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CONVEX SETS, FIXED POINTS, VARIATIONAL
AND MINIMAX INEQUALITIES

Tzu-CHu LIN

Recently, Ky Fan extended his will known lemma (which is an
extension of the classical theorem of Knaster, Kuratowski and
Mazurkiewica) to the noncompact case. Using this result, another
interesting lemma of Fan is generalized in this paper. Aas
applications of our theorem, we obtain a generalization of
Browder's variational inequality and derive Fan's other recent
results directly from our theorem. Also, in this paper, we

give a slight extension recent results of K. K. Tan, which
themselves are generalizations of many well-known results on

minimax and variational inequalities.
1. Introduction,

In 1961, Fan [4, Lemma 1] gave an extension of the classical
Knaster-Kuratowski-Mazurkiewicz theorem [§] to an arbitrary Hausdorff
topological vector space. Since then, this result has been widely used in
nonlinear functional analysis, and is known as Fan's Lemma or K-K-M-Fans'
Theorem (see [3]). Recently, Fan [7, Theorem 4] extended his well known

lemma to the noncompact case. In this paper, we first use Fan's Theorem
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[7, Theorem 4] to obtain a generalization of another interesting lemma of
Fan [4, Lemma 4]. As applications of our theorem, we obtain a general-
ization of Browder's variational inequality [Z, Theorem 2] and directly
from our theorem derive Theorems 7, 8 of Fan [7], We also prove a
slight generalization of Theorems 1, 2 of Tan []/7] and other results
contained therin, which itself is a generalization of many well-known
results on minimax and variational inequalities.

We first state some definitions.

DEFINITION. Let X be a nonempty convex subset of a Hausdorff

topological vector space E.A real-valued function f on X is said to

be
(i) lower semicontinuous if for each ¢ the set {xeX|f(x) < t}
is closed;
(ii) convex if for x, y in X and 0 £r £1 we have
fl(1-v)y + rx) < (1-r)fly) + rflx) ;
(iii) quasi-concave if for each * the set {xeX|f(x) > t} is
convex or empty.
We will denote by co{xl, eny xn} , the convex full of any finite
subset {xl, R xn} of E .

2. Main Results.
We use the following Lemma [7] to prove Theorem 1,

LEMMA 1. (Fan [7, Theorem 4]). In a Hausdorff topological vector
space, let Y be a convex set and f # X ¢ Y . For each x ¢ X, let
F(x) be a relatively closed subset of Y such that the convex hull of

every finite subset {xl, xz,...,xn} of X 1is contained in the

n
corresponding wunion U F(xi) . If there is a nonempty subset XO of X
i=1
such that the intersection o F(x) <is compact and X, 18 contained in
xeX
0
a compact comvex subset of Y , then n F(x) #4 .

xeX

Remark 1. Note that n F(x) cannot be empty since, if it were,

xeXo
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taking A(x) +to be the complement of F(x) in Y and applying Lemma 1

of [7] we would have a finite subget of Xo whose convex hull contained

a point outside the union of the corresponding F(z)'s.

THEQOREM 1. Let X be a nonempty convex subset of a Hausdorff

topological vector space E . Let A < XxX be a subset such that
(a) for each =xzeX, the set {yeX|(x,y)eA} is closed in X;
(b) for each yeX, the set {xzeX|(x,yldA} <is convex or empty;
(c) (z,x) ¢ A for each =z ¢ X;

(d) X has a nonempty compact convex subset X, such that the set
B = {yeX|(x,y)ed for all xeXo} g compact.

Then there exists a point Yy € B such that Xx{ya} c A.

Proof.  For each xzeX , let F(x) = {yeX|(x,y)eA} . By assumption

(a), F(x) is closed in X . By assumptions (b), (c), co{xl,...,xn}c
n
U F(x.) for any finite subset {x,, ...,x_} of X . Indeed, let
. 1° n
1=1
n n n
Z2 = _Z aixi , L @, = 1, a, 20 ,1i=1, ..., n. If =z ¢ 'U F(xi) , then
=1 i=1 i=1
Cxi,z) A for 7 =1, ..., n . By assumption (b) applied to this 2 ,

the set {xeX|(x,z)dA} is convex. Therefore (2,2) ¢ A , which
contradicts (c). By assumption (d), the intersection 0 F(x) is
xeX
0
contained in B and is compact. By Lemma 1, there exists a point
Yp € N F(x) , which means XX{yo} c A,
xeX
Remark 2. (i) Condition (d) of Theorem 1 can be replaced by the
following condition:
(d1) 1let X; Dbe a nonempty compact convex subset of X , and K a
nonempty compact subset of X . If for every yeX\K , there is a

point xeX,  such that (=x,y) ¢ A.

0
We remark that, under the assumption (a) of the theorem, (d1) is a special

case of (d). 1Indeed, by (dl), the set {yeXl(VxeXo)((x,y)eA)} c K. By
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(a), the set {yeXI(fxon)((x,y)eA)} is closed, and is compact.

From the above remark, we see that, under condition (dl), our

conclusion will be: there exists a point yoeK such that XX{yo} c A.

(ii) As in Remark 1, B is necessarily non-empty.

(iii) 1f K = X , then condition (dl) is automatically satisfied.

COROLLARY 1, (Fan [4, Lemma 4]). Let X be a nonempty compact
convex subset of a Hausdorff topological vector space E . Let A c XxX
be a subset such that the conditions (a), (b), (c) of Theorem 1 are
satisfied.

Then there exists a point yoeX such that XX{yO} c A.

Proof. From Theorem 1 and Remark 2.
Now we will see some applications of Theorem 1. We first obtain

a generalization of a variational inequality of Browder [Z , Theorem 2].

THEOREM 2. Let X be a nonempty convex subset of a locally comvex
Hausdorff topological vector space E, T a continuous mapping of X
into E* .

(d) If X has a nonempty compact convex subset X such that the set

B = {yeXl(VmeXo)((Ty,y—x) 2 0)} is compact, then there exists a point

YpeB such that (Tyo, yo—x) 20 for all xzeX .

Proof. Let
A= {(x,y)e X<X|(Ty,y-x) = 0}.
Since T 1is continuous, the set {yeX|(z,y)eA} is closed in X for each
xeX. It is clearly that (z,x)e4d for each zxeX , and the set
{xeX| (x,y)gA} = {xeX|(Ty,y-x) < 0} is convex or empty for each yeX. By
Theorem 1, there exists a point yoeB such that XX{yo} c A, that is

(Tyo, yo-x) > 0 for all xeX.

Remark 3. (i) Condition (d) of Theorem 2 can be replaced by the
following condition:

(d2) 1let Xo be a nonempty compact convex subset of X , and

K a nonempty compact subset of X ., If for every yeX\K ,

there is a point xeX, such that (Ty,y-x) <0 .

0
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(ii) We have the same remark as Remark 2 (ii), (iii). We will not

repeat this statement for other remarks.

COROLLARY 2. (Browder [2, Theorem 21), Let X be a nonempty
eanpact convex subset of a locally convex Hausdorff topological vector
space E , T a continuous mapping of X into E* . Then there exists a

point X such that (Tyo,yo-x) 2 0 for all xeX .

Proof. This follows from Theorem 2 and Remark 3.
Now we derive the following theorems of Fan ([7, Theorem 7,8])

directly from our Theorem 1.

THEOREM 3. [7, Theorem 7]1. Let X be a nonempty conver set in a
normed vector space E, and let f: X ~ E be a continuous map.
(d) If X has a nonempty compact convex subset X such that the

set B = {yeX| (VreX,) | lz-fy) || = |ly-fy) 1)} is compact ,
then there exists a point y <8 such that
Hyy-fy )| = Minl|z-fiy )11 .
xeX

(Inparticular, if flypex , then y, is a fized point of f).

Proof. Let
A= {(zy)eX<X|llz-Ffy))] 2 |ly-fly)11}.
Since f is continuous, the set {yeX|(x,y)eA} is closed in X for
each xeX . It is clear that (x,x)eA for each xeX , and the set
{xeX|(x,y)A)= {zex||lz=F(y) || < Vly-f(y) |1} is convex or empty. By
Theorem 1, there exists a point Yy € B such that XX{yO} c A,
Ilyo—f(yo)ll = Minllx-f(yo)ll
xeX

Remark.4. (i) The condition (d) of Theorem 3 can be replaced by

the following condition:

(d3) Let XO be a nonempty compact convex subset of X , and K

a nonempty compact subset of X , such that for every yeX\K , there is a

point zeX, such that He-fly) 1l < 1ly-fy)ll .

Under the condition (d3), we can conclude that yOEK such that
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gt} = il lz=fy) )] -
XeE

Actually, Fan [7] proved Theorem 3 under the condition (d3).
(ii) If K = X , this reduces to Fan [5, Theorem 2] . Other general-
izations of this result for a closed convex subset XK = X in Hilbert
space were obtained by the author [(9,710] and also for a closed ball in a

Banach space [9].

THEOREM 4. (Fan [7, Theorem 8]). Let X be a nonempty paracompact
convex set in a Hausdorff topological vector space. Let §Q ba a non-
empty comvex set (that is every comwex combination of any two functions
in Q s in Q) of lower semi-continuous convex functions on X . Let
S be a subset of XxQ such that:
(a) For each fized ¢e , the section S(¢) = {xeX|(z,¢)eS} 1is
open in X.
(b) For any fived =xeX, the section &(x) = {deq|(x,4)eS} 1is
convex and nonenpty.
Then either there exists (yl, ¢1) € S satisfying
y,eX and ¢1(y1) = Min ¢1(x) 3
xeX

or for any nonempty compact convex subset X, of X and any compact

0

subset K of X , there exists (y2, ¢2) € S satisfying
Y o€ X\K and ¢2(y2) < ¢2(:c) for all xeX,

Proof. Our proof is a modification of Fan [7.Theorem 8] . By (b),

for each 3zeX , there is a ¢zeﬂ such that (z,¢z) € S . By {(a),

{S(¢z)|zeX} is an open cover of the paracompact space X . Let

{azlst} be a continuous partition of unity subordinate to this open

cover. Thus, for each zeX, az is a non-negative real continuous function

on X , with its support supp a, © S(¢z) . The family {supp azlzeX} is

a locally finite closed cover of X ; and I uz(x) =1 for all xeX ,
zeX
define Y(x) by

W(x) = L o (x)o_ ,
zeX z 2
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which is a convex combination of a finite number of ¢z’s . As @ |is
convex, we have J({x)eQ for each xeX . If x, 2 in X are such that
az(x) >0 , then Zesupp o, < S(¢z) and therefore ¢ZES(x) . By (b), we

have y(x)eS(x) for all xeX.
Now, define
4= {(x,y)exxX|v(y) (y) < ply)(z)} .

Since a, is continuous and non-negative on X and ¢z is lower semi-

continuous on X , then for each fixed xeX , the function
hix,y) = wly)ly) - w(y)(x) = T a_(y)o¢_(y) - T o (y)o_(x)
2 p-4 3 P-4
zeX zeX

is also a lower semi-continuous function of y on X . Therefore the set
{yeX| (x,y)eA} = {yeX|v(y) (y) < v(y)(x)}

is closed in X for each xeX . It is clear that (x,x)ed for all
xeX and the set {xeX|(x,y)dA} 1is convex or empty for each yeX (since

Y(y)eQ and Y(y) is a convex function on X). By Theorem 1 and Remark 2,

either there exists yjeX such that XX{yJ} c A ; or for any non-empty
compact convex subset XO of X and any compact subset K of X , there
exists yZeX\K such that (x,y2) € 4 for all xeXO . We take ¢.= w(yl)

in the first case, and ¢y = w(yg) in the second case. In the first
case, XX{yJ} c A , this means
¢1(y1) = Min ¢J(x) .
xeX

Since w(yl) € S(yz), (yl, ¢1) € S. In the second case, (x,yg) € A for

all xon , it implies that

¢2(y2) < ¢2(x) for all xeXO .
This completes the proof.

Now, we will use Lemma 1 to prove the following minimax inequalities.

THEOREM 5. Let X be a nonempty convex set in a Hausdorff
topological vector space E. Let f and g be two real-valued function
on XxX having the following properties:

(a) glz,y) s flx,y} for all (x,y) € XxX and f(z,x}) < 0 for

all zxeX;

https://doi.org/10.1017/5000497270000455X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000455X

114 Tzu-Chu Lin

(b) for each fixed XeX, g(z,y) is a lower semicontinuous funetion
y on X
(¢) for each fiwed yeX, the set {zeX|f(xz,y) > 0} is comvex or

empty;
(d) X has a nonempty compact convex subset X, such that the set

B = {yeX|g(xz,y) < 0 for all zeX,} 1is compact.

Then there exists a point yoeB such that g(x,yo) < 0 for all xeX.

Proof. For each =zeX , let

Glx) = {yeX|g(z,y) < 0} ,
F(x) = {yeX|f(x,y) < 0} .
By (b), G(x) is closed in X . From (a), (c)}, we have
n
co{ar:l_1 cees xn} < v F(:ci)
1=1
n
for any finite subset {x., ..., .} of X . 1Indeed, if z = I a.x.,
1 n i=1 11
n n
Zo.,=1l, 00,20, and 2 £ u F(z,) , then (f(x.),2) >0, i=1,...,n .
e i . 7 7
=1 =1

By (¢), f(z,2) > 0 , which contradicts the assumption (a). By (a)

n
F(x) < G(x) . Then CO{xl’ cens xn} c v G(xi) . Since n G(x) is a
1=1 xeXp
closed subset of the compact set B, n G(x) is compact. By Lemma 1,
xeX
0
there exists a point Ype 0 G(x) , which means g(:c,yo) £ 0 for all

xeX

xeX.

Remark 5. cCondition (d) of Theorem 5 can be replaced by the

following condition:

(d5) 1let X, be a nonempty compact convex subset of X , and X

0
a nonempty compact subset of X . If for every yeX\K , there is a point

z:eXo such that gfx,y) > 0 . Then our conclusion is that there exists a

point yoeK such that

g(.‘c,yo) < 0 for all xeX .
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COROLLARY 3. (tan [11, Theorem 11). Let X, E, f, and g be the
same as in Theorem 5 and satisfy conditions (al), (b), (e) and
a') there exists a nonempty compact convex subset K of X such
that for each yeX\K , there exists a point xeK with
glx,y) > 0.
Then there exists a point YK such that g(x,yo) < 0 for all xeX .

Proof. Take X0=K in (45) .

Remark 6. If f =g in Corollary 3, this result is due to Allen
[1, Theorem 2].

THEOREM 6. Let X be a nonempty convex set in a Hausdorff
topological vector space. Let f and g be two real-valued function on
XxX having the following properties:
(a) g(x,y) < flx,y) for all (z,y) € XxX ,
(b) for each fixed xzeX, g(x,y) is a lower semicontinuous function
of y on X,

(¢) for each fixed yeX, f(x,y) is a quasi-concave function of =x
on X,

(d) if X has a non-empty compact cornwex subset X, such that
the set B = {yeXl(VxeXO) (g(xz,y) < t)} is compact, if

t = sup flx,x) < += .
xeX
Then the minimax inequality

min sup g(z,y) < sup f(x,x)
yeB xeX XeX

holds.

Proof. without loss of generality, we can assume that

t = sup flx,x) < += ,
xeX

Applying Theorem 5 to
fl(x:y) = flx,y) = ¢, gl(x:y) = glx,y) -t ,

the proof is complete.

Remark 7. cCondition (d) of Theorem 6 can be replaced by the

following condition:
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(d6) 1let Xb be a nonempty compact convex subset of X , and X

a nonempty compact subset of X . If for every yeX\K , there is a point
xeXo such that
glx,y) >t if t = sup flx,x) < +=
reX
then our conclusion is that the minimax inequality
min sup g(x,y) < sup f(x,x)
yeK xeX xeX
holds.
COROLLARY 4. (Tan [11, Theorem 21). Let X, f, g be the same as
Theorem 6 and satisfy conditions (a), (b), (c) and
(d') there exists a nonempty compact convex subset K of X such
that for all yeX\K , there exists a point =zeK with g(z,y) >t if

t = sup flx,x) < = .
xeX

Then the minimax inequality

min sup gl(x,y) < sup f(x,y)
yeK xeX xeX

holds.

Proof. Take XO

Remark 8. If X = X, the result is due to Yen [IZ, Theorem 1]. If

K in (d6)

K=2X, f=g , the result is due to Fan [6].

Remark 9. Tan [17] applied corollaries 3, 4 to obtain some
generalizations of variational inequalities ([17, Theorem 3, 5]) and
fixed point theorems ([!], Theorem 6-8]). Applying our Theorems 5, 6 and
using the same arguments as Tan []1], we can obtain a slight generalization
of the corresponding Theorems 3, 5, 6, 7, 8 of Tan [711], just like we did

for Theorems 5 and 6 and Remarks S5, 7.
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