Can. J. Math., Vol. XXX, No. 5, 1978, pp. 983-996

ON LINEAR FUNCTIONALS AND SUMMABILITY
FACTORS FOR STRONG SUMMABILITY

W. BALSER, W. B. JURKAT, AND A. PEYERIMHOFF

0. Introduction. Let 4 = (a,) (n, & = 0,1, 2, ...) be an infinite matrix.
We call asequences = (s;) (k = 0, 1,2,...) A-limitable (denoted by s € (4))
if the sequence ¢t = (1,), t, = > i auS: exists and converges. We call s absolutely
A-limitable (denoted by s € |4]), if ¢ (defined as above) is of bounded varia-
tion, i.e. Dm0 |tn — tooa] < 0, t; = 0. Finally, if 4 2 0 (i.e. @, = 0 for all
n, k), we call s strongly A-limitable with exponent p (1 £ p < o) (denoted by
s € [A4],) if there exists some number ¢ such that > ; aulsy — o/ — 0 as n —
o0. Furthermore, we call a formal series > a; A-summable (resp. absolutely
A-summable, resp. strongly A-summable with exponent p) if the sequence s =
(sx), Sy = ao + ... + a; belongs to (4) (resp. |4], resp. [4],), and we write
> ap € (4) (resp. X ay, € |A], resp. > a; € [4],). Finally, we write s € o[4],
if 3% auelsil” = 0 (m — ). A matrix A4 is said to be regular (resp. absolutely
regular) if s — o implies f, = > ausy — o (resp. if > |ax| < © implies

> a, € |B| and

k
t, = Zk: Gk ZO A — ; a; (n— ®)).

The purpose of this paper is to characterize the sequences A = (A;) which
have one of the following properties:

(0.1) s € [4], implies > Nsx € (B), resp. |B|, resp. [Bl;.
(0.2) > ay € [4A], implies > Nay € (B), resp. |B|, resp. [Bl;.
(0.3) s € [A], implies Xs = (\s) € (B), resp. |B|, resp. [Bl;.

We call \ satisfying (0.1), resp. (0.2), resp. (0.3) a sequence lo series factor,
resp. series to series factor, resp. sequence to sequence factor, and we use the same
notation for general sequence spaces X and YV instead of [4], and (B) (resp.
|B], resp. [B],). In Section 1, we give an abstract functional analytic answer
to the questions (0.1) and (0.2) which involves a condition in terms of continu-
ous linear functionals on [A], (called functional condition) and a condition of
type (0.3).

Section 2 reduces the sequence to sequence factor problem from o[4], to
|B] to a functional condition, and in Section 3 we show that (0.3) in case [4],
to (B) is equivalent to the case [4], to [C]; with ¢, = |b,|. Section 4 discusses
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(0.3) in case [A4], to [B]z and in Section 5 we characterize continuous linear
functionals on o[A4],. In a final Section 6 we apply our results to weighted
arithmetical means and to Norlund means.

Part IT of this paper, which will be published separately, contains an extended
study of the continuous linear functionals on o[A],.

We use the following notations for special sequences resp. sequence spaces:
(a) e=(1,1,1,...),¢™ = ().
(b) co = {s = (sp)]sr =0 (k — 0)}.

() bv = {s = (5;)| 25 [sx — 11| < 00}.
d) 1, = fa = ()] Zplauf? <o}, 1=2p<o0,
I, = {b = (bp)|supy |bx] < 0},

For a topological vector space X, we denote the space of all continuous linear
functionals on X (the ‘““dual” space) by X*.
I the inverse of a matrix 4 = (a,;) exists, we denote it by 4" = (u,’). For

a sequence (x;) we write x;, | (resp. x; |) if x; increases (resp. decreases) in the
wider sense.

1. General functional-analytic results. Theorems 1 and 2 of this section
are the basic theorems on series to series and sequence to series factors. Both
theorems follow from some functional-analytic results which will be discussed
first.

An FK-space X (see e.g. [18]) is called solid, if x € X implies bx € X for
every b € [, and X has property AK if x = (x;) € X implies x®™ = (x,, ..
%,0,0,...) € X,n € Nyand x® — xasn — 0.

If X is a solid IFK-space with 4K, then the continuous linear tunctionals on
X are f(x) = X i e with Dy |exx] < o for every x € X, i.e. the dual space
X* is isomorphic with the space of all absolute convergence factors for X. (If kq
is such that x € X implies x;, = 0, we choose ¢, = 0.)

L}

ProrositioN 1. Let X be a solid FK-space with AK. Let Y be an FK-space
with the properties

1) bv C Y, and

(i1) there is fo € Y* such that fo(e™) = 0, n = 0,1, ..., fo(e) = 1.
Then the following statements are equivalent.

(a) Nisa sequence to series factor from X to ¥V, and

(b) Nus an absolute convergence factor for X .

Proof. Condition (b) implies (a) by (i), and it remains to prove that (a)
implies (b). Let X\ be a sequence to series factor from X to V. It follows from
the closed graph theorem that

T(X) = (yn)v Yn = /;) Ak,
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is a continuous linear operator from X to Y, hence
fo(T'(x)) = }k: €xXg

for some absolute convergence factor e = (¢;). If m € N is such that x =
(xx) € X exists with x,, # 0, then ¢™ ¢ X, and it follows that

en = fo(T(e™)) = Nafole — (@ + ... + e™ D)) = \,.

COROLLARY. If 1n addition, co C X, and ifX' = {x 4+ celx € X, c € R}, then
Proposition 1 remains true when X in (a) is replaced by X.

This is an immediate consequence of X* C ;.

ProposiTioN 2. Let X and Y be FK-spaces as in Proposition 1. Then the
following statements are equivalent:
(a) Nisa series to series factor from X to V, and
(b) (AN) = (M — Ney1) s an absolute convergence fuctor for X and \ 1s a
sequence to sequence factor from X to V.

Proof. Let x = (x;) € X, xx = ag + ... + a;. It follows from

n n—1

(L) Y ahe = xh+ 2 mAN (2 1)

k=0 k=0

that (b) implies (a) (since bv C Y.) In order to prove the necessity of (b) we
proceed similarly as in the proof of Proposition 1: We introduce the continuous
linear operator

n

T(x) = (Yu), Yn= Z Ny

and obtain fo(7'(x)) = ) e, for some absolute convergence factor € = (e).
If x = e™), this implies

€m = fO(O, ey 0, Ay AN, ANy, L ) = ANy,

which shows that the first condition in (b) is necessary, and the necessity of the
second condition follows from by C ¥V and (1.1).

COROLLARIES. 1. If (a) or (b) of Proposition 2 holds, then T(x) = \x is a
continuous linear operator from X to Y and

n

fox) = lim fo(0x™) = lim 2 Akxkfo(e(k)) = 0.

N->00 n-soo k=0

2. Proposition 2 remains true when X in (a) is replaced by

A~

X ={x+cex € X,c R}

The following results from summability theory (which are either well-known,
see e.g. [17] and [11], or easily verified) are used to derive Theorems 1 and 2
from Propositions 1 and 2:
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(1) Let A = (ay) (n,k =0,1,...). Then the spaces o[A],, 1 < p <0 (if
0), (A) and |A| are FK spaces (In case of o[A], the seminorms are

IS;\i k .and

bllas = sup 5 alsr) )

The space [A], is an FK-space when A is regular.

(i1) The space o[A], s solid and has AK.

(i) The spaces (B], (when B = 0 and regular), (B) (when B is regular), and
|B| (when B is absolutely regular) satisfy assumptions (1) and (ii) of
Proposition 1 when

f()(?) = llm Z bnksk
n-sow k=
THEOREM 1. Let A = 0 and let YV be any of the spaces mentioned in (iii). Then
the following statements are equivalent:
(@) s € olA], implies 3 My € Y, and
(b) s € olA],implies 3 i |N\isi| < .

THEOREM 2. Let A = 0 and let Y be any of the spaces mentioned in (iii). Then
the following statements are equivalent:

(a) s € olA], tmplies - Nar € V' (sx = ao+ ... + @), and

(b) s € olA], tmplies 3 i |sxAN| < 00 and Xs € V.

COROLLARY. If A is regular, then in (a) of both theorems the space o[A], may
be replaced by [A4],.

Both theorems and the corollary follow from Propositions 1 and 2 and
corollaries. We remark that the non-trivial part of Theorem 1, i.e. the con-
clusion from (a) to (b), is obvious if B = 0 since then >, ¢, € Y, ¢; =2 0, im-
plies > ¢r < 0.

Theorems 1 and 2 show that the determination of sequence to series and
series to series factors requires the knowledge of the absolute convergence
factors of 0o[A4],, i.e. the knowledge of the space o[4],* of the continuous linear
functionals in o[A],. The corresponding condition on N will be called the
Sfunctional condition. Section 5 of this paper will be devoted to the study of this
condition, i.e. to 0[4],*. The additional condition s € ¥ of Theorem 2 will be
discussed in Sections 2, 3, and 4.

For the corresponding situation in case of ordinary summability see e.g.
[15, Theorem II1.25].

2. The condition \s € |B|. We will show that this condition reduces to a
functional condition if |B| has a special absolute convergence factor — a condi-
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tion which is satisfied in many cases. The condition on |B| is:

(2.1) B is absolutely regular, and Z a; € B implies Z laxhy| < oo,
k

where iy = D |bux — bno1.l-
n=0

In particular, if B is triangular and b, | as nT (n = k), then k; = 2by, i.e.
(2.1) requires that (bx;) is an absolute convergence factor for |B|. This is true
for all Cesaro methods (see, e.g. [9; 16]).

In Section 6, we will discuss some other classes of matrices which satisfy

2.1).
The reduction of \s € |B| to a {functional condition follows from

THEOREM 3. Let A = 0, and let B satisfy (2.1). Then
(2.2) s € o[A], implies \s € |B|
if and only if
(2.3) s € old), implies Y, |hhsi]| < 0.
k
Proof. If (2.2) holds, then > ; hi|\isy — Me—15i—1| < 0 whenever s € o[4],.

If we change s so that ss;, = 0 or sgy1 = 0 (B =0, 1, ...) then we obtain
>k |hisi] < 00, i.e. (2.3) holds. Conversely, if (2.3) holds, then

Z zk: (bnk - bn—l,k))\ksk = zk: |>\k5k| Z |bnk - bn—l,k' < o,

n

i.e. (2.2) holds.

Theorem 3 shows that A\s € |B] is equivalent to the condition that (kx\x) is
an absolute convergence factor for o[4],.

3. The condition \s € (B). We will show that this condition is equivalent
to As € [C]; for some C.

THEOREM 4. Let B = (b)) be regular and let C = (|by|). Furthermore, let
A = 0. Then

(38.1) s € o[A], implies s € (B)
if and only if
(3.2) s € o[A], implies \s € [C]..

Proof. If (3.1) holds, then f,(s) = > %o buASi is a sequence of pointwise
convergent, continuous linear functionals on 0[4],, hence it is equicontinuous.
The set {Th}, Ts(s) = b-s with b € I, ||b||lo < 1 is a set of equicontinuous
linear transformations of o[A4], into itself, hence {f,(T,(s))} is a set of equi-
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continuous linear functionals. But a subset of this set is {f,(s) = 350 CoxheSk}
(n = 0,1,...) which is equicontinuous and pointwise convergent to zero on a
dense subset, namely the set of all sequences with finitely many non-zero
terms. Hence (3.2) follows. The converse direction is obvious.

It should be mentioned that (3.1) implies \s € o(B) by Corollary 1 to
Proposition 2.

4. The condition \s € [B];. In order to avoid minor complications it seems
natural to introduce now the assumption that 4 = 0 and that 4 has no zero-
column, i.e.

(41) A =0 and a; = supay > 0.

If (4.1) holds, then o[4], is a BK-space with norm

© 1/p
[[s]|a,, = sup (Z ank|5k|p) .
n

If, in addition, 4 is regular, then [A4], is a BK-space. The following lemma
yields information on the order of growth of sequences in 0{ 4], (compare [8]).

Lemma 1. Let A be regular and satisfy (4.1).

(a) If s € o|lA4], then sa'’ = o(1). This estimate is best possible, i.e. if
ny % O(1) then thereiss € o[ A], such that 7,5 1" # O(1).

(b) If s € olA], implies \s € o[Bl;, where B = 0, then

(4.2) N7 = O(Uk”"’),

Proof. (a) Let s € o[A],, and choose ¢ > 0. Then there are numbers N (e),
K(e) such that

[es)

D amlsiP £ € forn = N(e), aulsi)” < e fork = K(e),n < N(e).

Hence a,x/sx]? < efor & = K(e) and all #, i.e. a;'/?s, — 0. (Note that this part
of the proof does not require any assumption on 4 besides 4 = 0.) Let
0 < 7 ¥ O(1) and select a subsequence k;T o such that > ; 7,772 < 0.
If sy, = ag,”'? 9.~V sx = 0 otherwise, then
S » ki —p2
Z tne|se|” = Z T Mk -0
k=0 i—0 Qg

(4 is regular), but ng;s;,ax, " = i, 1/? — 0.

(b) This is an immediate consequence of (a).

Our next two theorems will discuss implications of the type
(4.3) if s € 0o[A], then \s € [B];.

Assume that (4.3) holds, that 4 satisfies (4.1) and that B = 0 is regular. Then

https://doi.org/10.4153/CJM-1978-084-3 Published online by Cambridge University Press


BK-spa.ce
BK-sp3.ce
https://doi.org/10.4153/CJM-1978-084-3

LINEAR FUNCTIONALS 989

[Ixs|| 5.7 is a continuous seminorm on o[A],, hence there is K = 0 such that
(4.4) |Isllz; = Klls||ap foralls € o[4],.
THEOREM 5. Let A be regular and satisfy (4.1). Then
(4.5) s € o[A], wmplies As € [4];
if and only if

sup 2 aw[Ne 777 <0 if B < p,
n k - -
)\k — 0(1) ak(ﬂ—ﬂ)/ﬂﬂ 7/f§ g P

We omit the proof, since the following Theorem 6 is a partial generalization
of Theorem 5, and a few obvious modifications of its proof lead to a proof of
Theorem 5.

(4.6)

THEOREM 6. Let A and B be normal, regular and assume that aug, by > 0 of
k = n. Moreover, assume that a,, | and by/aw | asnT (n = k). Then (4.3) holds
if and only if

Ne = O(1) (' ” /0™y if B = p.

Proof. Let p < p. Holder's inequality shows that s € o[4], and (4.7) imply
\s € o[B]Jz hence (4.7) implies (4.3). Assume that (4.3) holds which implies
(4.4). Let s(m) = (so(m), ..., sn(m), 0,0, ...) € 0[A], where

se(m) = NP/ PP (b i) VO (R < m).

) {Sup };) |)\k|pz7/(p~§)bnkp/(p~5)/ank5/(p—5) <o ifp<p,

The monotonicity of a,; and b,x/a,x implies

. b N PRV Y
[|As(m)||s,5 = sup Z A, 2 I)\klpp/(z)—p) (_mll)
nsm \ k=0 Qi

Amk
n N p/(0—p)) 1/ e
2 sup | 2 NP = ([lstm)|[4)""
nsm k=0 Aok
m . ~ . . -\ o2 /p
> ”S(m)”A,p(Z |)\k|1w/(p-p)bmkp/(p-p)amk—p/(p—p)) ,
k=0

hence the first line of (4.7) follows from (4.4) and this estimate.
Let p = p. If s € 0[A],, then it follows from Lemma 1, (4.7) and the mono-
tonicity of a,; and b,;/a,; that

n

n

~ bk -TT
2 bulNesil” = 2 awlsel” = NP s
k=0 Ay

124
kk

n b a e n
= 0(1) Z ank|sk|”‘k'lc — Uik T o(1) Z anr|Se],
k=0 Ak k=0

hence (4.7) implies (4.3). The necessity of (4.7) follows from (4.2).

Ak
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Remarks. 1. The proof of Theorem 6 shows that the monotonicity of a,; and
bar/ @y is not needed to prove that (4.7) is sufficient if < p resp. necessary
if p = p.

2. Holder’s inequality implies for regular matrices B
(4.8) [Bls+e C[Bl;, €¢>0.

It follows that for fixed p condition (4.7) becomes stronger as p increases.
This can also directly be shown by Hoélder's inequality when p < p.

3. The assumptions of Theorem 6 are satisfied for4 = C,, B = (3,0 < 8 =
a = 1, hence B C A4 in this case. In a sense, this relation is typical for the
assumptions of Theorem 6: Let 4, B be triangular, a, > 0, b > 0 (B < n),
> im0 Uk = Dm0 by = 1. Then

(48) bnk/ahkl as nT (’ﬂ g k)r bnk/dnk l« as k T (k é 'ﬂ)
implies 4 = B, because for n = &k we obtain
(49) b/;k/(lkk g bnk/ank g bnn/anm

which implies

and if b,,/a,, = 1 for all n, 4 = B follows from (4.9). On the other hand, as-
sume b,,/a,, < 1 for some #n; then it follows from (4.9) that

n n
kE—;} b = Z —'-(lnk< Z an, = 1,

k=0

v
@ \e-

ann

which contradicts the assumptions on B. (Of course, the same conclusion holds
when b,x/a,; Tin n and k.) Hence, if 4 and B satisfy in addition M,*(4) or
M*(B) (see e.g. [15, p. 34)), bur/au | as n ] (n = k), and if b,,/a,; is mono-
tone in k (same kind of monotonicity for every #), then Theorem 11.20 or
Theorem 11.21 [15] implies B C 4.

4. In view of Remark 3 one might ask for the sequence to sequence factors in
case 4 C B. In this case

(4.10) (4], C [B],,

and (4.8) and (4.10) imply that every X € 1, is a sequence to sequence factor from
olA), to o[Bl; if p < p. This result will be helpful in our applications when
N € I, follows from a functional condition.

The situation becomes considerably more difficult when o[A4], C 0(B)5 does
not hold. We do not have a general result in this case. For more special results
see the end of Section 6 and Part I1 of this paper (which will be published
separately).
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5. Linear functionals on o[4],. In order to obtain o[4],* we embed o[A4],
into a certain space M,® which has a dual M,V of comparatively simple
structure. By the Hahn-Banach Theorem every element of o[4],* has an
extension to M,.

Let 1 £ p < o0, and let M, denote the space of all matrices G = (g.i),
nok=0,1,...,with > |gul” = 0(1) asn — 0. If ||G]| = sup, (Oi [gu]?)?7?,
then M, is a Banach space. Similarly, let 1 < p < o, and let M, denote
the Banach space of all matrices H = (h,;) such that ||H|| < o, where

1/p
I (2 ), 125 <0,
k

Hafl =9 "
Z S[;p Ihﬂklv p=0.

n

Letl = p <0, (1/p) + (1/q) = 1. Applying standard techniques one veri-
fies that

(6.1)  fG) = 2 }k: horgur, G € M, H € M,

is the general form of a continuous linear functional on M,(®, and it follows
that M,V is a representation of the dual of M, and ||f|| = ||H||.

THEOREM 7. Let 1 £ p < 0, (1/p) + (1/q) = 1, and assume that A 1is
regular and satisfies (4.1). Then the followng statements are equivalent:

(@) D lexse| < 0 whenever s € o[A],,
k

b) &=, Bk "® for some H € Mq(l),

1/p
() &= vk( > anank) for somey € 1,0 € 1y, 00 = 0,

1/p
d) el = ak”"( > anank) for some a € 11, ay = 0(ey™'® = 1 forq = ).

Proof. (a) implies (b): The space 0[4], is norm-isomorphic with the (closed)
subspace {gu = @'’ sils € 0[A],} of M,®. Since f(s) = >; s is in o[A4],*
(by (a)), it follows from (5.1) that H € M, exists such that

Z €Sy = Z ; hnk(lnk”pSk
3 n

and this implies (b) (take s = e™).
(b) implies (c): Let p > 1, and define @, = (X |hn]?)1%. Then X, o, < 00,
and if a, > O for all #, then by (b)

IA
—
5
NES
NS
S~
-
=
S
—
3
]
3
(S
3
=
S~—"
-
>
<

h
Iekl — Z a_% anl/panklm
n n
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But

Y= i X Il = T e <o,
3 n  On k n
This shows that (c) holds in this case. Some obvious modifications of the proof
when some a, = 0 or p = 1 show that (c) holds in general.

(¢) implies (d): Since the case p = 1 is trivial, assume p > 1. If 8, =
o + |vx|%, then 87 = |y,| and (c) implies (d) with 8 in place of a.

(d) implies (a): Let s € o[4],- If p > 1 (the case p = 1 is obvious) then (d)
implies

/p

; lexsk| < (; ak)llq(; Is|” En: anank)l < .

Remark. Conditions (b)-(d) of Theorem 7 are of a ‘‘two parameter type',
and the two parameters may be ‘‘essentially” different. (For instance, the right
hand side of (c) is thesame when 4 = Cy,p = landea, = (n + 1)A(n + 1)73,
Yo =1lora,=n+1)AMr+1)"2 v, = (n + 1)~L) It may be difficult to
decide whether a given sequence e satisfies one of the conditions (b)-(d). Our

next theorem shows that for weighted means A, also a ‘‘one parameter condi-
tion’’ exists.

6. Applications. We first give a characterization of o[4],* when 4 is a
weighted mean:

THEOREM 8. Let pr, > 0, P, = po+ ... + P, tr = pPr (B = n), =0
(B > n). Then (d) of Theorem 7 is equivalent to

52 pnsup|—;c—|< 0 ifp =1,

n k=n k
S~ P | &
lZ p"(:{:n P, | b

Proof. We give the proof for p > 1, the case p = 1 follows after some obvious
modifications. Condition (d) is in the present case equivalent to

|€’C!i; < (fﬁk_) ( 32) “l
<62) Pkpka—l = Pk né:k Pn '

In view of the inequality (¢ — 0)a*"! £ a? — b? < gla — b)a*! (¢ > b > 0,
g = 1), condition (6.2) is equivalent to

©3) ks (Z Eﬁ)q— ( > ﬂ)q

q—1
Pkpk n=k Pn n=k+1 Pn

(6.1)

q\ 1/q
) <o afp > 1(A/p) + (L/g) = 1).

(in the sense that (6.2) implies (6.3) and (6.3) implies (6.2) with e.g. ga;
instead of ;). The second condition (6.1) is an immediate consequence of
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(6.3). Conversely, let (6.1) hold, and let

© P/c & q\ 1/q
oy = Pp(by — 8011), & = ; Pe | b .
We have «, = 0 and
N N N
; a, = ZOZ Paby — Pydys1 < ; Pudns

hence a € Iy by (6.1). This choice of @ leads immediately to 6, = > .= @,/ Pn,
and this shows that (6.3) holds. But (6.3) is equivalent to (d) of Theorem 7.

Remark. For A = C,, Borwein [2] gave equivalent conditions characterizing
o[A],*.

We are in a position now to discuss special theorems concerning sequence
to sequence factors of the type
6.4) [M,].— |B|
(6.5) [M]a— [Bls

where M, denotes a weighted mean. We first discuss (6.4).

Let B be triangular, and let B = ABS, where S = (s,x), A = (A,) and
Snk = 1 (k _S_ n)r Sk = O(k > ﬂ), Ann = 1) An,n—l = _]-y Ank = 0 otherwise.
B is the series-to-series form of B, i.e. 3. a; € |B| if and only if 3, |a,| < o
where a, = > _k—o Durty.

LeEmMMA 2. Let B be normal, and let Z;,”=k|l;,,k’b,m| = 0(1). Then Y ax € |B|
mmplies I, |axbnn| < 0.

Proof.

Z |anbnn| = Z Ibrm! I;l I;nk’ak é ; lak| Zk ]l;nk,bnn|

In what follows, we use the formula B’ = AB'S, i.e.

(66) Z;nk’ = Z (bnm, - bn—l,m’)r (k = ﬂ)
m=k
LemwmA 3. Let M), be a weighted mean with p, > 0, p,/P, |. Then Y a; € |M,]
implies Y, |ty po/Pr| < 0.
Proof. (See [7]). We have b,/ = Pu/py byt = —Pucs/pyr (n 2 1,
P_, =0),0b,/ = 0otherwise. It follows that
ST Py1 pria Pra1/ P
,;c 5’| T Pen = T TP,
and Lemma 3 follows from Lemma 2.

LeEmMA 4. Let N, be a Norlund mean with 0 < p,l, pus1/Pnl as nl. Then
Z(lk € INPI 1mp[l€5 Zn |(I,,/Pn| < 00,
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For a proof, see [4].
Our first theorem is of the type [Mpl. — |M,| (1 £ a < ©).

THEOREM 9. Let M,, M, be regular weighted means and let p, > 0, g, > 0,
Gn/Onl. Then X\ is a series to series factor from [ M. to | M ,| if and only if

)Z P SUp

k‘ <o fora =1,

n k=n Pk

(6.7) 1@

IZ pn(; Dy A)‘k ) < fora>1, (1/a) + (1/a) =
and

SZ Dn SUP (%—P‘-’“—I) < fora=1,
(6.8) 5 A a\ 1@

e N
b> p(z j@pk )" <o fora> 1, /m) + (/0) =

A special case of this theorem is due to Pati [13; 14] (who gives sufficient con-
ditions only when o = 1, p, =1 or p, = 1/(n + 1), ¢, = 1). The theorem
{ollows from Theorems 2, 3, 8, and Lemma 3.

Our next theorem is of the type [M,]. — |N,].

TaEOREM 10. Let M, be regular, p, > 0 and let N, be regular, 0 < ¢,],

Gni1/qnl as nT. Then X is a series to series factor from [M,), to |N,| if and only if
(6.7) and

SZ Dn Sup

n

<o fora=1,

IZ P"(Zn Al Q:r]

A special case of this theorem is due to Lal [10] (who gives sufficient conditions
only whena = 1, p, = g, = 1/(n + 1). See also Daniel [3]. The proof follows
from Theorems 2, 3, 8, and Lemma 4.

a) “ <o fora>1,(1/a) + (1/a) = 1.

Next we discuss (6.5).

TeEOREM 11. Let M,, M, be regular weighted means and let p, > 0, g, > 0,
P,/Qnl as nT. Then \ is a series to series factor from [ Mpla to [ Mg if and only if
(6.7) and

n q 1/(a—B) a\ 1/(a—B)
gz ( 25 [)\k]“ﬂ> = O(l)(?}‘g) forl £ 8 < q,

k=0

" |- o<1>( 5)(2)T isase

The case p = ¢, = 1, @ = B is essentially due to Borwein [1] ((6.10) is a
consequence of (6.7) in this case). The proof follows from Theorems 2, 5, and 8.
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A consequence of Remark 4 in Section 4 is

THEOREM 12. Let M,, M, be regular weighted means and p,, g, > 0, po/q,]
as nl. Then \ is a series to series factor from [M,). to [M s, 8 £ a, if and only if
(6.7) holds.

For a proof note that M, C M, under the stated conditions and that \, =
O(1) follows from (d) in Theorem 7, which is equivalent to (6.7).

THEOREM 13. Let M, be a regular weighted mean, p, > 0, and let B = 0 be
regular. Then N is a series to series factor from [M,)q to [Bls, B = «, if and only if
(6.7) and

B
[ paptD 2 00) foras

k=

Proof. It is easy to derive from the definition of sequence to sequence factors
that N is such a factor from [ M, ], to [Blg if and only if X = (|\;|?) is a sequence
to sequence factor from [M,].s to [B]: if B < a. The latter condition is equi-
valent to the statement, that

b |@ [(a—B) (a=B) [
e |xk|""”"‘5)) =0(1) fora> 8.

fm(s) = ; bmk|)\klﬂlsk|

defines a pointwise, hence uniformly bounded sequence of continuous linear
functionals on [M,]. 5. Using the fact that (6.1) with p = a/8 defines a norm
on [M,]a,s* such that it becomes a BK-space, this is equivalent to (5.11).
Hence Theorem 13 follows, using Theorem 2.
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