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THE WEYL FUNCTIONAL CALCULUS AND
TWO-BY-TWO SELFADJOINT MATRICES

WERNER J. RICHER

Let D be a (2 X 2) matrix with distinct eigenvalues Ai and Aj. There is a basic
and well known functional equation which provides a formula for constructing the
matrix g(D), for any C-valued function g defined on a subset of C containing
{Ai,Aj}, namely

g -» g(D) = (At - A,)~l{s(Ai) • (Z? - A2J) - g{Xi) • (D - X,I)}.

This equation is used to give a direct and transparent proof of the following fact
due to Anderson: A pair of (2 X 2) selfadjoint matrices A\ and Aj commute if and
only if the Weyl functional calculus of the pair (Ai,At), which is a matrix-valued
distribution, has order zero (that is, is a measure).

Given two selfadjoint matrices in % = C2 , say A\, A2, the Weyl calculus for the
pair A = (Ai, A2) is an Z(W)-valued distribution which is a particular rule allowing the
construction of certain functions of the pair (Ai, A2). For £ = (£1,^2) € K2, the matrix
{£,A) = iiM + 6 ^ 2 is again selfadjoint and hence | |e'^'A) | | = 1. Let 5(R2) denote
the Schwartz space of C-valued, rapidly decreasing functions on K2. More precisely
then, the Weyl calculus for A, [1, 6, 7], is the L{H)-va\ne& distribution T(A) denned

by

(1) T(A)f = i - / e*«^>/(O«*e, / G S(R2);

here / denotes the Fourier transform of / and LCH) is the space of all (2 x 2) matrices
over C. The following result connects an analytic property of T(A) with a purely
algebraic property of A.

THEOREM 1. Given a pair A = (Ai,A2) of selfadjoint matrices in 7i = C2 the
following statements are equivalent.

(i) The matrices Ai and A2 commute.
(ii) The associated Weyl calculus T(A) : 5(R2) -» L{H) is a distribution of

order zero.
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There are severed proofs of this theorem in the literature. The first proof given of
this result is due to Anderson, [2, Theorem 2], and applies in <Cm, not just C2 . It is
based on properties of the numerical range and the theory of multivariable differential
calculus. A completely different proof (also applying in C™ ), which is based on certain
aspects of matrix-valued harmonic analysis in ip-spaces (see [3]), is given in [5]. A third
proof, specific to the case of C2 , was given in [4]. This proof is essentially computational
and is based on an elegant formula of Anderson, [1, Theorem 4.1], which expresses the
Weyl calculus T(J) of the triple J = (Ji, J2, J3) whose entries are the classical spin
1/2-matrices in £(C2) , in terms of an integral formula over the unit sphere S2 (in K3)
with respect to normalised surface measure /x.

The aim of this note is to present another proof of Theorem 1. The proof is again
computational in nature, but has the advantage over [4] in that it is based on a much
more elementary and very well known functional equation. Namely, for a (2 x 2)-matrix
D with distinct eigenvalues Ai and A2 and any C-valued function g defined on a subset
of C containing cr(D) = {Ai,A2}, the matrix g(D) is given by the formula

In particular, the proof given below provides an interesting and non-trivial application

of (2).

To establish (i) =>• (ii) is elementary and can be found in [4], for example. So
let A\ and A2 be selfadjoint matrices in HJi.) which do not commute. To establish
(ii) =>• (i) it is to be shown that the distribution T(A) : S(R2) —» L(7i) has positive
order. If U is any orthogonal (2 x 2)-matrix, define UAl/-1 = (UA1U-1,UA2U-1).

Then TftAU-1)/ = tf ( T ^ ) / ) * / " 1 , for every / £ 5(R2) , [1, Theorem 2.9(e)]. So,
choose for U an orthogonal transformation such that the matrix B\ of UA\U~1 with
respect to the basis of H consisting of the orthonormal eigenvectors of A\ is diagonal,

say I I . Then the matrix B2 of VA-iU~x with respect to this basis is of the
\ 0 a2 )

form ( 2. ) for some w £ C and /3i,/32 6 l . Since A\A2 ^ A2Ai it follows that
\w /32J

B\B2 ^ B2B\ and moreover, that a.\ ^ a2 (with a\,a2 £ K) and w ^ 0. Since the

order of the distribution T(B) is the same as that of T(A) it suffices to show that

T(B) has positive order.

Fix £ = ( 6 . 6 ) £ K2. For each A £ C, it follows that

(3) d

6ft) - H2 il
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Let h = (a i - a2)/2 and k = (ft - /?2)/2, in which case keR and h £ R \ { 0 } . Direct
calculation shows that the solutions of (3) are given by

(4) A(0 = | (6[a , + a2] + fcfft + A])

where A(£) = (fc& + k(,2f + \w\2 g. Since A(£) = 0 if and only if £ = 0, it follows
from (4) that (£,B) has two distinct eigenvalues, say Ai(£) and A2(£), whenever £ ^ 0.
The identity (2), with D - {£, B) and g{z) = e " , implies that

e =

for every £ ^ 0. Of course, e'
<0'B> = / . Substituting (5) into (1), with A replaced by

B, shows that the (l,2)-entry of the matrix T(B)f is given by

If Ai(^) denotes the eigenvalue of (£,B) corresponding to the + sign in front of
in (4), then it follows from (4) that (6) simplifies to

T(f\ iw f 6e/(0sin{A(Q}
)

where u = (aj + a2) /9i+/32)/2. If /„(?/) = /(u + »7), for 77 £ R2, then fu{() =
so

where I?2 denotes differentiation with respect to the second variable. By making the

linear change of variables in R2 given by y = M£, where M = I , , I and elements
\0 \w\)

of R2 are interpreted as column vectors, it follows that

(7)

The Fourier-Stieltjes transform fi of the measure fi (recall that supp(p) = S2 C
t3) is easily computed via spherical polar coordinates and is given by

sin(V+<Y2+-Y211/2

(2,r)3/2(7l
2

+7!+

https://doi.org/10.1017/S0004972700033980 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033980


324 W.J. Ricker [4]

with fi(O) = (2TT) ' . Let D be the closed unit disc in R2. Define a measure v on the
Borel subsets B(m2) of R2 by

u{E) = n((E n D) x R), EeB(R2).

Given a function ip : R2 -> C, let ip : R3 —> C be the function defined by
ip(x,y,z) = ip(x,y). A routine calculation shows that J&2 sdv — J&3 Jd/j,, for every
Z?(R2)-simple function s : R2 —> C. It follows from the dominated convergence theorem
that f^ ip dv — /ffi3 ipdfi for every bounded Borel function <p : R2 —> C. In particular,
putting <p((x) = e^''), for each fixed £ 6 R2, it follows that P(£) = £(£,0). That is,

with P(0) = (2TT)~3/2 .

Now, the function $ = P is locally integrable (as it is a continuous function van-
ishing at oo) and hence, can be interpreted as a distribution in the usual way, that
is, (g, $) = /ffij flf(£)$(f)df, for g £ «S(R2). Accordingly, the distributional Fourier
transform $ of $ is given by

= / (7 ^-"^(
for each p £ <S(R2) . Applying Fubini's theorem and the Fourier inversion formula
JR2 e^rtpit) d£ = 2TTP(X) shows that

(8) (p,$)=27r/ p{x)dv{x), pG5(R2).
Jut

Accordingly, the Fourier transform of $ is the measure 1-KV (acting on <S(R2) via the
right-hand-side of (8)).

For g G S(R2), let j o M ' 6 <S(R2) denote the function x H-> g(Mlx), for each
x G R2, where M* is the transpose of the matrix M. Direct calculation shows that

y G R2,

for each / G <S(R2) . It follows from (7), (8) and the definition of distributional Fourier
transforms that

(9) £(/) - W(2TT)3/2 [ (£>2/« o M*)(*) <M«), / e 5(R2).
JTS?
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Since />—>/« and / •-> f oMt are bicontinuous isomorphisms of <S(K2) onto itself, it is

clear from (9) that the distribution L(f) has positive order. Since L is the (l,2)-entry

of T(B)f, for each / E S(R2) , it follows that T(B) also has positive order. D

The identity (9) shows that the support of I is a translate of the image of D

under a non-singular transformation in R2 (with positive determinant). In particular,

supp( i ) is an infinite subset of K2. Since supp(Z) C supp(T(f?)) = supp(T(A))

we have also given an alternative proof of the fact that A1A2 = A2A1 if and only if

supp(T(A)) is a finite subset of K2, [4, 5].
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