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THE WEYL FUNCTIONAL CALCULUS AND
TWO-BY-TWO SELFADJOINT MATRICES

WERNER J. RICKER

Let D be a (2 x 2) matrix with distinct eigenvalues A; and As. There is a basic
and well known functional equation which provides a formula for constructing the
matrix g(D), for any C-valued function g defined on a subset of C containing
{A1, A2}, namely

g g(D) = (M = 22) " {g(M) - (D = Aed) — g(2z) - (D — A D)}

This equation is used to give a direct and transparent proof of the following fact
due to Anderson: A pair of (2 X 2) selfadjoint matrices A; and Az commute if and
only if the Weyl functional calculus of the pair (A1, A;), which is a matrix-valued
distribution, has order zero (that is, is a measure).

Given two selfadjoint matrices in H = C?, say 4;, As, the Weyl calculus for the
pair A = (41, Az) is an L(H)-valued distribution which is a particular rule allowing the
construction of certain functions of the pair (4;,4z). For & = (£1,&;) € R?, the matrix
(£, A) = &1 A1 + €24, is again selfadjoint and hence ||e"(£"4)|| =1. Let S(Rz) denote
the Schwartz space of C-valued, rapidly decreasing functions on R2. More precisely
then, the Weyl calculus for A, [1, 6, 7}, is the L(H)-valued distribution T(4) defined
by

&) T()f = 5 [ STk, FesE);

here f denotes the Fourier transform of f and L(H) is the space of all (2 x 2) matrices
over C. The following result connects an analytic property of T'(A) with a purely
algebraic property of 4.

THEOREM 1. Given a pair A = (A, A;) of selfadjoint matrices in H = C? the
following statements are equivalent.

(i) The matrices A; and A; commute.
(i) The associated Weyl calculus T(A) : S(R?) — L(H) is a distribution of

order zero.

Received 4th June, 1996

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 $A2.00+0.00.

321

https://doi.org/10.1017/50004972700033980 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700033980

322 W.J. Ricker (2]

There are several proofs of this theorem in the literature. The first proof given of
this result is due to Anderson, (2, Theorem 2], and applies in C™, not just C%. It is
based on properties of the numerical range and the theory of multivariable differential
calculus. A completely different proof (also applying in C™ ), which is based on certain
aspects of matrix-valued harmonic analysis in LP-spaces (see [3]), is given in [5]. A third
proof, specific to the case of C?, was given in [4]. This proof is essentially computational
and is based on an elegant formula of Anderson, [1, Theorem 4.1], which expresses the
Weyl calculus T(J) of the triple J = (J1,J2,J3) whose entries are the classical spin
1/2-matrices in L(C?), in terms of an integral formula over the unit sphere 52 (in R3)
with respect to normalised surface measure p.

The aim of this note is to present another proof of Theorem 1. The proof is again
computational in nature, but has the advantage over [4] in that it is based on a much
more elementary and very well known functional equation. Namely, for a (2 x 2)-matrix
D with distinct eigenvalues A; and A; and any C-valued function g defined on a subset
of C containing o(D) = {A1, A2}, the matrix g(D) is given by the formula

() o(D) = (Af(%j (D = MI) — % (D = M),

In particular, the proof given below provides an interesting and non-trivial application
of (2).

To establish (i) = (ii) is elementary and can be found in [4], for example. So
let A; and A be selfadjoint matrices in L(H) which do not commute. To establish
(i) = (i) it is to be shown that the distribution T(A4) : S(R?) — L(H) has positive
order. If U is any orthogonal (2 x 2)-matrix, define UAU ™! = (UA1 U_I,UAzU_l).
Then T(UAU')f = U(T(A)f)U™?, for every f € S(R?), (1, Theorem 2.9(e)]. So,
choose for U an orthogonal transformation such that the matrix By of UA,U~! with
respect to the basis of H consisting of the orthonormal eigenvectors of A; is diagonal,

say (o(t)1 0 ) . Then the matrix By of UA,U~! with respect to this basis is of the
a

form (@ ;) ) for some w € C and f1,0; € R. Since 4;4; # Az A, it follows that
w P

B;B; # B3;B;, and moreover, that a; # a; (with a;,a2 € R) and w # 0. Since the

order of the distribution T(B) is the same as that of T(A) it suffices to show that

T(B) has positive order.

Fix & = (&1,£2) € R2. For each X € C, it follows that

(3) det(AI — (¢, B)) = A — b1z + &2P2 + broa + £2P1)A
+ (br01 + E61)-(b102 + &262) — |w|® €.
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Let h = (a; — @3)/2 and k = (B1 — $2)/2, in which case k € R and h € R\{0}. Direct
calculation shows that the solutions of (3) are given by

() ME) = S(&xlon + cul + I8 + Ba]) £ (A,

where A(¢) = (hé + k&) + |w) €2. Since A(€) = 0 if and only if £ = 0, it follows
from (4) that (£, B) has two distinct eigenvalues, say A;(£€) and Az(£), whenever £ £ 0.
The identity (2), with D = (¢, B) and g(z) = e**, implies that

eiM () B) — Aa(6)] er2(8)
o @) (& 2 OD - TRy

for every ¢ # 0. Of course, €¥%B) = I. Substituting (5) into (1), with A replaced by
B, shows that the (1,2)-entry of the matrix T(B)f is given by

w eM(€) _ o) ¢, 7| )
(©) =3/, ( GE Az();;)f(f) % fESRD.

If A1(£€) denotes the eigenvalue of (£, B) corresponding to the + sign in front of
{A(€)}*/? in (4), then it follows from (4) that (6) simplifies to

fze‘“'"’f(ﬁ) sin{A(€)}?
L= NGIEE

(5) eN6B) =

({¢, B) — A (&)]),

d¢,  feS(R?Y,

where u = (a1 + a2,61 +52)/2. I fu(n) = flu+7), for 9 € R?, then Fu(¢) =
€™ £(¢) and so

£zfu(§)sm{A(€)}1/2 d (D2 fuY (£)sin{A(£)}'/?
Hi)= Berr 4wl werr %
where D, denotes differentiation with respect to the second variable. By making the

h k
) and elements
0 |w|

linear change of variables in R? given by y = M¢, where M = (
of R? are interpreted as column vectors, it follows that

)1/2

h|w|w/ (Dafu) (M~ y)sin (4] + 43
27 2

2)1/2

dy, fEe S(]Rz).
(¥} +93

(M L(f)=

The Fourier-Stieltjes transform fi of the measure p (recall that supp(p) = §? C
R3) is easily computed via spherical polar coordinates and is given by

. 1
sin (‘712 + 72 + 73) / € Rx\{o}
@r) (72 + 42 +42)* i ’

a(y) =
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with 7(0) = (27)"*/2. Let D be the closed unit disc in R2. Define a measure v on the
Borel subsets B(R?) of R? by

V(E)=u((END)xR), E € B(R?).

Given a function ¢ : RZ2 — C, let ¢ : R® - C be the function defined by
@(=,9,2) = p(z,y). A routine calculation shows that [, sdv = [p; 5dp, for every
B (Rz)-simple function s : R? — C. It follows from the dominated convergence theorem
that [p, ¢ dv = fpz §dp for every bounded Borel function ¢ : R? — C. In particular,
putting ¢(z) = €62, for each fixed ¢ € R?, it follows that D(¢) = ji(£,0). That is,

sin (¢ +¢3)"/7

ey SE

v(§) =

with $(0) = (2r)~%/2,

Now, the function ® = ¥ is locally integrable (as it is a continuous function van-
ishing at oo) and hence, can be interpreted as a distribution in the usual way, that
is, (g,®) = [r 9(£)®(€)dE, for g € 8(R2). Accordingly, the distributional Fourier

transform @ of & is given by

0.8 =69 = [ sened= [ ([ <o) nox

for each p € S (Rz). Applying Fubini’s theorem and the Fourier inversion formula
Jga €14°)P(€) d¢ = 2mp(z) shows that

o~

(8) 0.8 =2 [ ple)iv(a)  peSERY.

Accordingly, the Fourier transform of & is the measure 2wv (acting on S(R?) via the
right-hand-side of (8)).

For g € S(R?), let go M* € S(R?) denote the function z — g(M'z), for each
z € R?, where M? is the transpose of the matrix M. Direct calculation shows that

1

(Dafu (M 'y) = W.(sz,, o M'Y\y), yeR?

foreach f€ S (]Rz). It follows from (7), (8) and the definition of distributional Fourier

transforms that

©) L) = wn)” [ (DefeoM)@)dnla),  feSE).
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Since f — f. and f — foM? are bicontinuous isomorphisms of S (RZ) onto itself, it is
clear from (9) that the distribution L(f) has positive order. Since L is the (1,2)-entry
of T(B)f, for each f € S(R?), it follows that T(B) also has positive order. a

The identity (9) shows that the support of L is a translate of the image of D
under a non-singular transformation in R? (with positive determinant). In particular,
supp(L) is an infinite subset of R2. Since supp(L) C supp(T(B)) = supp(T(4))
we have also given an alternative proof of the fact that A;4; = A4, if and only if
supp(T(A)) is a finite subset of R?, [4, 5].
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