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CONVEX SETS, FIXED POINTS, VARIATIONAL

AND MINIMAX INEQUALITIES

TZU-CHU LIN

Recently, Ky Fan extended his will known lemma (which is an

extension of the classical theorem of Knaster, Kuratowski and

Mazurkiewica) to the noncompact case. Using this result, another

interesting lemma of Fan is generalized in this paper. As

applications of our theorem, we obtain a generalization of

Browder's variational inequality and derive Fan's other recent

results directly from our theorem. Also, in this paper, we

give a slight extension recent results of K. K. Tan, which

themselves are generalizations of many well-known results on

minimax and variational inequalities.

1. Introduction.

In 1961, Fan [4, Lemma 1] gave an extension of the classical

Knaster-Kuratowski-Mazurkiewicz theorem [S] to an arbitrary Hausdorff

topological vector space. Since then, this result has been widely used in

nonlinear functional analysis, and is known as Fan's Lemma or K-K-M-Fans'

Theorem (see [3]). Recently, Fan [7, Theorem 4] extended his well known

lemma to the noncompact case. In this paper, we first use Fan's Theorem
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[7, Theorem 4] to obtain a generalization of another interesting lemma of

Fan [4, Lemma 4]. As applications of our theorem, we obtain a general-

ization of Browder's variational inequality [2, Theorem 2] and directly

from our theorem derive Theorems 7, 8 of Fan [7], We also prove a

slight generalization of Theorems 1, 2 of Tan [I/] and other results

contained therin, which itself is a generalization of many well-known

results on minimax and variational inequalities.

We first state some definitions.

DEFINITION. Let X be a nonempty convex subset of a Hausdorff

topological vector space E.A real-valued function f on X is said to

be

(i) lower semicontinuous if for each t the set {xeX\f(x) it]

is closed;

(ii) convex if for x, y in X and 0 ^ r & 1 we have

f((l-r)y + rx) < (l-r)f(y) + rf(x) ;

(iii) quasi-concave if for each t the set {xeX\f(x) > t] is

convex or empty.

We will denote by coix*, ..., x } , the convex full of any finite

subset O^j .. . j x } of E .

2. Main Results.

We use the following Lemma [7] to prove Theorem 1.

LEMMA 1. (Pan [7, Theorem 4]). In a Hausdorff topological vector

space, let Y be a convex set and 0 / X c y . For each x e X, let

F(x) be a relatively closed subset of Y such that the convex hull of

every finite subset {xn3 xol...,x } of X is contained in the
J. d n

n
corresponding union u F(x.) . If there is a nonempty subset X. of X

%i
such that the intersection n Fix) is compact and X is contained in

xeX

a compact convex subset of Y , then n F(x) / 0 .
xeX

Remark 1. Note that n F(x) cannot be empty since, if it were,
xeXQ
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taking A(x) to be the complement of F(x) in Y and applying Lemma 1

of [7] we would have a finite subset of X. whose convex hull contained

a point outside the union of the corresponding F(x)'s.

THEOREM 1. Let X be a nonempty convex subset of a Hausdorff

topological vector space E . Let A c x*X be a subset such that

(a) for each xeX3 the set {yeX\(x3y)eA} is closed in X;

(b) for each yeX3 the set {xeX\(x3y)/A} is convex or empty;

(a) (x3x) e A for each x e X;

(d) X has a nonempty compact convex subset X. such that the set

B = {yeX\(x3y)eA for all xeX } is compact.

Then there exists a point y e B such that Xx{y } c A.

Proof. .For each xeX , let F(x) = {yeX\(x3y)eA) . By assumption

(a), F(x) is closed in X . By assumptions (b) , (c), co{x.,...jl } c

n
u F(x.) for any finite subset ixn, ...,x } of X . Indeed, let

i=l % in

n n n
z = E a.x. , E a. = 1, a. £ 0 , i = 1, ..., n. If z £ u F(x.) , then

i=l % * i=l x * i=l X

(x.,z) f[ A for i = 1, . ..j n . By assumption (b) applied to this z ,

the set {xeX\(x3z)f{A} is convex. Therefore (z,z) / A , which

contradicts (c). By assumption (d), the intersection n Fix) is
xeXQ

contained in B and is compact. By Lemma 1, there exists a point

ye n F(x) , which means X*{y } c A.
xeX

Remark 2. (i) Condition (d) of Theorem 1 can be replaced by the

following condition:

(dl) let XQ be a nonempty compact convex subset of X , and K a

nonempty compact subset of X . If for every yeX\K , there is a

point xe%n such that (x3y) f A.

We remark that, under the assumption (a) of the theorem# (dl) is a special

case of (d). Indeed, by (dl) , the set {j/eX| (VxeXQ) ((x3y)eA) } <= K, By
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(a), the set {yeX\ (VxeX.) ((xty)e.A)} is closed, and is compact.

From the above remark, we see that, under condition (dl), our

conclusion will be: there exists a point y .eK such that Xx[y.} c A.

(ii) As in Remark 1, B is necessarily non-empty,

(iii) If K = X , then condition (dl) is automatically satisfied.

COROLLARY 1, (Fan [4, Lemma 4]). Let X be a nonempty compact

convex subset of a Hausdorff topological vector space E . Let A c x*X

be a subset such that the conditions (a), (b), (c) of Theorem 1 are

satisfied.

Then there exists a point y eX such that X*{y } c A.

Proof. From Theorem 1 and Remark 2.

Now we will see some applications of Theorem 1. We first obtain

a generalization of a variational inequality of Browder 12 , Theorem 2].

THEOREM 2. Let X be a nonempty convex subset of a locally convex

Hausdorff topological vector space E, T a continuous mapping of X

into E* .

(d) If X has a nonempty compact convex subset X. such that the set

B = {yeX\ (VxeXJ ((Ty,y-x) > 0) } is compact, then there exists a point

yQeB such that (Ty , y -x) > 0 far all xeX .

Proof. Let

A = {(x,y)e X*X\(Ty,y-x) > 0}.

Since T is continuous, the set {yeX\(x,y)eA} is closed in X for each

xeX. It is clearly that (x,x)eA for each xeX , and the set

{rceX| (x,y)f{A)= {xeX\ (Ty,y-x) < 0} is convex or empty for each ye.X. By

Theorem 1, there exists a point y .eB such that Xx{yA c A , that is

(Tyn, yn~x) > 0 for all xeX.

Remark 3. (i) Condition (d) of Theorem 2 can be replaced by the

following condition:

(d2) let Xf. be a nonempty compact convex subset of X , and

K a nonempty compact subset of X . If for every yeX\K ,

there is a point X€^o such that (Ty,y-x) < 0 .

https://doi.org/10.1017/S000497270000455X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270000455X


Variational and Minimax Inequalities

(ii) We have the same remark as Remark 2 (ii), (iii). We will not

repeat this statement for other remarks.

COROLLARY 2. (Browder 12, Theorem 2]). Let X be a nonempty

compact convex subset of a locally convex Hausdorff topological vector

space E , T a continuous mapping of X into E* . Then there exists a

point yQeX such that (Ty ,y.-x) > 0 for all xeX .

Proof. This follows from Theorem 2 and Remark 3.

Now we derive the following theorems of Fan ([7, Theorem 7,8])

directly from our Theorem 1.

THEOREM 3. [7, Theorem 7]. Let X be a nonempty convex set in a

normed vector space E, and let f: X -<• E be a continuous map.

(d) If X has a nonempty compact convex subset X. such that the

set B = {yeX\(VxeXQ)\ \x-f(y)\ \ > \\y-f(y)\\)) is compact ,

then there exists a point yn^B such that

\\yo-f<yo>\\ =Min\\x-f(y )\\ .
xeX

(Inparticular,, if f(yQ)eX , then yQ is a fixed point of f).

Proof. Let

A= {(x,y)eXxX\\\x-f(y)\\ > Wy-f(y)W).

Since f is continuous, the set {ye.X\(x,y)cA} is closed in X for

each xeX . It is clear that (x,x)e.A for each xeX , and the set

{xeX\(x,y){A}= {xeX\ | \x-f(y) I I < Wy-f(y)W) is convex or empty. By

Theorem 1, there exists a point y e B such that X*{y.} c A 3

Wyn-f(yJ\\ = M i n l l x - f f t , ) \ \ .
U U xeX °

Remark.4. (i) The condition (d) of Theorem 3 can be replaced by

the following condition:

(d3) Let X. be a nonempty compact convex subset of X , and K

a nonempty compact subset of X , such that for every ye.X\K , there is a

point xeXQ such that \\x-f(y)\\ < \\y-f(y)\\ .

Under the condition (d3), we can conclude that yn
£K such that
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i j ] =Mn]\x-f(y ) \ \ .
xtX

Actually, Fan C7] proved Theorem 3 under the condition Cd3).

( i i ) If K = X , t h i s reduces to Fan [5 , Theorem 2] . Other general-

i z a t i o n s of t h i s r e s u l t for a closed convex subset K = X in Hilbert

space were obtained by the author [9,70] and also for a closed b a l l in a

Banach space [ 9 ] .

THEOREM 4. (Fan [7 , Theorem 8 ] ) . Let X be a nonempty paracompact

convex set in a Hausdorff topologiaal vector space. Let n ba a non-

empty convex set (that is every convex combination of any two functions

•in Q is in Q, ) of lower semi-continuous convex functions on X . Let

S be a subset of Xx-Q, such that:

(a) For each fixed <j>e°, , the section S($) = {xeX\ (x}$)eS] is

open in X.

(b) For any fixed xeX, the section Six) = {(f>eft| (x,$)eS} is

convex and nonempty.

Then either there exists (y-,, 4>-J e. S satisfying

y~eX and §-(y.) = Min fy^ix) ;
xeX

or for any nonempty compact convex subset X. of X and any compact

subset K of X j there exists (y0, $o) e S satisfying

yoeX\K and 4>JyJ s <j> (x) for all xeX .

Proof. Our proof i s a modification of Fan [7.Theorem 8] . By (b),

for each zcX , there i s a <j> e°, such tha t (s.,<t> ) e S . By (a) ,
z z

{Sfif ) \zeX} is an open cover of the paracompact space X . Let
2

{a |seX} be a continuous partition of unity subordinate to this open
2

cover. Thus, for each zeX, a. is a non-negative real continuous function
2

on X , with its support supp a <= S(<j> ) . The family {supp a \zeX} is

a locally finite closed cover of X ; and £ a (x) = 1 for all xeX ,
zeX Z

define tyix) by
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which is a convex combination of a finite number of cj> 's . As Q is
z

convex, we have ty(x)€& for each xeX . If x, 2 in X are such that

a (x) > 0 , then aresupp a <= S(§ ) and therefore <f> eS(x) . By (b) , we
2 2 2 2

have ty(x)eS(x) for all xeX.

Now, define

Since a is continuous and non-negative on X and ty is lower semi-
3 Z

continuous on X , then for each fixed xeX , the function

h(x3y) = $(y)(y) - i>(y)(x) = Z a (y)$ (y) - t ajy)$(x)
2eX zeX

is also a lower semi-continuous function of y on X . Therefore the set

{yeX\(x,y)eA} = {yeX\ty(y)(y) < ^(y)(x)}

is closed in X for each xeX . It is clear that (x,x)eA for all

xeX and the set {xeX|(x3y)/A} is convex or empty for each yeX (since

<p(y)eU and ty(y) is a convex function on X). By Theorem 1 and Remark 2,

either there exists y^eX such that X*{y7} c A ; or for any non-empty

compact convex subset X. of X and any compact subset K of X , there

exists y2&X\K such that (x,y J e A for all xc^n • W e take 4> =

in the first case, and $„ = i>(yp) in the second case. In the first

case, Xx{y_} c 4̂ , this means

§JyJ = Min ̂  (x) .
xeX

Since ty(y-,) e S(yJ3 (y~, §~) e 5. In the second case, tx,y„) e A for

all xe%n ' it implies that

$2(y2) ^ <j>2ra:; for all xeXQ .

This completes the proof.

Now, we will use Lemma 1 to prove the following minimax inequalities.

THEOREM 5. Let X be a nonempty convex set in a Hausdorff

topological vector space E. Let f and g be two real-valued function

on XxX having the following properties:

(a) g(x,y) < f(x,y) for all (x,y) e. X*X and f(x,x) < 0 for

all xeX;
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(b) for each fixed XeX, g(x,y) is a lower semicontinuous function

y on X;

(c) for each fixed yeX, the set {xeX\f(x,y) > 0} is convex or

empty;

(d) X has a nonempty compact convex subset XQ such that the set

B = {yeX\g(x3y) < 0 for all xeX} is compact.

Then there exists a point y .eB such that g(x,yJ < 0 for all xeX.

Proof. For each xeX , le t

G(x) = {yeX\g(x,y) < 0} ,

F(x) = {yeX\f(x,y) < 0} .

By (b) , G(x) i s closed in X . From (a) , (c) , we have

n
cote , . . . , x } <= u F(x.)

v l

for any finite subset {x13 . . . , x } of X . Indeed, if z = Z a .x. }

i n i 1 % ^

E a-= 1 , a. > 0, and z { u Fix.) , then (f(x.),z) > 0, i=l,...,n .
1=1

By (c) , f(z,z) > 0 , which contradicts the assumption (a). By (a)

n
F(x) <= G(x) . Then co{x.j ..., x } c u G(x.) . Since n G(x) is a

n i l t

closed subset of the compact set B, n G(x) is compact. By Lemma 1,

there exists a point y. e n G(x) , which means 2(^ay^ - 0 for all
xeX

xeX.

Remark 5. Condition (d) of Theorem 5 can be replaced by the

following condition:

(d5) let X^ be a nonempty compact convex subset of X , and K

a nonempty compact subset of X . If for every yeX\K , there is a point

. such that g(x,y) > 0 . Then our conclusion is that there exists a

point y.eK such that

g(x,y ) < 0 for all xeX .
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COROLLARY 3. (Tan [71, Theorem 1]). Let X, E, f, and g be the

same as in Theorem 5 and satisfy conditions (a), (b), (c) and

(d') there exists a nonempty compact convex subset K of X such

that for each yeX\K , there exists a point xeK with

g(x,y) > 0 .

Then there exists a point y e.K such that g(x,yJ < 0 for all xcX .

Proof. Take XQ = K in (d5) .

Remark 6. If f = g in Corollary 3, this result is due to Allen

[7, Theorem 2].

THEOREM 6. Let X be a nonempty convex set in a Hausdorff

topological vector space. Let f and g be two real-valued function on

XxX having the following properties:

(a) g(x,y) < f(x,y) for all (x,y) e X*X ,

(b) for each fixed xeX, g(x,y) is a lower semicontinuous function

of y on X,

(c) for each fixed yeX, f(x,y) is a quasi-concave function of x

on X,

(d) if X has a non-empty compact convex subset X. such that

the set B = {yeX\(VxeX )(g(xty) < t)} is compact, if

t « sup f(x,x) < +°° .
xeX

Then the minimax inequality

min sup g(x,y) £ sup f(x,x)
yeB xeX XeX

holds.

Proof. Without loss of generality, we can assume that

t = sup f(x,x) < +<* .
xeX

Applying Theorem 5 to

f2(x,y) = f(x,y) = t, g2(x,y) = g(x,y) -t ,

the proof is complete.

Remark 7. Condition (d) of Theorem 6 can be replaced by the

following condition:
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(d6) l e t X~ be a nonempty compact convex subset of X , and K

a nonempty compact subset of X . If for every yeX\K , there is a point

xeXg such that

g{x,y) > t if t = sup f(x,x) < +<»
xeX

then our conclusion is that the minimax inequality

min sup g(x,y) < sup f(x,x)
yeK xeX xeX

holds.

COROLLARY 4. (Tan [77, Theorem 2]). Let Xa f} g be the same as

Theorem 6 and satisfy conditions (a), (b)} (a) and

(dr) there exists a nonempty compact convex subset K of X such

that for all yeX\K } there exists a point xcK with g(x3y) > t if

t = sup f(x,x) < » .
xeX

Then the minimax inequality

min sup g(x,y) < sup f(xsy)
yeK xeX xeX

holds.

Proof. Take X = K in (d6)

Remark 8. If K = X, the result is due to Yen [72, Theorem 1]. If

K = X, f - g , the result is due to Fan [6].

Remark 9. Tan [7 7] applied corollaries 3, 4 to obtain some

generalizations of variational inequalities ([77, Theorem 3, 5]) and

fixed point theorems ([77, Theorem 6-8]). Applying our Theorems 5, 6 and

using the same arguments as Tan [71], we can obtain a slight generalization

of the corresponding Theorems 3, 5, 6, 7, 8 of Tan [77], just like we did

for Theorems 5 and 6 and Remarks 5, 7.
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