Q, SK is the quotient of (Gm)K/Q such that

X∗(SK) = {n ∈ Z[ΣK/Q] | n+ ιn = constant}.
Thus, there is an exact sequence

0→ (Gm)F/Q → (Gm)K/Q ×Gm → SK → 0 (10)

where F is the largest totally real subfield of K. We have

S = lim←−
K∈K

SK

where K is the set of all CM-subfields of C finite and Galois over Q.

2.6 For an abelian variety A over C, there is a canonical surjection S → MT(A), which factors
through SK if and only if A has reflex field contained in K.

Notes. For more on Mumford–Tate groups, see [Del82a, § 3].

The category CM(Qal)
2.7 The functor from the category of abelian varieties of CM-type up to isogeny over Qal to the

similar category over C is an equivalence. For any CM-subfield K of C, the functor ‘extension of
scalars’ CMK(Qal)→ CMK(C) is an equivalence of tensor categories.

The period torsor
2.8 Let K be a CM-subfield of C, Galois over Q. Then Γ acts on the terms of the sequence (10)

in such a way that the action on the sequence of Q-points

1→ F× → K× ×Q× → SK(Q)→ 1

is the obvious one. Let

GCM,K
B = Aut⊗(ωB | CMK(Q)).

The tensor functors

CMK(Qal)← CMK(Q)← Art(Q) (11)

4Other authors, and this author at other times, say that A is potentially of CM-type.
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define homomorphisms
1→ SK → GCM,K

B
v→ Γ → 1. (12)

This sequence is exact and the action of Γ on SK it defines is that described above [Del82b,
Lemmas 1 and 2].

2.9 Let PCM,K be the period torsor for CMK(Q). The second functor in (11) defines a
v-morphism PCM,K → PArt, and since PArt is known (Theorem 2.1), in order to determine PCM,K it
suffices to determine PCM,K → PArt as an object of P(GCM,K

B → Γ ;PArt). The first step is to
correctly identify the cohomology group classifying the isomorphism classes of objects in this
category.

Proposition 2.10. Let f : Γ → Γ (Q) be as in Theorem 2.1, and let fS
K be the twist of SK

by f . There is a natural one-to-one correspondence between the set of isomorphism classes in
P(GCM,K

B → Γ ;PArt) and H1(Q, fSK) (FPQC cohomology).

Proof. Apply Proposition 1.10, Remark 1.11, and Theorem 2.1.

In particular, when K = Qcm, the isomorphism classes of objects P → PArt are classified by the
group H1(Q, fS). According to Corollary 1.13, there is an exact sequence

0→ lim←−
1

K∈K
fS

K(Q)→ H1(Q, fS)→ lim←−
K∈K

H1(Q, fSK)→ 0.

We shall show the following proposition.

Proposition 2.11. The group lim←−K∈KH
1(Q, fSK) = 0, but lim←−

1
K∈K fS

K(Q) is uncountable. There-
fore,

H1(Q, fS) ∼= lim←−
1

K∈K
fS

K(Q)

and is uncountable.

Twisting (Gm)L/Q
2.12 Let L be a finite extension of Q, and let T = (Gm)L/Q.

a) The (left) action of τ ∈ Γ on ΣL/Q, τσ = τ ◦ σ, corresponds to the natural (left) action of Γ
on X∗(T ) = Z[ΣL/Q] (see § 2.4).

b) Assume L ⊂ Qal and is Galois over Q. Identify ΣL/Q with ΓL/Q. There is then a natural (left)
action of Γ on T (as a torus over Q), which defines a (left) action of Γ on X∗(T ) = Z[ΓL/Q].
The former gives the obvious action of Γ on T (Q) = L×, and the latter corresponds to the
(left) action of τ ∈ Γ on ΓL/Q, τσ = σ ◦ τ−1.

Lemma 2.13. For a subfield L of Qal, finite and Galois over Q, let fΓL/Q denote the twist of ΓL/Q

by f (so that τ ∈ Γ acts by τσ = τ ◦ σ ◦ τ−1 [Ser64, 5.3]), and let

B(L) = A(fΓL/Q).

Then

f (Gm)L/Q
∼= (Gm)B(L)/Q.

Proof. Clearly, f (Gm)L/Q
∼= T f ΓL/Q , which equals (Gm)A(f ΓL/Q)/Q.

Note that the orbits of Γ acting on fΓL/Q are the conjugacy classes C in ΓL/Q, and so (from
§§ 2.3 and 2.4)

B(L) =
∏
C

A(C), (Gm)B(L)/Q =
∏
C

TC .
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For any σ ∈ C, A(C) ∼= LZ(σ) where Z(σ) is the centralizer of σ in ΓL/Q.

The tori fSK and f S̄
K

Let K ∈ K. Let w : Gm → SK be the weight homomorphism, and let S̄K = SK/w(Gm). Then

X∗(S̄K) = {n ∈ Z[ΣK ] | n+ ιn = 1},
and there is an exact sequence

1→ (Gm)F/Q → (Gm)K/Q → S̄K → 1. (13)

The group Γ acts on the exact sequence (13), and so we can twist the sequence by f to obtain an
exact sequence

1→ f (Gm)F/Q → f (Gm)K/Q → f S̄
K → 1. (14)

Lemma 2.14. If K contains a quadratic imaginary field k, then

f S̄
K ≈ (Gm)B(F )/Q

where F is the largest totally real subfield of K.

Proof. As
ΓK/Q = ΓF/Q × Γk/Q, Γk/Q = {1, ι},

for each conjugacy class C in ΓF/Q, there are exactly two conjugacy classes in ΓK/Q mapping to it,
namely,

C1 = {(τ, 1) | τ ∈ C}, Cι = {(τ, ι) | τ ∈ C}.
Therefore, (14) can be written

1→
∏
C

TC →
∏
C

(TC1 × TCι)→ f S̄
K → 1

(product over the conjugacy classes in ΓF/Q). Since

C ∼= C1
∼= Cι (as Γ-sets),

each of the maps ∏
C

TC →
∏
C

TC1 ,
∏
C

TC1 → f S̄
K

is an isomorphism.

The group lim←−K∈KH1(Q, fS
K)

Proposition 2.15 [Win90, 1.3]. If K contains a quadratic imaginary number field, then

H1(Q, fSK) = 0.

Proof. From the exact sequence

1→ Gm → fS
K → f S̄

K → 1 (15)

we see that it suffices to show that H1(Q, f S̄K) = 0, but this follows from Lemma 2.14 and Hilbert’s
Theorem 90.

Corollary 2.16. The group lim←−K∈KH
1(Q, f S̄K) = 0.

Proof. The CM-fields satisfying the hypothesis of the proposition are cofinal in K.

Remark 2.17. In [Win90, p. 3] an example where the proposition is false without the hypothesis on
K is shown.
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The group lim←−
1
K∈K f

SK(Q)

Proposition 2.18. The group lim←−
1
K∈K fS

K(Q) is uncountable.

From (2) applied to the cohomology sequence of (15), we see that

lim←−
1

K∈K
fS

K(Q)
∼=→ lim←−

1

K∈K
f S̄

K(Q),

and so we compute the second group.

Lemma 2.19. Let F be the set of totally real subfields of C that are finite and Galois over Q. Then
the inverse system (f S̄K)K∈K is equivalent with the inverse system ((Gm)B(F )/Q)F∈F . Thus,

lim←−
1

K∈K
f S̄

K(Q) ≈ lim←−
1

F∈F
B(F )×

(on the right, the transition maps are the norm maps).

Proof. Fix a quadratic imaginary field k. The fields K ∈ K containing k form a cofinal set. Once k
has been fixed, the isomorphism in Lemma 2.14 becomes canonical. In particular, it is natural for
the norm maps.

Note that the isomorphism in the lemma depends only on the choice of k.

Example 2.20. If ΓF/Q = Gal(F/Q) is commutative, B(F ) is a product of copies of Q indexed by

the elements of ΓF/Q. Thus, (Gm)B(F )/Q ≈ G[F : Q]
m .

Example 2.21. Let F = F1 · F2 with F1, F2 ∈ F and F1 ∩ F2 = Q. Then

Gal(F/Q) ∼= Gal(F1/Q)×Gal(F2/Q)

and a conjugacy class C in Gal(F1/Q) is the image of the conjugacy class C × {1} in Gal(F/Q).
Therefore, B(F1) is a direct factor of B(F ), and so the norm map

B(F )× → B(F1)×

is surjective.

Example 2.22. Fix an odd prime l, and write Cl for any cyclic group of order l. Define G to be the
semidirect product N �θ Q of N = Cl × Cl (generators a, b) with Q = Cl (generator c) relative to
the homomorphism θ : Cl → Aut(Cl × Cl) for which

θ(ci) =
(

1 0
i 1

)
, i.e. θ(ci)(a) = abi, θ(ci)(b) = b.

Then G has generators a, b, c, and relations

al = bl = cl = 1, ab = cac−1, [b, a] = 1 = [b, c].

All elements �= 1 in G have order l, and the centre of G is 〈b〉.
The inverse image under G → Q of the conjugacy class {c} breaks up into l conjugacy classes,

namely,

{ajc, bajc, . . . , bl−1ajc}, 0 � j � l − 1

(because a−1ca = bc). The centralizer of ajc in G is 〈b, ajc〉, which has order l2.
Let E be an extension of Q with Galois group G, and let F0 = EN . Then from Example 2.20

B(F0) ∼= F
{1}
0 × F {c}

0 × · · · × F {cl−1}
0 , F

{ci}
0 = Q,
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and the inverse image of F {c}
0 in B(E) under the norm map is

E〈b,c〉 × E〈b,ac〉 × · · · × E〈b,al−1c〉.

Lemma 2.23. The group lim←−
1
F∈F B(F )× is uncountable.

Proof. According to statement b of Proposition 1.1, it suffices to show that the inverse system
(B(F )×)F∈F fails (ML). Examples 2.20 and 2.21 show that we shall need to consider nonabelian
Galois groups and nonsplit extensions.

Fix an odd prime number l, and choose a prime number p0 that splits completely in Q[ l
√

1].
Then l|p0 − 1, and so there is a surjective homomorphism

(Z/p0Z)× → Cl.

Let F0 be the subfield of Q[ p0
√

1] fixed by the kernel of one such homomorphism.

To prove that (B(F )×)F∈F fails (ML) it suffices to show that, for each L ∈ F containing F0,
there exists an E ∈ F containing F0 and such that

NmB(E)/B(F0)(B(E)×) �⊃ NmB(L)/B(F0)(B(L)×);

for then E · L ∈ F , but

NmB(E·L)/B(F0)(B(E · L)×) �= NmB(L)/B(F0)(B(L)×).

Choose a prime p1 that splits completely in L[ l
√

1, l
√
p0], and construct a cyclic extension F1 of Q

of degree l by choosing a surjective homomorphism (Z/p1Z)× → Cl, as before. Then F =df F0 · F1

has Galois group

Gal(F/Q) ∼= Cl ×Cl.

Let G be as in Example 2.22, and consider the extension

1→ 〈b〉 → G→ 〈a, c〉 → 1.

Let

α : G/〈b〉 → Gal(F/Q)

be the isomorphism sending c to a generator of Gal(F0/Q) and a to a generator of Gal(F1/Q).
The only primes ramifying in F are p0 and p1, and for p = p0 or p1:

i) l divides p− 1 (because both primes split in Q[ l
√

1]);

ii) for all primes v of F dividing p, Fv is totally ramified over Qp (pi is totally ramified in Fi;
p1 splits completely in F0 by construction; p0 splits completely in F1 because it becomes an
lth power in Fp1).

Now an argument of Scholz and Reichardt (see [Ser92, Theorem 2.1.3]) shows that there exists a
Galois extension E of Q containing F for which there is a commutative diagram as follows.

G ��

≈
��

G/〈b〉
≈

��
Gal(E/Q) �� Gal(F/Q)
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Note that E, being Galois of odd degree over Q, must be totally real.

L′

��
��

��
�

��
��

��
��

��
��

��

E

〈b〉

F
〈a〉

��
��

��
�

〈c〉
��

��
��

�
L

��
��

��
�

F1

��
��

��
��

F0

��
��

��
��

Q

I claim that the image of B(E)× in F {c}×
0 does not contain the image of B(L)×. In order to show

this, it suffices to show that the image of (B(E)⊗Qp1)
× in (F {c}

0 ⊗Qp1)
× = Q×

p1
does not contain

the image of (B(L) ⊗ Qp1)
×. But, because p1 splits completely in L, the second image is Q×

p1
. On

the other hand, p1 is totally ramified in each field E〈b,ajc〉 (because E〈b,ajc〉 ·F0 = F , (p1) = pl
1 · · · pl

l

in F , and p1 splits completely in F0), and so, for each v|p, E〈b,ajc〉
v is the (unique) tamely ramified

cyclic extension of Qp1 of degree l. Thus, the image of
∏

v E
〈b,ajc〉×
v in Q×

p1
does not contain Z×

p1
.

Characterizing the period torsor
Theorem 2.24. Let K be a CM-subfield of C, Galois over Q.

a) If [K : Q] <∞ and K contains a quadratic imaginary field, then P(GCM,K
B → Γ ;PArt) contains

exactly one isomorphism class, which is represented by PCM,K → PArt.

b) If K = Qcm, then P(GCM,K
B → Γ ;PArt) contains uncountably many isomorphism classes.

Proof. According to Proposition 2.10, the isomorphism classes in P(GCM,K
B → Γ ;PArt) are classified

by H1(Q, fSK). Therefore, statements a and b follow respectively from Propositions 2.15 and 2.11.

Remark 2.25. In fact, we have shown that the uncountable group lim←−
1
K fS

K(Q) acts simply transi-
tively on the set of isomorphism classes of objects in P(GCM

B → Γ ;PArt). To make this explicit, let
K0 be a quadratic imaginary field, and let

K0 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ Qcm

be a sequence of CM-fields with union Qcm. Let Sn = SKn and PCM
n = PCM,Kn . From an element

s = (sn)n∈N of
∏

fSn(Q) we obtain a v-morphism of torsors PCM(s) → PArt by modifying the
transition maps in PCM: define

PCM(s) = lim←−
n∈N

(PCM
n , vn ◦ sn).

Then, the isomorphism class of PCM(s) → PArt depends only on the class of (sn) in lim←−
1
n fSn(Q),

distinct classes in lim←−
1
n fSn(Q) give nonisomorphic objects in P(GCM

B → Γ ;PArt), and every object
in P(GCM

B → Γ ;PArt) is isomorphic to PCM(s)→ PArt for some s ∈∏
fSn(Q).

Remark 2.26. There remains the problem of characterizing the isomorphism class of PCM → PArt.
One may hope that it is uniquely determined by its isomorphism classes in P((GCM

B )/Ql
→ Γ/Ql

, PArt
/Ql

)
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for l = 2, 3, . . . ,∞, i.e. that the kernel of

H1(Q, fS)→
∏

l

H1(Ql, fS)

is zero, but the calculations I have made in this direction do not look promising. Note that fS/R is
a countable product of copies of Gm, and so H1(R, fS) = 0.

3. Periods of abelian varieties

For a class of abelian varieties A over Q, 〈A〉⊗ denotes the category of motives based on the abelian
varieties in A, the projective spaces, and the zero-dimensional varieties. Let

GA
B = Aut⊗(ωB | 〈A〉⊗),

GA
dR = Aut⊗(ωdR | 〈A〉⊗),

PA = Isom⊗(ωB, ωdR).

When A = {A}, we write A for A.

3.1 The inclusion of the Artin motives into 〈A〉⊗ defines a homomorphism

GA
B → Γ.

This homomorphism is surjective, and its kernel is the identity component (GA
B )◦ of GA

B (see [DM82,
6.23]).5 In particular, for a single abelian variety A, there is an exact sequence

1→ MT(A)→ GA
B → Γ → 1.

3.2 For a single abelian variety A, there is a unique homomorphism

S→ MT(A)ab/R

sending hcan onto (hA)ab where, as usual, hA : S → MT(A)/R is the homomorphism defining the
Hodge structure on H∗(A,Q). This homomorphism is surjective, and it factors through SK if and
only if K contains the reflex field of (MT(A), hA)ab.

3.3 On combining the last two statements, we see that if A is an abelian variety over Q such
that SK → MT(A)ab is an isomorphism for some K, then

1→ MT(A)der → GA
B → GCM,K

B → 1

is exact.

Some Hasse principles
We first prove an elementary structure theorem.

Lemma 3.4. Every semisimple group H over Q such that H/Qal is a product of simple groups is
isomorphic to a product of groups Hi of the form Hi = ResFi/QNi with Fi a number field and Ni

an absolutely simple group over Fi.

Proof. To give a semisimple group over Q is the same as to give a semisimple group H over Qal

together with a descent datum (ασ)σ∈Γ. Here ασ is an isomorphism σH → H, ασ ◦ σατ = αστ for

5This applies because of Deligne’s theorem [Del82a] that all Hodge classes on abelian varieties are absolutely Hodge.
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all σ and τ , and there is a continuity condition (namely, there exists a model (H ′, α : H ′
/Qal → H)

of H over some field F of finite degree over Q such that ασ ◦ σα = α for all σ fixing F ).
First consider a pair (H, (ασ)σ∈Γ) with H an adjoint group. Write H =

∏
i∈I Hi as a product

of simple groups. For each σ ∈ Γ, there is a permutation (also denoted σ) of I such that ασ is a
product of isomorphisms

ασ(i) : σHi → Hσi.

Let J be an orbit of Γ in I, let j ∈ J , and let Γj = {σ ∈ Γ | σj = j}. Then (ασ(j))σ∈Γj is a descent
datum on Hj, and (

∏
i∈J ασ(i))σ∈Γ is a descent datum on

∏
i∈J Hi. The first defines a model Nj of

Hj over Fj =df QΓj , which is absolutely simple, and the second defines a model MJ of
∏

i∈J Hi over
Q, which is isomorphic to ResFj/QNj . Now

∏
J∈Γ\I MJ is a semisimple group over Q giving rise to

(H, (ασ)σ∈Γ) over Qal.
Next consider a pair (H, (ασ)σ∈Γ) with H a product H =

∏
i∈I Hi of simple groups. Then

(ασ)σ defines a descent datum (αad
σ )σ on Had, and, as above, αad

σ is a product of isomorphisms
αad

σ (i) : σHad
i → Had

σi . Consider the following diagram.

σHi

��

ασ(i) �� Hσi

��
σHad

i

αad
σ (i) �� Had

σi

Here ασ(i) is the composite

σHi ↪→ σH
ασ→ H

project−−−−→ Hi.

Because the diagram commutes, ασ and
∏

i∈I ασ(i) differ by a map from σH into the centre of H,
which must be trivial because σH is connected. Thus, ασ =

∏
i∈I ασ(i), and the same argument as

in the preceding paragraph completes the proof of the lemma.

We define the index (of connectivity) of a semisimple algebraic group H to be the degree of the
universal covering H̃ → H. Thus, for an isogeny a : H ′ → H of semisimple groups,

index(H ′) � index(H),

with equality if and only if a is an isomorphism.
Consider the following condition on a semisimple algebraic group H over Q:

H/Qal is a product of simple groups of index 1 or 2. (∗)
Proposition 3.5. For any semisimple group H over Q satisfying (∗), the map

H1(Q,H)→
∏

l=2,...,∞
H1(Ql,H)

is injective.

Proof. According to Lemma 3.4, H ≈∏
ResFi/QNi with each Ni absolutely simple of index 1 or 2,

and
H1(Q,H) ≈

∏
i

H1(Q,Hi) ≈
∏

i

H1(Fi, Ni).

Therefore, the proposition follows from the next two lemmas.

Lemma 3.6. For any simply connected semisimple group H over a number field F , the map

H1(F,H)→
∏

v real

H1(Fv,H)

is bijective.
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Proof. This is the theorem of Kneser, Harder, and Chernousov (see [PR94, Theorem 6.6, p. 286]).

Lemma 3.7. For any semisimple group H of index 2 over a number field F ,

H1(F,H)→
∏
v

H1(Fv ,H) (v runs over all primes of F )

is injective.

Proof. Platonov and Rapinchuk [PR94, Remark p. 337] note that the map has trivial kernel.
The lemma can now be proved by a twisting argument, because any form of a semisimple group of
index 2 again has index 2.

Proposition 3.8. Let H be a semisimple group over Q satisfying (∗). If two cohomology classes in
H1(Q, H̃) have the same image in H1(R,H), then they have the same image in H1(Q,H). In other
words, H1(Q,H)→ H1(R,H) is injective on the image of H1(Q, H̃)→ H1(Q,H).

Proof. In the diagram

H1(Q, Z)

surjective

��

�� H1(Q, H̃) ��

injective
��

H1(Q,H)

��
H1(R, Z) �� H1(R, H̃) �� H1(R,H)

the rows are exact in the sense that the fibres of the second map are the orbits of the natural
action of the first group on the middle set. The second vertical arrow is injective by Lemma 3.6.
A diagram chase will complete the proof once we show that the first vertical arrow is surjective.
In proving this, we may assume (Lemma 3.4) that H = ResF/QN with N an absolutely simple
group of index 2 over a number field F . Then Z = ResF/Q µ2, and so H1(Q, Z)→ H1(R, Z) is the
map F×/F×2 → (F ⊗R)×/(F ⊗R)×2, which is surjective by the weak approximation theorem.

Remark 3.9. The proof of Proposition 3.8 shows that for any central extension

1→ Z → G′ → G→ 1

of algebraic groups, the map H1(Q, G) → H1(R, G) is injective on the image of H1(Q, G′) in
H1(Q, G) provided

a) the map H1(Q, Z)→ H1(R, Z) is surjective;

b) the map H1(Q, G′)→ H1(R, G′) is injective.

Proposition 3.10. Let G be connected reductive group over Q such that Gder is simply connected.

a) If H1(Q, Gab)→∏
lH

1(Ql, G
ab) is injective, then so also is H1(Q, G)→∏

lH
1(Ql, G) (prod-

uct over l = 2, 3, 5, . . . ,∞).

b) If H1(Q, Gab)→ H1(R, Gab) is injective, then so also is H1(Q, G)→ H1(R, G).

Proof. a) See [Del71, 5.12].
(Because Gder is simply connected, H1(Ql, G

der) = 0 for l �=∞ [PR94, Theorem 6.4, p. 284]. Using
this, we obtain a commutative diagram with exact rows.

Gab(Q) ��

��

H1(Q, Gder) ��

��

H1(Q, G) ��

��

H1(Q, Gab)

��
G(R) �� Gab(R) �� H1(R, Gder) �� ∏

lH
1(Ql, G) �� ∏

lH
1(Ql, G

ab)
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The image of G(R) in Gab(R) contains its identity component, and the real approximation theorem
[San81, 3.5 (iii)] shows that Gab(R) maps onto π0(Gab(R)). Now a diagram chase shows that any
element of H1(Q, G) that is locally zero is zero. To show that two elements c and c′ of H1(Q, G) are
equal when they are locally, choose a torsor representing c, and twist the groups by it; cf. [Ser64, I
5.3].)

b) The proof is similar, but easier.

Characterizing P AV→ P CM

Let AV(Q) = 〈A〉⊗ with A the class of all abelian varieties over Q.

Theorem 3.11. Let A be an abelian variety over Q. If MT(A)der satisfies (∗) and6 MT(A)ab ∼= SK

for some K, then the isomorphism class of PA → PCM,K is uniquely determined by its classes over
Ql (l = 2, 3, . . . ,∞).

Proof. According to Proposition 1.10, the isomorphism classes in P(GA
B → GCM,K

B ;PCM,K) are
classified by H1(Q,H) where H is the twist of Ker(GA

B → GCM,K
B ) by the period torsor. But

according to § 3.3, this kernel is MT(A)der, and so the theorem follows from Proposition 3.5.

The next result shows that the abelian varieties over Q satisfying the conditions of Theorem 3.11
are cofinal among all abelian varieties over Q for the relation A ≺ B if hA is isomorphic to an object
of 〈B〉⊗.

Proposition 3.12. Let A be an abelian variety over Q. For any sufficiently large CM-subfield K of
C, there exists an abelian variety B over Q such that MT(A×B)der satisfies (∗) and MT(A×B)ab ∼=
SK .

This will be proved in the next subsection.

Theorem 3.13. The isomorphism class of PAV → PCM is uniquely determined by its classes over
Ql (l = 2, 3, . . . ,∞).

Proof. According to Proposition 1.10, the isomorphism classes in P(GAV
B → GCM

B ;PCM) are classified
by H1(Q,H) where H is the twist of H ′ = Ker(GAV

B → GCM
B ) by the period torsor. Proposition 3.12

implies that

H ′ ∼= lim←−MT(A)der,

where A runs over the abelian varieties satisfying the hypothesis of Theorem 3.11. Therefore H is
a countable product of simple algebraic groups satisfying (∗), and so we can apply Corollary 1.14
and Proposition 3.5.

Proof of Proposition 3.12
We shall say that an algebraic group H over a field k of characteristic zero is a special orthogonal
group if there exists vector space V over k of dimension n > 8 and a nondegenerate quadratic form
q on V such that H ≈ SO(V, q). Such an H is connected and simple, and there are isogenies of
degree 2

H̃ → H → Had,

with H̃ the simply connected covering group of H (a spinor group). Let Z = ZH̃. When n is even
Z(kal) ≈ C2 × C2.

6We do not really need to assume MT(A)ab ∼= SK ; it only makes the statement a little more pleasant.
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3.14 Recall from [Del79a] the following statements.

a) Let A be an abelian variety over C. Each Q-simple factor H of MT(A)ad is of type A, B, C,
DR, or DH (notations as in [Del79a, 2.3.8]).

b) Let A be an abelian variety over C, and let G = MT(A). The homomorphism h : S → G/R

defined by the Hodge structure on H∗(A,Q) satisfies the following conditions:

i) the Hodge structure on the Lie algebra g of G defined by Ad ◦h : S → GL(g) is of type
{(1,−1), (0, 0), (−1, 1)};

ii) ad h(i) is a Cartan involution on Gad;
iii) h generates G (i.e. there is no proper closed subgroup G′ ⊂ G such that h(S) ⊂ G′

/R).

c) LetH be a simple adjoint group over Q, and let h : S/Gm → H/R be a homomorphism satisfying
the conditions i, ii and iii in statement b.
i) If H is of type A, B, C, or DR, there exists an abelian variety A over C such that MT(A)der

is simply connected and (MT(A), hA)ad ≈ (H,h) (apply [Del79a, 2.3.10]).
ii) Suppose H is of type DH. Then H = ResF/QN for some absolutely simple group N over

a totally real field F , and we let H ′ = ResF/QN
′ where N ′ → N is the double covering of

N that is an inner form of a special orthogonal group [Del79a, 2.3.8]. Any homomorphism
H̃ → MT(A) sending h to (hA)ad factors through H ′ [Del79a, 1.3.10]. There exists an
abelian variety A over C with MT(A)der ≈ H ′ and (MT(A), hA)ad ≈ (H,h) (apply [Del79a,
2.3.10]).

We shall need the following condition on a semisimple group H over Q:

H is a product of simple groups; a simple factor of HR has index 2 if it is of type DH

and index 1 otherwise. (∗∗)
Definition 3.15. An abelian variety defined over a subfield of C is maximal if MT(A)der satisfies
(∗∗).
Lemma 3.16. A finite product of maximal abelian varieties is maximal.

Proof. Let A =
∏

j Aj where each Aj is maximal. The canonical map MT(A) → ∏
MT(Aj) is

injective and its composite with any projection
∏

MT(Aj) → MT(Aj) is surjective [Del82a, § 3].
For a judicious choice of simple factors Hi of

∏
MT(Aj)der, the homomorphism MT(A)ad →∏

Had
i

will be an isomorphism. Consider ∏
H̃i → MT(A)der →

∏
Hi.

Then
∏
H̃i → MT(A)der factors through

∏
H ′

i where H ′
i is as in statement c(ii) of § 3.14 when Hi

is of type DH and equals H̃i otherwise. Consider∏
H ′

i � MT(A)der �
∏

Hi.

As
∏
H ′

i and
∏
Hi have the same index, the composite is an isomorphism, and so MT(A)der →∏

Hi

is an isomorphism.

Remark 3.17. Let A and B be abelian varieties such that MT(A×B)ad ∼= MT(B)ad. If B is maximal,
then so also is A × B. This can be proved the same way as Lemma 3.16; one only has to observe
that, because of the condition on the adjoint groups, the Hi in the proof can be chosen to be factors
of MT(B)der.

Lemma 3.18. For any abelian variety A over C, there exists an abelian variety B over C such that
(MT(B), hB)ad ≈ (MT(A), hA)ad and B is maximal.
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Proof. According to § 3.14, for each simple factor (H,h) of (MT(A), hA)ad, there exists an abelian
variety B(H) such that (MT(B(H)), hB(H))ad ≈ (H,h) and MT(B(H))der is the covering H ′ of H
in condition ii in statement c of § 3.14 if H is of type DH and is simply connected otherwise. Take
B =

∏
B(H). Because each B(H) is maximal, so is B (by Lemma 3.16).

Recall that, when A ≺ B, there is a canonical surjection cA,B : MT(B) → MT(A) carrying hB

to hA.

Lemma 3.19. An abelian variety A over C is maximal if and only if, for all B such that A ≺ B and
cadA,B : MT(B)ad → MT(A)ad is an isomorphism, cder

A,B : MT(B)der → MT(A)der is an isomorphism.

Proof. Let B′ be as in Lemma 3.18, and let B = A×B′. Then A ≺ B and MT(B)ad → MT(A)ad is
an isomorphism, but MT(B)der → MT(A)der is an isomorphism only if A is maximal. This proves
the ‘if’.

Let A be maximal. Then it is clear from statement c of § 3.14 that it satisfies the condition.

Lemma 3.20. Let A be an abelian variety over C, and let τ be an automorphism of C. Then A is
maximal if and only if τA is maximal.

Proof. Recall that MT(A) = Aut⊗(ωB) and MT(τA) = Aut⊗(ωτ ) where ωτ is the fibre functor on
AV(C) sending hX to H∗(τX,Q). Therefore, from the theory of Tannakian categories, MT(τA) ∼=
P MT(A) where P = Isom(ωB, ωτ ).

If A is not maximal, then there exists an abelian variety B such that A ≺ B and MT(A)ad ∼=
MT(B)ad but MT(A)der �∼= MT(B)der. Clearly τB has the same properties relative to τA, which
proves that τA is not maximal.

Lemma 3.21. Let A1 and A2 be abelian varieties over C such that (MT(A1), hA1)ad ≈ (MT(A2),
hA2)ad. If A1 can be defined over Qal, then so also can A2.

For a proof, see [BB99, 3.3].

Lemma 3.22. For any CM-subfield K of C of finite degree over Q, there exists an abelian variety A
over C such that the canonical map SK → MT(A) is an isomorphism. If K is Galois over Q, then
A may be chosen to be defined over Q.

Proof.7 First recall that the CM-types on K generate X∗(SK): in fact, if ψ = τ1 + · · · + τg is one
CM-type on K, then the CM-types ψi = τi +

∑
j �=i ιτj (i = 1, . . . , g) and φ̄ =

∑
ιτj form a basis for

the Z-module X∗(SK).
Let B be a simple abelian variety over C of CM-type (E,φ). For each ρ : E → Qal and τ ∈

Gal(Qcm/Q), define ψρ(τ) = φ(τ−1 ◦ρ). Then, as ρ runs over the embeddings of E into Qal, ψρ runs
over a Γ-orbit of CM-types on Qcm. The map B 	→ {ψρ} defines a bijection from the set of isogeny
classes of simple abelian varieties of CM-type over Qal to the set of Γ-orbits of CM-types on Qcm.
A τ ∈ Γ fixes the reflex field K of B if and only if τφ = φ. Each ψρ is the extension to Qcm of a
primitive CM-type on K, and the kernel of SK → MT(B) is the intersection of the kernels of the
ψρ (see [Mil99, § 2]). For any automorphism σ of C, σB has reflex field σK.

Choose a finite set of B with reflex field contained in K such that the corresponding ψ generate
SK , and let A be their product. The canonical map SK → MT(A) is then an isomorphism. According
to § 2.7, we may take A to be defined over a subfield k of C of finite degree over Q . Then,
if K is Galois over Q, A∗ =df Resk/QA has reflex field contained in K, and the canonical map
SK → MT(A∗) is an isomorphism. �
7For slightly weaker results, see [Mil90, I 4.6], [Wei94, 1.5.1] and [BB99, 3.5].
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Proof of Proposition 3.12. Let A be an abelian variety over Q. Choose B as in Lemma 3.18. After
Lemma 3.21, we may assume B is defined over a number field F . Then B∗ =

∏
σ∈ΣF/Q

σB is defined

over Q. Let K be any CM-subfield of Qal containing the reflex field of (MT(A×B∗), hA×B∗)ab and
finite and Galois over Q, and choose C as in Lemma 3.22. Consider the abelian variety A×B∗×C.
It is defined over Q, and Lemmas 3.20 and 3.16 and Remark 3.17 show that it is maximal. By
assumption, the reflex field of (MT(A×B∗×C), hA×B∗×C)ab is contained in K, and so the canonical
homomorphism S → MT(A × B∗ × C)ab factors through SK . But MT(A × B∗ × C) surjects onto
MT(C) ∼= SK , and so SK ∼= MT(A×B∗ × C)ab. This completes the proof of Proposition 3.12.

Characterizing PH→ P CM

Theorem 3.23. Let A be an abelian variety over Q. If MT(A)der is simply connected and
MT(A)ab ∼= SK for some K, then the isomorphism class of PA → PCM,K is uniquely determined by
its class over R.

Proof. According to Proposition 1.10 and § 3.3, the isomorphism classes in P(GA
B → GCM,K

B ;PCM,K)
are classified by H1(Q,H), where H is the twist of MT(A)der by the period torsor. Therefore H
is simply connected, and so this follows from the theorem of Kneser, Harder, and Chernousov (see
Lemma 3.6).

Let H denote the class of abelian varieties A over Q such that MT(A)ad has no factor of type DH.
Note that, because of condition ii in statement c of Proposition 3.14, any abelian variety for which
MT(A)der is simply connected lies in H. The next result shows that the abelian varieties satisfying
the conditions of Theorem 3.23 are cofinal among all abelian varieties in H.

Proposition 3.24 [BB99, 3.2]. Let A be an abelian variety in H. For any sufficiently large CM-field
K, there exists an abelian variety B over Q such that MT(A × B)ab ∼= SK and MT(A × B)der is
simply connected.

Proof. When A is in H, the proof of Proposition 3.12 can be modified to show that B can be
chosen in such a way that MT(A × B)der is simply connected; in fact, this significantly simplifies
the proof.

Theorem 3.25. The isomorphism class of PH → PCM is uniquely determined by its isomorphism
class over R.

The proof is similar to that of Theorem 3.13.

Remark 3.26. The main theorem of [BB99, Theorem 1.5] states that the isomorphism class of
PH → PCM is determined by the cohomology class of PH in lim←−A∈HH

1(R, GA
B). Theorem 3.25

states that the isomorphism class of PH → PCM is determined by its class in H1(R, (GH
dR)◦der).

There are maps

H1(R, (GH
dR)◦der)→ lim←−

A∈H
H1(R, (GA

dR)◦der)→ lim←−
A∈H

H1(R, (GA
dR)◦)→ lim←−

A∈H
H1(R, GA

dR).

The first is an isomorphism (by Corollary 1.14) and the third is injective [BB99, 4.4]. If the second
were injective, their theorem would follow from Theorem 3.25, but I see no reason to expect this
(the kernel of the second map is a quotient of fS(R), which is a countable product of copies of R×).

Characterizing P AV→ P CM in terms of a lifting property
Let A be an abelian variety over Q such that MT(A) ∼= SK for some CM-field K. Recall that
MT(A)der = Ker(GA → GCM,K

B ). We say that PA → PCM,K has the lifting property if there exists

1171

https://doi.org/10.1112/S0010437X04000417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000417


J. S. Milne

a surjective homomorphism G̃→ GA
B such that the kernel of G̃ → GCM,K

B is the universal covering
group of MT(A)der and PA lifts to G̃.

Theorem 3.27. Let A be an abelian variety over Q such that MT(A)der satisfies (∗) and SK ∼=
MT(A)ab for some CM-subfield K of C. Up to isomorphism, there exists at most one object P →
PCM,K in P(GA → GCM,K

B ;PCM,K) such that

a) P → PCM,K has the lifting property, and

b) (P → PCM,K)R ≈ (PA → PCM,K)R.

Proof. Apply Proposition 3.8 to H = MT(A)der.

The notion of a lifting property extends in an obvious fashion to infinite sets of abelian varieties.

Theorem 3.28. Up to isomorphism, there exists at most one object P → PCM in P(GAV
B →

GCM
B ;PCM) such that

a) P → PCM has the lifting property, and

b) (P → PCM)R ≈ (PAV → PCM)R.

The proof is similar to the proof of Theorem 3.13.

Remark 3.29. Deligne’s hope that all Shimura varieties with rational weight are moduli varieties
for motives [Del79a, p. 248] implies that PAV → PCM has the lifting property over C. It would be
interesting to prove this unconditionally.

Characterizing P AV→ P Art

Theorem 3.30. Let A be an abelian variety over Q such that MT(A)ab ∼= SK for some CM-subfield
K of C.

a) If MT(A)der is simply connected, then the isomorphism class of PA → PArt is uniquely deter-
mined by its class over R.

b) If MT(A)der satisfies (∗), then, up to isomorphism, there exists at most one object P → PArt

in P(GA
B → Γ ;PArt) having the lifting property and isomorphic to PA → PArt over R.

Proof. a) According to Proposition 1.10, the isomorphism classes in P(GA
B → Γ ;PArt) are classified

by H1(Q, G), where G is the twist of

MT(A) 3.1= Ker(GA
B → Γ )

by the period torsor. Then Gab = fS
K , and so G satisfies the hypotheses of part b of Proposi-

tion 3.10.

b) In this case, G satisfies the hypotheses of Remark 3.9.

Remark 3.31. For any abelian variety A over Q, the map GA
dR(R)→ fΓ (R) is surjective [BB99, 4.4]

and so

H1(R, (GA
dR)◦)→ H1(R, GA

dR)

is injective. Therefore, for P → PArt in P(GA
B → Γ ;PArt), the isomorphism class of P → PArt over

R is determined by the isomorphism class of P over R.
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Theorem 3.32.

a) There are uncountably many isomorphism classes in P(GH
B → Γ ;PArt) that become isomorphic

to PH → PArt over R.

b) If there exists one object P → PArt in P(GAV
B → Γ ;PArt) having the lifting property and

isomorphic to PAV → PArt over R, then there are uncountably many.

Proof. a) According to Proposition 1.10, the isomorphism classes in P(GH
B → Γ ;PArt) are classified

by H1(Q, (GH
dR)◦), where (GH

dR)◦ is the twist of

(GH
B )◦ 3.1= Ker(GH

B → Γ )

by the period torsor. For an A ∈ H with MT(A)ab ∼= SK , consider

0→ (GA
dR)◦der(Q)→ (GA

dR)◦(Q)→ fS
K(Q)→ H1(Q, (GA

dR)◦der).

Because (GH
dR)◦der is a countable product of algebraic groups,

lim←−
1(GA

dR)◦der(Q) = 0 = lim←−
1H1(Q, (GA

dR)◦der)

(by Corollary 1.14). Therefore,

lim←−
1 (GA

dR)◦(Q) ∼= lim←−
1

fS
K(Q),

which is uncountable (by Proposition 2.18). Similarly,

lim←−
1 (GA

dR)◦(R) ∼= lim←−
1

fS
K(R),

which is zero because fS
K
/R is a product of copies of Gm. In view of Proposition 1.12, this completes

the proof.
b) This is similar to that of part a.

Remark 3.33. I expect that there are uncountably many distinct isomorphism classes in P(GAV
B →

Γ ;PArt) that become equal to the class of PAV → PArt over every field Ql.

Characterizing P AV

Theorem 3.34. Let A be an abelian variety over Q such that MT(A)ab ∼= SK for some
CM-field K.

a) If MT(A)der is simply connected, then, up to isomorphism, PA is the only GA
B-torsor P such

that

i) P ∧GA
B Γ ≈ PArt, and

ii) P/R ≈ PA
/R.

b) If MT(A)der satisfies (∗), then, up to isomorphism, there exists at most one GA
B-torsor P such

that

i) P ∧GA
B Γ ≈ PArt,

ii) there exists a surjective homomorphism u : G′ → GA
B such that uder : G′der → (GA

B)der is
the universal covering group of (GA

B)der and P = uP ′ for some G′-torsor, and
iii) P/R ≈ PA

/R.

Proof. a) Let P satisfy the conditions i and ii, and choose a morphism P → PArt. Then Theorem 3.30
and Remark 3.31 show that (P → PArt) ≈ (PA → PArt).

b) This is similar to that of part a.
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Other fields

Hasse principles are known to hold for some fields other than number fields. For example, [Sch96]
proves a Hasse principle for the Galois cohomology groups of connected linear algebraic groups over
perfect fields with virtual cohomological dimension �1. However, if the field k is not countable, the
affine group scheme G attached to the category of abelian motives over k will not be a countable
inverse limit of algebraic groups. In particular, the relation of the flat cohomology group of G to the
Galois cohomology groups of its algebraic quotients is unknown, and so (pace [Fli01]) such results
do not imply Hasse principles for period torsors.
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