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1. Introduction. The Weierstrass-respectively
Weierstrass-Stieltjes transform of a function F(t) or p(t) is

defined by
17 (exf
(1.1) £(x) " / ———fi—— F(t)dt
- 00
and
) 2
(1.2) f(x) = == f X g

Jar 4

for all x for which these integrals converge. In what follows
we shall always assume that F(t) is Lebesgue integrable in
every finite interval and that p(t) is a function of bounded
variation.

It is casily scen that

2
2 0 -t
(1.3) e (-2x) :\/:1: f e_Xt[e /4F(t)]dt

4
-0

2
and hence 4w e f(-2x) is the two-sided Laplace transform

% This paper was written while the author was a fellow at the 1966
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2
of e—-—z— F(t). Itfollows that the region of convergence is an

interval. Replacing the real variable x by s = x +1iy, then
the region of convergence of (1.1) is a vertical strip [5; p. 238]
Moreover, every Weierstrass transform which converges for
a< x< b is also holomorphic in a < Res < b.

Cooper [2] has obtained representation theories for the
Laplace transform in connection with the integral transform:

o]
F(\, t) = E% f k(y,\) f(cHy) e

-0

t(c+iy)dy

where k(y,\) is a summation kernel of the type usual in the
theory of the Fourier integrals. Because of the relationship
between the Laplace- and Weierstrass-transform one may
expect to obtain a similar theory for the latter transform.
This we shall establish here. To this end, we shall study the
integral transforms

17 (x-t+iy)2/ 4
(1.4)  F (t,x) = = {o k(y, \)e y f(x+iy) dy

where a< x<b and k(y,\) is a Fourier summation kernel
satisfying the following conditions:

The Fourier-transform of k(y,\) denoted by K(t, \)
exists, k(y,\) is regular

17 iyt
(1.5) k(y,\) = =— e 7 K(t, ) dt
)
and
[¢e]
(1.6) f [K(t,\)]dt < M,

where M is independent of X\.

The following result can be found in [2, p. 225].
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LEMMA 1. If (1.6) holds, then the set of transformations
T)\ defined by

[ee]
_— Y'-
(T,g) () = [ K5, ely)dy

-
forms a bounded set of transformations from LP(—OO, 00)
(1 < p<00) toitself.

As in [3] we define the class of functions A(a,b) to be

those functions f(x) defined on (a,b) such that f(x) can be

extended analytically into the complex plane satisfying:
f(x +1iy) is holomorphic in the strip a< x< b and

2
bA

4
(1.7) f(x +1iy) = 0O(e ) Iyl - oo, uniformly in every closed
subinterval of a < x< b.

If f(x) satisfies the above conditions with "0" in (1.7)
replaced by '"o!'" we say f(x) € B(a, b).

It is convenient to denote the Weierstrass- and
and Weierstrass Stieltjes transform (1.1) and (1.2) by
f(x) = W(F,x) and f(x) = WS(u, x). Throughout ||.|]| ,

p

p > 1 denotes the Lp-norm and p' = p/p-1,

2. Necessary conditions for Weierstrass transforms

2
- (t-x)
THEOREM 1. If f(x) = W(F;x) with F(t) e 4 e L

P
(-0, ) 1<p< 2, a<x<b, andif for each \ > 0, k(y,)\)eLp

(-0, o) then f(x) e B(a,b) and

(t-x)%/
(2.1) [ e -x) 4F)\(t,x)’]p§l\/1 (1<p<2)

where M is independent of X and x ¢ (a,b).
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Proof. As in the proof of [3, Theorem 2] f(x) = W(F;x)
exists and f(x) ¢ B(a,b). To show that (2.1) is satisfied, we
note that by Parsevals theorem ([4, Theorem 76])

2/ 00 2/
-(t-x) /4 _ 1 t-u -(u-x)/4
€ F)\(t) X) = 2\/—2—1; -£ K( 2 ) )\) [e

F(u)] du.

(2.1) follows now from Lemma 1.

The next theorem deals with the Weierstrass-Stieltjes
transform.

THEOREM 2. If f(x) = WS(u, x) with

o0

2
(2.2) f e_(t_x) /4 Idp(t)} <ow f(a< x<b)

-0
and if k(y,\) ¢ L1(-oo, o) for each N > 0, then f(x) ¢ A(a,b)

and

2
(2.3) e () /4 F (]|, <M

Proof. By (2.2) f(x) = WS(p, x) exists for all a< x<b
and as before f(x) € A(a,b). Also

1 © (x- t+i )2/4
F)\(t,x) = = _{o k(y, \)e y f(x+iy)dy

2
(x-t) /4 0 o . 2
L R = G LR A

I

4
- 00 - 00
2
_ e(x_t) /4 - K(t-u ) —(u-x)2/4
PN J e Me dp(w)

where the interchange of the order of integration is justified by
Fubini's theorem. Hence by (1.6)
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, l o (- t)2/4

00 2
F (6], M_ el /4ldp(u)l.

1N 2 2w

3. Sufficient conditions.

THEOREM 3. If f(x)eB(a,b), (2.1) and k(y,\)e / f(x +iy)
sLi(-oo, o) where k(y,\)=1(\— ) uvniformly in y for every

finite interval, then there exists a function F such that
f(x) = W(F;x), where

2
“(x-t) /4F(t) eL (-, 1<pg2, xe(ab)

Proof. Choose xoe(a,b)“, then by (2.1) the family of

functions

2
(F (t,x )e” (Fo™ /4

is bounded in Lp(— ©, ). By [5, Chapter I, Theorem 17a]

there exists a subsequence {\ } & with lim A\, = o and a
function F(t,xo) with
-(xo-t)2/4
e F(t, X ) e L (—OO, OO)
o P
such that
1 o -(x -t)2/4
. o -
(3.1) lim == [ e F_ (t,x ) (t)dt
k»oom o N o
1 0 -(Xo-t)z//4
= = d (t)dt
= foo F(t,x ) $ (1)

for all ¢ e L In particular for all ¢ ¢ Lp' N L1 whose

e
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Fourier transforms ¢ are in L . Thus
p

F)\ (t, x) (t)dt

0 2

~(x-t)%/4
e

s y

1
N

o0 00 2
1 - 24 i on/a |
=L Bmer okt v/ e 2
0 2 ©
1 -y/t dyx, /2 iz
= ZT: £ e Y/ eIYx\)/ k(y,)\k)f(xo-{-ly)dy f (t)(t)elyt/ dt
i -

2/4 .
1 - - 2 .
v Py R kly A i+ iy)dy

0 2
1 - - ivx. ]
N f oly)e Ve YX“k(Zy,)\k)f(xQnLZly)dy
-0
where the interchange of integration is justified by Fubini's
theorem.

Now the functions

2 .
(3.2) e 7 elyX°K(2y,)\k)f(xo+ 2iy)

)24
F  (t,x ) and this
N [e}
k
family of functions is bounded in L . Therefore, by
P

. -(x -t
are the Fourier transforms of e ( o

[4, Theorem 74] the family (3.2) is bounded in L By

e

the weak compactness of the L  -space, there exists a
p

k.=

subsequence {\ }oo with lim X\ such that for any g e L
K j=1 e 5 P
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00 2

lim [ &7 elyxok(Zy,xk Ji(x_+2iy)g(y)dy
J> 0 - J
0 2 .
= [ 7 elYXOf(xo+21y)g(y>dy
-0

2 .
where e-Y elyxof(x +2iy) is the limiting point of
o
- 2 iyx,
e 7 Y Ok(zy,)\k) - f(xo+2iy). Now the functions ¢eL '(\,L1
p

are dense in Lp' so that in particular for g(y) :\/-2———2 o(y)

2
- o (xo-t) /4

lim F. (t %) d(t)dt
: A
J> w0 - k.
J
= 1 < z iyx
\/7{-} f o(y)e v Of(x,+2iy)dy.

-0

By [1, Theorem 4] and the fact that the functions (3.2) are

)2/4F

“ (et )\k(t, Xo) we obtain

the Fourier transforms of e

— _y% iyx 1 7 iyt -(x 12/ 4
Vel e (x t2iy) = = et U0 T F(tx )dt,
o J2m 2 o
that is
00 2/
(t-x -1 4
(3.3) f(x gHy) = 1 f e (t-x,-iy) "=F(t, x5)dt

A,

It remains to show that F(t, xO) is independent of the

choice of xo e(a, b).
(s-t)2/4

Since f(x) € B(a, b), f(S)e is holomorphic for
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a< Res< b thenfor a<x < Res< X, < b Cauchy's integral
o= =

theorem yields

2/4
(s-t) / ds

Lf(x)e = 0,

where the contour ¢ 1is determined by the vertices X tiT,

x, TiT with a< X < X, < b. Therefore,

(x +iT x +iT x.-iT x -iT
) 1 1 l¢)
2/,

-t
o=¢ [ + [+ [ + f(S)e(S ) as
x - iT x1+iT x1+iT x1— iT}
= I +I1 +I 4+
I'l IZ I3 14

where as in the proof of [3, Theorem 2] IIZ!—»oo and ]I4|—>oo
as T— o, It follows that

o (x +iy—t)2/4 (x1+iy—t)2/4
(3.4) (P) f [f(xo+iy)e © -f(x1+iy)e Jdy =0

- 00

Now, by the regularity of k(y,\), hypotheses and (3.4)

2/
© (x +iy-t)~'4
lim [ k(y,\e ° £(x_+iy)dy

A—> 0 -0

0 (x +iy—t)2/4
= lim f k(y,\)e ! f(x1+iv)dy-

A—> 00 -
From the uniqueness of weak limit

F(t,x ) = F(t,x. ) = F(t).
o 1
so that, by (3.4)
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o0

f(x+iy) = —/Zil—_ﬂ- f

-0

o112 4
e (t-x-1y) F(t)dt

which proves the theorem.
For the case p =1 we have the following result.

THEOREM 4. If f(x)e A(a,b), (2.3) is satisfied and
24
k(y, \)e y f(x+iy) ¢ L1(—oo, w) where k(y,\)=>1 as \=oo,

uniformly in y for any finite interval, then there exists a
function p with

jo e--(x—’c)z/4 ,dH(t),< o, for each x e (a,b)
- 00

such that f(x) = WS(p, x).

Proof. By hypotheses F)\(t, x) is well defined for all
x ¢ (a,b). Let

p)\(t,x) = {F)\(u, x)du

then for an arbitrary finite interval [o B] and fixed x ¢ {a,b)
o

(Xo_t)zié} B _(Xo—u)2/4
fldH (t,x ),<f|F (t, X ,dt< max e 7 fe IF}\(u,xo)]du

a<t<Lp o

uniformly in X. Thus {p)\(t, xo)} is of uniformly bounded

variation in [a, B] and

2 2
(x -t) o -(x -u)
lp)\(oz x fIF (u,x )[du< max e ° /4fe © /"} ’Fx(u’xo)'du

o<t<y o)

<ow. Hence by [5, Theorem 16.3] there exists an increasing
unbounded subsequence {)\k} and a function p(t,xo) of

bounded variation in o<t<f such that
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(3.5) lim p (t,xo) = p(t, xo)
k=00 'k

Moreover, by [5, Theorem 16.4 and Corollary] for any
continuous function h(t) in [ B],

g
lim fh(t) du, (t,x ) = J h(v) dult, x ).

k>0 o k
2
-(x -t) /4
Hence in particular for h(t) =
2 2/
B -(xo—t) /4 B —(xo—t) 4
[e ldu(t,x )] < Lm [e [du. (t,x )]
o - N o
o k=% o k
im o "X -0/s
o
S o w f e IF}\(t,xo)}dt< 0.
- 00
so that
o -(x —t)2/4
e ° ld}l(t: XO)I < oo,
- 00
Now, by (3.5)
t
(3.6) p(t,x ) = lim F, (w,x )du
k=>o o 'k
t 0 (X +iy- u)
lim f f (y)\ e f(Xo+1Y)dY
k—>oo o -0
2
" 0 t (xo+iy—u) /
= lim — f k(y, ». )M(x +iy)dy fe du
k= o0 A -0 K © o

where the interchange of order of integration is justified by
Fubini's theorem.
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Now we show that p(t, xo) is independent of the choice of

xoe(a,b). Since fe A(a,b),

t 2/
f(s) fe(s-u) 4du
o

is holomorphic in the strip a < Res < b then in exactly the same
way as in the proof of [3, Theorem 1] we find that

% t(x tiy)2/a t (x, +iy-u)2/4
®) [ {f(x_+iy) [ Je du]-£(x, +iy)[ fe dul}dy = 0
- 00 o (o)

where a< x <x < b. By the regularity of k(y,\) and the fact

2/,
that k(y\)f(x+iy) eV e L1(-oo, o) it follows from (3.6) that

p(t,xo) = p(t, X'l) = |..L(t).

Now let G(t) be a continuous function in [-T,T] and zero
outside the interval. If g denotes the Fourier transform of G
then

00 2/4 00 2/4
[aine ™Y TR (hxar = [ e Y dy (£, %)
-0 )\k -

(x+ iy-t)z/

2/y
- (-1 4f(x+iy) dy

1 [ee] [ee]
= \/—_‘FT —fooG(t)e dt —{ok(y,)\k)e
00 . 2/4 00
—1ﬂ fk(y,xk)elyx/‘Zf(x+iy)e'Y dy [ Glt)e

J

—iyt/Zdt

1"

-0

o | 2/
S aEtya) eV orieriyge™ T gy

-00

i

1
JZ
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and

. 2
vZ k(2y, xk)elxye‘Y £(x+ 2iy)

(x-t)2 /4
is the Fourier transform of e (x-t) F)\ (t,x). That is

k

2 oo 2/
i - 1 - (t- 4
k(2y, )\k)elxyf(x+21y)e Vo= f e (t-x)

JZ dpk(t, X).

- 00

Let k = o, then a change of variable yields

1

0 ,2/4
setiy) = m= [ T gy,

Ve

-0
which is the result.
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