REPRESENTATION OF FUNCTIONS AS WEIERSTRASS-TRANSFORMS

H.P. Heinig*

(received April 28, 1967)

1. Introduction. The Weierstrass-respectively Weierstrass-Stieltjes transform of a function F(t) or $\mu(t)$ is defined by

(1.1)
$$f(x) = \int_{-\infty}^{\infty} e^{-(t-x)^2} F(t) dt$$

and

(1.2)
$$f(x) = \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-(t-x)^2} d\mu(t)$$

for all x for which these integrals converge. In what follows we shall always assume that F(t) is Lebesgue integrable in every finite interval and that $\mu(t)$ is a function of bounded variation.

It is easily seen that

(1.3)
$$e^{-x^2} f(-2x) = \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-xt} [e^{-t^2/4} F(t)] dt$$

and hence $\sqrt{4\pi} e^{-x} f(-2x)$ is the two-sided Laplace transform

Canad. Math. Bull. vol. 10, no. 5, 1967

^{*} This paper was written while the author was a fellow at the 1966 Summer Research Institute of the Canadian Mathematical Congress.

of $e^{-\frac{t^2}{4}}$ F(t). It follows that the region of convergence is an interval. Replacing the real variable x by s = x + iy, then the region of convergence of (1.1) is a vertical strip [5; p. 238] Moreover, every Weierstrass transform which converges for a < x < b is also holomorphic in a < Res < b.

Cooper [2] has obtained representation theories for the Laplace transform in connection with the integral transform:

$$F(\lambda, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} k(y, \lambda) f(c+iy) e^{t(c+iy)} dy$$

where $k(y,\lambda)$ is a summation kernel of the type usual in the theory of the Fourier integrals. Because of the relationship between the Laplace- and Weierstrass-transform one may expect to obtain a similar theory for the latter transform. This we shall establish here. To this end, we shall study the integral transforms

(1.4)
$$F_{\lambda}(t,x) = \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} k(y,\lambda)e^{(x-t+iy)^2/4} f(x+iy) dy$$

where a < x < b and $k(y, \lambda)$ is a Fourier summation kernel satisfying the following conditions:

The Fourier-transform of $k(y,\lambda)$ denoted by $K(t,\lambda)$ exists, $k(y,\lambda)$ is regular

(1.5)
$$k(y,\lambda) = \int_{-\infty}^{1} \int_{-\infty}^{\infty} e^{iyt} K(t,\lambda) dt$$

and

(1.6)
$$\int_{-\infty}^{\infty} |K(t,\lambda)| dt \leq M,$$

where M is independent of λ .

The following result can be found in [2, p. 225].

LEMMA 1. If (1.6) holds, then the set of transformations $\boldsymbol{T}_{\boldsymbol{\lambda}}$ defined by

$$(T_{\lambda}g)(x) = \int_{-\infty}^{\infty} K(\frac{x \cdot y}{2}, \lambda)g(y)dy$$

forms a bounded set of transformations from $L_{\rm p}$ (-00,00) (1 \leq p \leq 00) to itself.

As in [3] we define the class of functions A(a, b) to be those functions f(x) defined on (a, b) such that f(x) can be extended analytically into the complex plane satisfying: f(x + iy) is holomorphic in the strip a < x < b and

(1.7) $f(x + iy) = 0(e^4) |y| \rightarrow \infty$, uniformly in every closed subinterval of a < x < b.

If f(x) satisfies the above conditions with "0" in (1.7) replaced by "o" we say $f(x) \in B(a, b)$.

It is convenient to denote the Weierstrass- and and Weierstrass Stieltjes transform (1.1) and (1.2) by f(x) = W(F,x) and $f(x) = WS(\mu,x)$. Throughout $\left| \cdot \cdot \cdot \cdot \right|_p$, $p \ge 1$ denotes the L-norm and $p' = \frac{p}{p-1}$,

2. Necessary conditions for Weierstrass transforms

THEOREM 1. If f(x) = W(F;x) with $F(t) = \frac{-(t-x)^2}{4}$ ϵL_p $(-\infty, \infty)$ 1 , <math>a < x < b, and if for each $\lambda > 0$, $k(y, \lambda) \epsilon L_p$ $(-\infty, \infty)$ then $f(x) \epsilon B(a, b)$ and

(2.1)
$$\left| \left| e^{-(t-x)^2/4} F_{\lambda}(t,x) \right| \right|_{p} \le M \quad (1$$

where M is independent of λ and $x \in (a, b)$.

<u>Proof.</u> As in the proof of [3, Theorem 2] f(x) = W(F;x) exists and $f(x) \in B(a,b)$. To show that (2.1) is satisfied, we note that by Parsevals theorem ([4, Theorem 76])

$$e^{-(t-x)^2/4} F_{\lambda}(t,x) = \frac{1}{2\sqrt{2\pi}} \int_{-\infty}^{\infty} K(\frac{t-u}{2}, \lambda) [e^{-(u-x)^2/4} F(u)] du.$$

(2.1) follows now from Lemma 1.

The next theorem deals with the Weierstrass-Stieltjes transform.

THEOREM 2. If $f(x) = WS(\mu, x)$ with

(2.2)
$$\int_{-\infty}^{\infty} e^{-(t-x)^2/4} |d\mu(t)| < \infty \quad (a < x < b)$$

and if $k(y, \lambda) \in L_1(-\infty, \infty)$ for each $\lambda > 0$, then $f(x) \in A(a, b)$ and

(2.3)
$$\left| \left| e^{-(t-x)^2/4} F_{\lambda}(t,x) \right| \right|_{1} \leq M$$

<u>Proof.</u> By (2.2) $f(x) = WS(\mu, x)$ exists for all a < x < b and as before $f(x) \in A(a, b)$. Also

$$\begin{split} F_{\lambda}(t,x) &= \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} k(y,\lambda) e^{(x-t+iy)^{2}/4} f(x+iy) dy \\ &= \frac{e^{(x-t)^{2}/4}}{4\pi} \int_{-\infty}^{\infty} k(y,\lambda) dy \int_{-\infty}^{\infty} e^{iy(u-t)/2} e^{-(u-x)^{2}/4} d\mu(u) \\ &= \frac{e^{(x-t)^{2}/4}}{2\sqrt{2\pi}} \int_{-\infty}^{\infty} K(\frac{t-u}{2},\lambda) e^{-(u-x)^{2}/4} d\mu(u) \end{split}$$

where the interchange of the order of integration is justified by Fubini's theorem. Hence by (1.6)

$$\left| \left| e^{-(x-t)^2/4} F_{\lambda}(t,x) \right| \right|_1 \leqslant \frac{M}{2\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(u-x)^2/4} \left| d\mu(u) \right|.$$

3. Sufficient conditions.

THEOREM 3. If $f(x) \in B(a,b)$, (2.1) and $k(y,\lambda) e^{-y^2/4} f(x+iy) \in L_1(-\infty,\infty)$ where $k(y,\lambda) \to 1(\lambda \to \infty)$ uniformly in y for every finite interval, then there exists a function F such that f(x) = W(F;x), where

$$e^{-(x-t)^2/4}$$
 F(t) ϵ L_p(- ∞ , ∞), $1 , $x \epsilon$ (a, b).$

<u>Proof.</u> Choose $x_0 \varepsilon(a,b)$, then by (2.1) the family of functions

$$\{F_{\lambda}(t, x_{o})e^{-(x_{o}-t)^{2}/4}\}$$

is bounded in $L_p(-\infty,\infty)$. By [5, Chapter I, Theorem 17a] there exists a subsequence $\{\lambda_k\}_{k=1}^{\infty}$ with $\lim_{k\to 0} \lambda_k = \infty$ and a function $F(t,x_0)$ with

$$e^{-(x_0-t)^2/4}$$

$$e^{-(x_0-t)^2/4}$$

$$F(t,x_0) \in L_p(-\infty,\infty)$$

such that

(3.1)
$$\lim_{k \to \infty} \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-(x_0 - t)^2/4} F_{\lambda_k}(t, x_0) \overline{\phi}(t) dt$$
$$= \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-(x_0 - t)^2/4} F(t, x_0) \overline{\phi}(t) dt$$

for all $\phi \in L_{p'}$. In particular for all $\phi \in L_{p'} \cap L_{1}$ whose

Fourier transforms φ are in L . Thus

$$\frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-(x-t)^{2}/4} F_{\lambda_{k}}(t, x) \, \overline{\phi}(t) dt$$

$$= \frac{1}{4\pi} \int_{-\infty}^{\infty} \overline{\phi}(t) dt \int_{-\infty}^{\infty} k(y, \lambda_{k}) e^{-y^{2}/4} e^{iy(x_{0}-t)/2} f(x_{0}+iy) dy$$

$$= \frac{1}{4\pi} \int_{-\infty}^{\infty} e^{-y^{2}/4} e^{iyx_{0}/2} k(y, \lambda_{k}) f(x_{0}+iy) dy \int_{-\infty}^{\infty} \overline{\phi}(t) e^{iyt/2} dt$$

$$= \frac{1}{2\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{\phi}(\underline{y}) e^{-y^{2}/4} e^{iyx_{0}/2} k(y, \lambda_{k}) f(x_{0}+iy) dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{\phi}(y) e^{-y^{2}} e^{iyx_{0}} k(2y, \lambda_{k}) f(x_{0}+2iy) dy$$

where the interchange of integration is justified by Fubini's theorem.

Now the functions

(3.2)
$$e^{-y^2} e^{iyx_0} K(2y, \lambda_k) f(x_0 + 2iy)$$

are the Fourier transforms of $e^{-(x_0-t)^{2/4}}$ $F_{\lambda_k}(t,x_0)$ and this family of functions is bounded in L. Therefore, by [4, Theorem 74] the family (3.2) is bounded in L_p . By the weak compactness of the L_p -space, there exists a subsequence $\{\lambda_k\}_{j=1}^{\infty}$ with $\lim_{j\to\infty} \lambda_k = \infty$ such that for any $g \in L_p$

$$\lim_{j \to \infty} \int_{-\infty}^{\infty} e^{-y^2} e^{iyx} ok(2y, \lambda_{k_j}) f(x_o + 2iy) g(y) dy$$

$$= \int_{-\infty}^{\infty} e^{-y^2} e^{iyx} of(x_o + 2iy) g(y) dy$$

where $e^{-y^2}e^{iyx_0}f(x_0+2iy)$ is the limiting point of $e^{-y^2}e^{iyx_0}k(2y,\lambda_k) - f(x_0+2iy)$. Now the functions $\phi \in L_p \cap L_1$ are dense in L_p , so that in particular for $g(y) = \frac{1}{\sqrt{2\pi}} \overline{\phi}(y)$

$$\lim_{j\to\infty}\int_{-\infty}^{\infty} e^{-(x_0-t)^2/4} F_{\lambda_{k_j}}(t,x_0) \overline{\phi}(t) dt$$

$$= \int_{0}^{\pi} \int_{0}^{\infty} \bar{\varphi}(y) e^{-y^2} e^{iyx_0} f(x_0 + 2iy) dy.$$

By [1, Theorem 4] and the fact that the functions (3.2) are the Fourier transforms of $e^{-(x_C-t)^{2/4}F} \lambda_k(t,x_O)$ we obtain

$$\sqrt{2} e^{-y^2} e^{iyx_0} f(x_0 + 2iy) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iyt} e^{-(x_0 - t)^2/4} F(t, x_0) dt,$$

that is

(3.3)
$$f(x_0+iy) = \int_{-\infty}^{\infty} e^{-(t-x_0-iy)^{2/4}} F(t,x_0) dt$$

It remains to show that $F(t, x_0)$ is independent of the choice of $x_0 \in (a, b)$.

Since $f(x) \in B(a,b)$, $f(S)e^{(s-t)^{2}/4}$ is holomorphic for

a < Res < b then for a < $x_0 \le Res \le x_1 < b$ Cauchy's integral theorem yields

$$\int_{2} f(x)e^{(s-t)^{2}/4} ds = 0,$$

where the contour ζ is determined by the vertices $x_0 \stackrel{t}{=} iT$, $x_1 \stackrel{t}{=} iT$ with $a < x_0 < x_1 < b$. Therefore,

$$0 = \left\{ \begin{array}{ll} x_0 + iT & x_1 + iT & x_1 - iT & x_0 - iT \\ \int_{\mathbf{x}_0} + \int_{\mathbf{x}_1} + \int_{\mathbf{x}_1} + iT & x_1 + iT & x_1 - iT \\ \end{array} \right\} f(s)e^{(s-t)^2/4} ds$$
$$= I_1 + I_2 + I_3 + I_4$$

where as in the proof of [3, Theorem 2] $|I_2| \to \infty$ and $|I_4| \to \infty$ as $T \to \infty$. It follows that

(3.4) (P)
$$\int_{-\infty}^{\infty} [f(x_0 + iy)e^{-(x_1 + iy - t)^2/4} - f(x_1 + iy)e^{-(x_1 + iy - t)^2/4}] dy = 0$$

Now, by the regularity of $k(y,\lambda)$, hypotheses and (3.4)

$$\lim_{\lambda \to \infty} \int_{-\infty}^{\infty} k(y, \lambda) e^{(x_0 + iy - t)^{2/4}} f(x_0 + iy) dy$$

$$= \lim_{\lambda \to \infty} \int_{-\infty}^{\infty} k(y,\lambda) e^{-(x_1 + iy - t)^{2/4}} f(x_1 + iy) dy.$$

From the uniqueness of weak limit

$$F(t, x_0) = F(t, x_1) \in F(t).$$

so that, by (3.4)

$$f(x+iy) = \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-(t-x-iy)^2/4} F(t)dt,$$

which proves the theorem.

For the case p = 1 we have the following result.

THEOREM 4. If $f(x) \in A(a,b)$, (2.3) is satisfied and $k(y,\lambda)e^{-y}$ $f(x+iy) \in L_1(-\infty,\infty)$ where $k(y,\lambda) \rightarrow 1$ as $\lambda \rightarrow \infty$, uniformly in y for any finite interval, then there exists a function μ with

$$\int_{-\infty}^{\infty} e^{-(x-t)^{2/4}} |d\mu(t)| < \infty, \text{ for each } x \epsilon (a, b)$$

such that $f(x) = WS(\mu, x)$.

<u>Proof.</u> By hypotheses $F_{\lambda}(t,x)$ is well defined for all $x \in (a,b)$. Let

$$\mu_{\lambda}(t, x) \equiv \int_{0}^{t} F_{\lambda}(u, x) du,$$

then for an arbitrary finite interval $[\alpha, \beta]$ and fixed $\underset{\circ}{x}$ ϵ (a, b)

$$\int\limits_{\alpha}^{\beta} \left| \mathrm{d}\mu_{\lambda}(t,x_{o}) \right| \leq \int\limits_{\alpha}^{\beta} \left| F_{\lambda}(t,x_{o}) \right| \mathrm{d}t \leq \max_{\alpha \leq t \leq \beta} e^{\left(x_{o}^{-}t\right)^{2}/4} \int\limits_{\alpha}^{\beta} e^{-\left(x_{o}^{-}u\right)^{2}/4} \left| F_{\lambda}(u,x_{o}) \right| \mathrm{d}u$$

uniformly in $\,\lambda\,.\,\,$ Thus $\,\{\mu_{\,\lambda}(t,\,x_{_{\,O}})\}\,\,$ is of uniformly bounded variation in $\,[\alpha,\beta]\,$ and

$$|\mu_{\lambda}(\alpha,x_{o})| \leq \int_{o}^{\alpha} |F_{\lambda}(u,x_{o})| du \leq \max_{o < t < \alpha} e^{\left(x_{o} - t\right)^{2} / 4} \int_{o}^{\alpha} e^{-\left(x_{o} - u\right)^{2} / 4} |F_{\lambda}(u,x_{o})| du$$

 $<\infty$. Hence by [5, Theorem 16.3] there exists an increasing unbounded subsequence $\{\lambda_k\}$ and a function $\mu(t,x_0)$ of bounded variation in $\alpha \le t \le \beta$ such that

(3.5)
$$\lim_{k\to\infty} \mu_k(t, x_0) = \mu(t, x_0).$$

Moreover, by [5, Theorem 16.4 and Corollary] for any continuous function h(t) in $[\alpha, \beta]$.

$$\lim_{k\to\infty} \int_{\alpha}^{\beta} h(t) du_{\lambda_{k}}(t, x_{0}) = \int_{\alpha}^{\beta} h(t) d\mu(t, x_{0}).$$

$$-(x_0-t)^{2/4}$$

 $-(x_0-t)^2/4$ Hence in particular for h(t) = e

$$\int_{\alpha}^{\beta} e^{-(x_{o}-t)^{2/4}} |d\mu(t,x_{o})| \leq \lim_{k \to \infty} \int_{\alpha}^{\beta} e^{-(x_{o}-t)^{2/4}} |d\mu_{\lambda_{k}}(t,x_{o})|$$

$$\leq \lim_{k \to \infty} \int_{-\infty}^{\infty} e^{-(x_0 - t)^{2/4}} |F_{\lambda}(t, x_0)| dt < \infty.$$

so that

$$\int_{-\infty}^{\infty} e^{-(x_0 - t)^{2/4}} |d\mu(t, x_0)| < \infty.$$

Now, by (3.5)

(3.6)
$$\mu(t, \mathbf{x}_{o}) = \lim_{k \to \infty} \int_{0}^{t} F_{\lambda_{k}}(u, \mathbf{x}_{o}) du$$

$$= \lim_{k \to \infty} \frac{1}{\sqrt{4\pi}} \int_{0}^{t} du \int_{-\infty}^{\infty} k(y, \lambda_{k}) e^{(\mathbf{x}_{o} + iy - u)^{2}/4} f(\mathbf{x}_{o} + iy) dy$$

$$= \lim_{k \to \infty} \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} k(y, \lambda_{k}) f(\mathbf{x}_{o} + iy) dy \int_{0}^{t} e^{(\mathbf{x}_{o} + iy - u)^{2}/4} du$$

where the interchange of order of integration is justified by Fubini's theorem.

Now we show that $\mu(t,x_0)$ is independent of the choice of $x_0 \epsilon(a,b)$. Since $f \epsilon A(a,b)$,

$$f(s) \int_{0}^{t} e^{(s-u)^{2/4}} du$$

is holomorphic in the strip a < Res < b then in exactly the same way as in the proof of [3, Theorem 1] we find that

(P)
$$\int_{-\infty}^{\infty} \{f(x_0 + iy) \left[\int_{0}^{t} e^{-(x_0 + iy)^2/4} du \right] - f(x_1 + iy) \left[\int_{0}^{t} e^{-(x_1 + iy - u)^2/4} du \right] \} dy = 0$$

where a < x o < x 1 < b. By the regularity of k(y, λ) and the fact that k(y λ)f(x+iy) e^{-y²/4} ϵ L₄(- ∞ , ∞) it follows from (3.6) that

$$\mu(t, x_0) = \mu(t, x_1) = \mu(t).$$

Now let $\,G(t)\,$ be a continuous function in $\,[\,-\,T,\,T\,]\,$ and zero outside the interval. If $\,g\,$ denotes the Fourier transform of $\,G\,$ then

$$\int_{-\infty}^{\infty} G(t)e^{-(x-t)^{2}/4} f_{k}(t,x)dt = \int_{-\infty}^{\infty} G(t)e^{-(x-t)^{2}/4} d\mu_{k}(t,x)$$

$$= \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} G(t)e^{-(x-t)^{2}/4} dt \int_{-\infty}^{\infty} k(y,\lambda_{k})e^{(x+iy-t)^{2}/4} f(x+iy) dy$$

$$= \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} k(y,\lambda_{k})e^{iyx/2} f(x+iy)e^{-y^{2}/4} dy \int_{-\infty}^{\infty} G(t)e^{-iyt/2} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\frac{y}{2})k(y,\lambda_{k}) e^{iyx/2} f(x+iy)e^{-y^{2}/4} dy$$

and

$$\sqrt{2}$$
 k(2y, λ_k)e^{ixy}e^{-y} f(x+2iy)

is the Fourier transform of $e^{-(x-t)^2/4}F_{\lambda_k}(t,x)$. That is

$$k(2y, \lambda_k)e^{ixy}f(x+2iy)e^{-y^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(t-x)^{2/4}} d\mu_k(t, x).$$

Let $k \rightarrow \infty$, then a change of variable yields

$$f(x+iy) = \sqrt{\frac{1}{4\pi}} \int_{-\infty}^{\infty} e^{-(t-x-iy)^{2/4}} d\mu(t),$$

which is the result.

REFERENCES

- 1. J.L.B. Cooper, Umkehrformeln fur Fourier Transformationen, Approximations und Interpolationstheory Sonderdruck, I.S.N.M. vol. 5 (1964) Birkhauser Verlag, Stuttgart.
- J. L. B. Cooper, The Representation of Functions as Laplace transforms. Math. Annalen 159 223-233 (1965).
- 3. R.J. Nessel, Uber die Darstellung holomorpher Funktionen durch Weierstrass- und Weierstrass-Stieltjes Integrale; J.F. reine u. angew. Math. 218, (1965) (31-50).
- 4. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals; Oxford (1937).
- 5. D.V. Widder, The Laplace Transform; Princeton (1946).

McMaster University, Hamilton, Ontario University of Alberta, Edmonton, Alberta