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Abstract

Let r > 2 and s > 2 be multiplicatively dependent integers. We establish a lower bound for the sum of the
block complexities of the r-ary expansion and the s-ary expansion of an irrational real number, viewed as
infinite words on {0, 1,...,r— 1} and {0, 1, ..., s — 1}, and we show that this bound is best possible.
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1. Introduction

Throughout this paper, | x] denotes the greatest integer less than or equal to x and [x]
denotes the smallest integer greater than or equal to x. Let b > 2 be an integer. For a
real number &, write
&= L§J+Z% =1£]+0.a1a;.. .,
k=1
where each digit ; is an integer from {0, 1, ..., b — 1} and infinitely many digits a; are
not equal to b — 1. The sequence a := (a;)r>1 is uniquely determined by the fractional
part of £. With a slight abuse of notation, we call it the b-ary expansion of £ and we
view it also as the infinite word a = a;a; ... over the alphabet {0, 1,...,b — 1}.
For an infinite word x = x;x; ... over a finite alphabet and a positive integer n, set

p(n,x) = Card{xj;i ... Xj4, : j 2O}

This notion from combinatorics on words is now commonly used to measure the
complexity of the b-ary expansion of a real number &. Indeed, for a positive integer
n, we denote by p(n, &, b) the total number of distinct blocks of » digits in the b-ary
expansion a of &, that is,

pmn,&,b) := p(n,a) = Card{aj,y ...aj, : j=0}.
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Obviously, we have 1 < p(n, &, b) < b" and both inequalities are sharp. If £ is rational,
then its b-ary expansion is ultimately periodic and the numbers p(n, &, b), n > 1, are
uniformly bounded by a constant depending only on & and b. If £ is irrational, then, by
a classical result of Morse and Hedlund [8], we know that p(n,&,b) > n + 1 for every
positive integer n, and this inequality is sharp.

DeriniTioN 1.1, A Sturmian word x is an infinite word which satisfies
pn,x)=n+1 forn>1.

A quasi-Sturmian word X is an infinite word which satisfies
p(n,x)=n+k forn=ny

for some positive integers k and ny.

The following rather general problem was investigated in [2]. Recall that two
positive integers x and y are called multiplicatively independent if the only pair of
integers (m, n) such that x™y" = 1 is the pair (0, 0).

ProBrLEM 1.2. Are there irrational real numbers having a ‘simple’ expansion in two
multiplicatively independent bases?

We established in [3] that the complexity function of the r-ary expansion of an
irrational real number and that of its s-ary expansion cannot both grow too slowly
when r and s are multiplicatively independent positive integers.

Tueorem 1.3 [3]. Let r and s be multiplicatively independent positive integers. Any
irrational real number & satisfies

Erpm(p(n, &, r)+ pn, &, s) — 2n) = +oo.

Said differently, ¢ cannot have simultaneously a quasi-Sturmian r-ary expansion and
a quasi-Sturmian s-ary expansion.

We complement Theorem 1.3 by the following statement addressing expansions of
a real number in two multiplicatively dependent bases.

TueOREM 1.4. Let 1, s > 2 be multiplicatively dependent integers and m,{ be the

smallest positive integers such that "™ = s'. Then there exist uncountably many real

numbers & satisfying

nEIPm(p(n,g, r)+pn,é,s)-2n)=m+¢{
and every irrational real number & satisfies

ngriloo(p(n, Er)+ pn&,8)—2n)=m+ L.

The next result, used in the proof of Theorem 1.4, has its own interest.
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THeorReM 1.5. Let b > 2 be an integer and p, o be positive integers. If o divides p, then
every real number whose b°-ary expansion is quasi-Sturmian has a quasi-Sturmian
b7 -ary expansion. Moreover, every real number whose b°-ary and b” -ary expansions
are both quasi-Sturmian has a quasi-Sturmian b*-ary expansion, where 1 is the least
common multiple of p and o

We conclude by an immediate consequence of Theorems 1.3 and 1.4.

CoroLLARY 1.6. Let r,s > 2 be distinct integers. No real number can have
simultaneously a Sturmian r-ary expansion and a Sturmian s-ary expansion.

Our paper is organised as follows. Section 2 gathers auxiliary results on Sturmian
and quasi-Sturmian words. Theorems 1.4 and 1.5 are established in Section 3.

2. Auxiliary results
We will make use of the following characterisation of quasi-Sturmian words.

Lemma 2.1 [4]. An infinite word X written over a finite alphabet A is quasi-Sturmian
if and only if there are a finite word W, a Sturmian word s defined over {0, 1} and a
morphism ¢ from {0, 1}* into A* such that $(01) # ¢(10) and

x = We(s).

Throughout this paper, for a finite word W and an integer ¢, we write W’ for the
concatenation of ¢ copies of W and W for the concatenation of infinitely many copies
of W. We denote by |W| the length of W, that is, the number of letters composing W.
A word U is called periodic if U = W’ for some finite word W and an integer ¢ > 2. If
U is periodic, then the period of U is defined as the length of the shortest word W for
which there exists an integer ¢ > 2 such that U = W',

Lemma 2.2. Let U be a finite word. Assume that there exist words Uy, Uy, V, W such
that U = U Uy and UU = VU, U W, with |Uq| # |V] and 0 < |V| < |U|. Then, the word
U is periodic.

Proor. Since V is a prefix of U and W is a suffix of U,
U=UU, =VW;
thus, VU,U;W = UU = VWVW. This implies that
U, U, =WV.

If |U,| < |V|, then we can write V = V'U| for a nonempty word V’ and thus U, = WV’.
Therefore,

Uwv' =U U, =VW =V U W.
Our assumption 0 < |V| < |U| implies that the word Z := U;W is nonempty. Since

ZV' =V’'Z, it follows from [1, Theorem 1.5.3] that U = ZV” is periodic. The proof of
the case |U,| > |V| is similar. O
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LemmA 2.3. Let A be a finite set, s a Sturmian word over {0, 1} and ¢ a morphism
from {0, 1} into A" satisfying ¢(01) # ¢(10). Then there exists an integer ny such
that, for any factor A of s of length greater than ny, if one can write ¢(A) as
Vid(bybs ... by,—1)Vy, where B = bbby ...b,_1b, is a factor of s, the word V; is a
nonempty suffix of ¢(by) and V, is a nonempty prefix of ¢(b,,), then it follows that
Vi =¢(b1), V2 = ¢(by) and A = B.

Proor. We may assume that 1 is the isolated letter in s, that is, 11 is not a factor of s.
Since s is balanced, there exists a positive integer k such that 10’1 is a factor of s if and
onlyift=kork+ 1.

We first consider the case where V| = ¢(b;). Suppose that A # B. Then, by deleting
the maximal common prefix of A and B, we may assume that A and B have no common
prefix. Thus, the prefixes of A and B are 00 and 10.

If ¢(00) = ¢p(10)V,, then ¢(0) = ¢(1)V, = Vo¢p(1) and there exist a word U and
positive integers s, ¢ such that ¢(1) = U* and ¢(0) = U’. This gives a contradiction
to ¢(01) # ¢(10).

If ¢(10) = ¢(0")V, for some integer 4 > 2 and a nonempty prefix V;, of ¢(0), then,
writing ¢(0) = V,V’, we get ¢(0) = VoV’ = V'V,. Thus, there exist a word U and
positive integers s, ¢ such that ¢(1) = U* and ¢(0) = U'. This gives a contradiction to
#(01) # ¢(10).

If ¢(10) = ¢(0")V, for some integer i > 2 and a nonempty prefix V, of ¢(1), then
there exist a positive integer £ and a prefix V' of ¢(0) such that ¢(1) = ¢(0) V’. Write
#(0) = V'V”. Then ¢(10) = ¢p(0)'V’'¢(0) = ¢(0)“*'V’ and we get V'¢(0) = p(0)V".
Thus, there exist a word U and positive integers s,  such that ¢(1) = U* and ¢(0) = U".
This gives a contradiction to ¢(01) # ¢(10).

Similarly, we show that, if V, = ¢(b,,), then A = B.

It only remains for us to treat the case where V| # ¢(b;) and Vo # ¢(by,).
There exists an integer ny such that any factor A of s of length greater than ng
contains 10¥10%*110. Tt is sufficient to consider the case where ¢(10¥10*110) =
Vid(bybs . . .by,—1)V, for a factor b1 b; ... b, of s and with V; a proper nonempty suffix
of ¢(b;) and V; a proper nonempty prefix of ¢(b,,).

If bybs...b,- = 0F*110%1, then by = 1 and b,, = 0. It follows that |V;| < |¢(1)]
and |V;| < |¢(0)|, which contradicts

Vil + [Val < Ip(D)] + [¢(0)] = [¢(10°105110)| — [¢(0F! 104 1))

Therefore, since any subword of s in which 1010 and 10*!1 do not occur is a factor
of 0F110%1, we deduce that if ¢(105105*110) = Vi¢(b, ...b,,-1)V> as above, then
b, ...b,_; contains 1010 or 10¥+11.

We distinguish three cases.

Case (i). p(10F10110) = W, ¢(10510)W>, where 0 < |[W;| < |¢(10%)|. Then
(10°10%) = W1 6(109W},  ¢(0°100°10) = W p(0*10)Ws,
where [W]| = [Wa| — [¢(0)] and [W]| = [W,|.
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Case (ii). p(105105110) = W, p(10510)Ws, where |¢(105)] < [Wy| < |¢(105*1)|. Then
B(10°10%) = Wip(0" YW}, $(05100°10) = W ¢(0F10)W;,

where |W;| = [W| = [$(0")], [W)] = W3] + [¢(0F")] and [W}'| = W]

Case (iii). ¢(10¥10110) = W,(10*1 1)W>, where 0 < |W,| < |p(10¥1)]. Then
$(10°10%) = W1(109W),  ¢(0°100510) = W0+ 1)Wa,

where |Wj| = [W>| — |¢(0)] and [W]| = |[W)].
By Lemma 2.2, in each Case (i), (ii) and (iii), the factors #(10) and ¢(0%10) are
periodic. Denoting by A;, A, the periods of ¢(10%), #(0X10),

< |p(105)] _ k(0] + |p(D)] b < l¢(0%10) _ (k+ DIp0)] + |p(1)]
=" - 2 S T 2 '

Write ¢(10%) = U’ for a word U with |U| = A; and an integer ¢ > 2. Then ¢(1) = U" U},
#(0F) = U,U" for some words U, U, with U = U, U, and some nonnegative integers
1,1 satisfying ¢; + t, =t — 1. Thus,

0k 1) = Ua(U U2) (U U2)" Uy = (ULUy),  |U2UY| = Ay

Since ¢(0) is a prefix of (U,U,)!, we deduce that ¢(0¥10) = (U U,) - - - (U, U;)U’ for a
prefix U’ of U,U,. It then follows from [5, Lemma 3(v)] that 4; = A, or
(0F10)] < A1 + Az < (k + $)IBO)] + ()] < (0" 10)],

in which case we have a contradiction. If 1; = 15, then A, divides |¢(0¥10)| and |¢(10%)|;
thus, 4, divides |#(0)| and |¢(1)|. This implies that ¢(01) = ¢(10) = UU --- U, again
giving a contradiction. o

i

We end this section with an easy result on the convergents of irrational numbers.

Lemmva 2.4. Let (pr/qiis0 be the sequence of convergents of an irrational number
[0;a1,az,...] in (0,1) and d > 2 be an integer. Let ci, cy be integers not both
multiples of d. Then, for any positive integer k, we have cipy + caqx 0 (mod d)
or ¢ Pi+1 + C2Gi1 0 (mod d).

Pe Pest| _ |0 10O 1) 1O 1
g qen| |1 ar||l a2 1 apa|’

e+ cxan ermnsesanller e[0T 0 1],
1Pet i Cipen t gl =ler ally 1 a Lags |’

Proor. Since

thus,

- 1] [-a1][-a;1
[c1 c2] =[c1pr + c2qx Clpk+1+02Qk+1][ a1k+1 0[ fZOH fl 0}-

Hence, if [c1pi + c2gk  c1Pr+1 + 2gk+1] = [0 0] modulo d, then ¢; and ¢, are
multiples of d. O
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3. Proofs of Theorems 1.4 and 1.5

Proor oF THEOREM 1.5. Let b > 2 be an integer and p, o be positive integers. Assume
that p = do for some integer d > 2. Let £ be a real number and assume that there are
integers aj, as,...in {0, 1,...,b° — 1} and k, ng such that

§=L§J+Z% and p(n,&b°)=n+k forn>n.

i>1

Then, by Lemma 2.1, there are a finite word W, a Sturmian word s defined over {0, 1}
and a morphism ¢ from {0, 1}* into {0, 1,...,»° — 1}* such that ¢(01) # ¢(10) and

a=apay...=W¢(s).

Suppose a is in {0, 1,...,5° — 1} and consider its representation in base b’ given by
a=c b9V 4 e, pld=27 oo %7, where ¢y, ...,cq are in {0,1,...,57 — 1}.
Define the function ¢, on {0, 1,...,b° — 1} by setting ¢, -(a) = cic3 ... cq. It extends
to a morphism from {0, 1,...,»° — 1}* to {0, 1,...,b” — 1}*, which we also denote by
¢p.- Then

E=1E1+ Y S whered = dids .. = Gy (W)dpur 0 0)S).
ix1
We deduce from Lemma 2.1 that the b”-ary expansion of £ is quasi-Sturmian. Thus,
we have established the first assertion of the theorem.

For the second assertion of the theorem, we may assume that p and o are relatively
prime (otherwise, we replace b by b%, where g is the greatest common divisor of p
and o).

Let £ be a real number and write

a; b
E=1€l+ ) =L+ ) o

i>1 =1
where ay,a,,...arein{0,1,...,b° — 1} and by, b,,...arein {0, 1,...,b" — 1}. Assume
that a = aya; ... and b = b1b; ... are both quasi-Sturmian. By Lemma 2.1, there are
a finite word W, a Sturmian word s defined over {0, 1} and a morphism ¢ from {0, 1}*
into {0, 1,...,b° — 1}* such that ¢(01) # ¢(10) and

a=aqay...= W¢(S)

We claim that |¢(0)| =: [y and |¢(1)| =: [; are both multiples of o.

In order to deduce a contradiction, we suppose that o does not divide at least one
of [y and /;.

Let ¢, be the morphism ¢, defined above in the case o~ = 1. For each factor U of
s, let

AU):={0<j<o-1:¢,1(a)= Ve, o ¢(U) for some V with |V| = j (mod o)}
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denote the nonempty set of positions modulo o where ¢, o ¢(U) occurs in ¢, ().
If U’ is a prefix of U, then A(U) is a subset of A(U’). Consequently, there exists N
such that A(sy...s,) = A(sy...sy) foreachn > N.

Let [0; aj, ay, . . .] denote the continued fraction expansion of the slope of s and, for
k > 1, let g; be the denominator of the convergent [0; ay, ..., a;] to this slope. Define
the sequence (My ) of finite words over {0, 1} by

My=0, M;=0""1 and M =M)“M, (k=1).

For k > 1, the word M;, is a factor of length g of s (see, for example, [7]). Since there
are p; occurrences of the digit 1 in My,

(M| = lo(gr — pr) + lipr = (L1 = L) prc + logk.

By Lemma 2.4 and the assumption that o does not divide at least one of /y and [}, we
conclude that at least one of |¢p(My)| and |p(My.1)| is not a multiple of o.

Let U be a factor of s. Then U is a factor of M} for some integer k. Since M; M
is a factor of My o M1 = (M) 2 M (My)* M;_;, which is a factor of s, there are
two positions of ¢(U) which differ by |¢p(My)|. Thus, there exist two occurrences of
¢(U) in ¢(s) separated by exactly p|¢p(My)| letters. Replacing k by k + 1 is necessary,
we can assume that p|¢(My)| is not a multiple of o and we deduce that |A(U)| > 2 for
any factor U of s.

A finite word U is called right special if U is a prefix of two different factors of s
of the same length. If the initial word s; ... s, of s is not a prefix of a right special
word, then either sj,1 ... 5., # 51...5, forall j > 1 orsis periodic. Since a Sturmian
word is recurrent and not periodic (see, for example, [6, page 158]), there are infinitely
many prefixes s; ... s, of s which are right special. Let n > N be such that s; ... s, is
right special. Then there exists a letter ¢ such that ¢ # 5,41 and s; ... s,c is a factor of
s. Thus,

AGST ... 8pSna1) = A(sy ... 8,) DA(sy ... 5,0).

Choose 7, jin A(s; ... s,c) with0 <i < j < o — 1. Then we can write
$p1(@) = UU ¢p1 0 P(s1...5,0)U7...=U'Usppi 0 (51 ...8:8,:1)U5 ...
and
Gp1(@) = VVigy1 0 P(s1...8.:0)V]...= V' Va1 0d(s1...8:80:1)V5 ...

for some words U, U’, V, V', Uy, U, V1, V,, U}, U5, Vi, V) written over {0, ...,b— 1}
and satisfying

Uil =U0al =i, Vil=1IVal=j, [UI=|U|=V|=[V[=0 (mod o),
0<|U=U)l<o—-1, 0<|V]=IV)l<o—1,

and o divides i + (n + 1)p + |U}j| and j + (n + 1)p + |V]|. Thus, there exist uy, uz, vi, v2
in{0,1,...,b” — 1} and words X, Y, A, A,, By, By written over {0, 1,...,b” — 1} with

| +  +
Xi= |22 -1 = [ 222
a o
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and
Ay # Ay, B # B, |A1|=|Az|<§+2, |Bl|=|Bz|<§+z

such that

Uigp1 0 ¢(s1...5.0)U] = do1(u1 XAy),
Uspp,1 © (1 ... SuSur 1)U} = ¢po1(u2XA3),
Vigpi 0 @(s1...5,0)V] =¢o1(v1YBy),
Vadp1 © d(s1 ... SuSns )V = o1 (V2Y By).

Here, ¢, is defined analogously to ¢, ;. Therefore, u1 XA, up XA, and v{Y By, v,Y B,
are all factors of ¢;’11(¢p,1(¢(s))). Denoting by A (respectively, by B) the longest
common prefix (it could be the empty word) of A; and A, (respectively, of B, and
B,), we deduce that XA and Y B are both right special.

Let Wy be the longest common prefix of the words ¢, o ¢(sy ... s,5,41) and
Bp,1 © ¢(s1...5,¢). Then there exist finite words Wy, Wp, W, W] over {0,...,b — 1}
satisfying [Wi| = o — i, [Wa| = 0 — j, [W]| < o, [W]| < 0 and

Wo = Wigo 1 (XAW] = Wad,1(YB)W,.

Thus, we get |XA| < |YB| < |XA| + 1.
Suppose that XA is a suffix of YB. Then there exists a nonempty finite word W’ of
length less than o such that

Wo = WaW/¢o 1 (XAYW[ = Wago | (XA)W,  if [XA| = |V B,
Wo = Wide 1 (XA)W] = Wi W | (XAW)  if XA+ 1 = [YB].

It then follows from [1, Theorem 1.5.2] that we have W, = Wo(W')W”W] or
Wi (W'Y'W”W;, respectively, for some integer ¢ and a prefix W” of W’. Since p, o
are fixed and s is Sturmian, we deduce from [3, Lemma 2.3] that (W’)’ cannot be a
factor of ¢, 1 o ¢(sy ...s,) when n is sufficiently large. This shows that the lengths of
XA and Y B are bounded independently of n.

Consequently, the right special words XA and Y B are not suffixes of each other
if n is sufficiently large. Hence, there are arbitrarily large integers m such that
¢(;',ll o ¢p,1 © ¢(s) has two distinct right special words of length m. This implies that
b = ¢<_r,11 o ¢p1(a) is not quasi-Sturmian, which gives a contradiction. Therefore, we
have established that |#(0)| and |¢(1)| are both multiples of o.

Write

Ci - -
E=1E+ ) o €= =G (@) = 6,0 (Wo(s)).
i>1
Put |W| = ho + d for integers h > 0 and d with 0 <d < o. Suppose ¢(0) = X X>,
¢(1) = Y Y5, where |X;| =|Y;| = 0 —d. Assume that 11 is not a factor of s. Then

there exists a positive integer k such that 10™1 is a factor of s if and only if m = k or
k + 1. Thus, we can represent s as

s =0"totitots, ..., tfo=10%, £ e€{1050}, O<w<k+1.
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It is not difficult to check that t := #y#11, . .. is Sturmian. Define ¢’ by
¢'(10% = XV (X X)Xy, ¢/(0) = Xo X,

Then
B(s) = (X1 X2)" Y1 Yo (X, X)X ¢ (111283 .. );

thus,
¢ =G0, (W) = ¢0 ,(WX1 X2)" Y1 V2 (X1 X0) ' X1)( B0, 0 ¢ 011215 ...

Since |¢(0)| and |¢(1)| are both multiples of o, the morphism gb;(l,,p o ¢’ is well defined.
We conclude that ¢ is quasi-Sturmian and the proof of the theorem is complete. O

Lemma 3.1. Let b > 2, d > 2, p and o be positive integers with p = do. Let x1x, ... be
a quasi-Sturmian word over {0, 1, . ..,b° — 1}. Then there exists an integer ny such that
the real number & = ¥ ;51 x;/b** satisfies

pnd,&,67) = (m+ 1)d forn > nyg.

Furthermore, if s1s, ... is a Sturmian word written over {0, 1}, then there exists an
integer ng such that the real number & = Y-, s;/b"* satisfies

p(n,E,b7)=n+d forn=n.

Proor. Set A :={0,1,...,b° — 1}. There exist a Sturmian word s written over {0, 1},
a morphism ¢ from {0, 1}* into A" satisfying ¢(01) # ¢(10) and a factor W of
X := X1 X2 ... such that x = W¢(s). Then the word

Y = Gpo(X) = G (W) = dp e (W) (@ © $)(5)

is quasi-Sturmian.

Let n be a positive integer larger than the integer ng given by Lemma 2.3 applied to
the morphism ¢, o ¢. We claim that if U ¢, ,(A1)V| = Uz, (A2)V>, where Ay, Ay
are factors of ¢(s) of length n and U, U, (respectively, V1, V,) are nonempty suffixes
(respectively, proper prefixes) of words of the form ¢, ,(a) for a in A, then Uy = U,,
A] :A2 and V] = V2.

Suppose not. Then we may assume that there exist Aj, A, and U, V such that

bpr(ADV = Uy +(A2).

Thus, there exist a;,a, in A, a factor A of ¢(s) of length n and a factor A" of ¢(s)
of length n — 1 such that ¢, -(A) = W ¢, ,(A")W,, where W (respectively, W) is a
nonempty proper suffix (respectively, prefix) of ¢, (a;) (respectively, of ¢, (a2)).
Consequently, there exist b, b’,c,c” in {0, 1} and factors B, B’ of s such that A =
Udp(B)V,a1A’ay = U'¢(B")V’, where U (respectively, U’) is a nonempty suffix of ¢(b)
(respectively, ¢(b’)) and V (respectively, V') is a nonempty prefix of ¢(c) (respectively,
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¢(c’)). Then A’ = U"¢(B")V” for words U”,V” such that U’ = a,U”, V' = V"a,.
Therefore,

bp.r(A) = Gpr(UN@p.r © 9By (V) = Wi o (U ) p,r © 9)(B )P (V") W:.

We deduce from Lemma 2.3 that ¢, ,(U) = Wi¢,(U"), ¢ps(V) = ¢p(V")W> and
B = B’. This is a contradiction to the fact that W, (respectively, W,) is a nonempty
proper suffix (respectively, prefix) of ¢, ,(ai) (respectively, of ¢, ,(a2)). Hence, the
representation of X = U¢, ~(A)V is unique.

If ¢(s) is written over an alphabet of three letters or more, then

pn—1L¢6s)=>2mn-1)+2=n+1,

which implies that the number of factors X of (¢, o ¢)(s) of length nd is at least equal
to (n+ 1)d. If ¢(s) is written over an alphabet of two letters, say over the alphabet
A = {a, b}, then we can put ¢, ,(a) = ZX and ¢, ,(b) = ZY, where Z is the longest
common prefix of ¢, ,(a), ¢, ~(b) and the first letters of X, Y are different. If |V| > |Z|,
then, for each right special factor A of s, there are two distinct factors ¢, (A)V1,
¢pr(A)V in ¢(s). If |V]| < |Z|, then |U| > |X| = |Y]; thus, for each left special factor
B of s, there are two factors U¢, +(B), Us¢, +(B) in ¢(s). Foreachc=0,...,d -1,
the number of factors X = U¢, (A)V of (¢, o ¢)(s) of length nd with |A| =n — 1 and
|U| =d —|V| = cis at least equal to p(n — 1, ¢(s)) + 1. Therefore,

p(nd,&,b%) > p(nd, (¢p,s © $)(s)) = (n + 1)d.

Since the function m — p(m, &, b7) is strictly increasing, this implies the first assertion
of the lemma.

For the second assertion, let s = 5;55 ... be a Sturmian word written over the subset
{0,1} of {0, 1,...,b" — 1} and define

Si
&= Z ik
ix1
Since ¢,,-(0) = 0¢ and ¢, (1) = 0971 for n > 1, any factor of length dn of ¢, »(s) is a
suffix of ¢, ,(A)0¥, where A is a factor of length nins and 0 <k < d — 1. Since 097" is
a prefix of ¢,,(A)0%, the number of suffixes of ¢, ,(A)0* of length nd is d(n + 1) and
thus
pldn,&E,b7)=din+1)=dn+d.

Since the function m — p(m, &, b7) is strictly increasing, this completes the proof of
the lemma. O

Proor or THEOREM 1.4. Suppose that the two bases r > 2 and s > 2 are multiplicatively
dependent and let m, £ be the coprime positive integers satisfying 7 = s’. Then there
exists a positive integer b such that » = b’ and s = b™.

Lets = 515, ... be a Sturmian word over the subset {0, 1} of {0, 1,...,5" — 1} and

define .
£=D o

i>1
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By the second assertion of Lemma 3.1, there exists an integer ny such that
pn, &Y =n+m and pn, &™) =n+€ forn > n.

Thus,
lim (p(n,&,r) + p(n,&,8) —2n)=m+ €.
n—+co

This proves the first assertion of the theorem.

For the second assertion of the theorem, it is sufficient to consider a real number
& whose b’-ary and b"-ary expansions are both quasi-Sturmian. By Theorem 1.5, the
b'™-ary expansion of & is also quasi-Sturmian and we deduce from the first assertion
of Lemma 3.1 that there exists an integer g such that

pmn, &b >mn+1) and  p(ln, & b™) > tn+1) forn > ny.

Therefore,
lim (p(n,&,r) + p(n,&,s) = 2n) 2 m+ L.
n—+oco
This completes the proof of the theorem. O
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